Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,964)

Search Parameters:
Keywords = Bowen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3194 KiB  
Article
Evolution Trends, Spatial Differentiation, and Convergence Characteristics of Urban Ecological Economic Resilience in China
by Xiaofeng Ran, Rui Ding and Bowen Zhang
Systems 2025, 13(8), 666; https://doi.org/10.3390/systems13080666 - 6 Aug 2025
Abstract
Achieving a win-win situation for both economy and ecology is crucial for promoting sustainable social development and shaping new advantages in high-quality developments. This article constructs an ecological economic resilience (EER) analysis framework by integrating both ecological and economic dimensions from a resilience [...] Read more.
Achieving a win-win situation for both economy and ecology is crucial for promoting sustainable social development and shaping new advantages in high-quality developments. This article constructs an ecological economic resilience (EER) analysis framework by integrating both ecological and economic dimensions from a resilience perspective. Based on panel data from 290 cities in China, it explores the dynamic evolution characteristics, regional differences, and convergence trends of EER. The findings indicate that the EER has weakened nationwide and in the four major economic regions, overall tending towards stability. Significant disparities exist in EER, particularly pronounced in the northeast. There is σ convergence in the nation as well as in the northeast and east regions. Additionally, both absolute and conditional β convergence is evident nationwide and in all regions, with conditional convergence occurring at a faster pace. The research findings in this paper provide solid theoretical support for promoting regional coordinated development and constructing a new development paradigm. Full article
Show Figures

Figure 1

17 pages, 326 KiB  
Article
Remittances and FDI: Drivers of Employment in the Economic Community of West African States
by Grace Toyin Adigun, Abiola John Asaleye, Olayinka Omolara Adenikinju, Kehinde Damilola Ilesanmi, Sunday Festus Olasupo and Adedoyin Isola Lawal
J. Risk Financial Manag. 2025, 18(8), 436; https://doi.org/10.3390/jrfm18080436 - 6 Aug 2025
Abstract
Unemployment and weak economic productivity are significant global issues, particularly in West Africa. Recently, through diverse mechanisms, remittances and foreign direct investment (FDI) have been sources of foreign capital flow that have positively influenced many less developed economies, including ECOWAS (ECOWAS stands for [...] Read more.
Unemployment and weak economic productivity are significant global issues, particularly in West Africa. Recently, through diverse mechanisms, remittances and foreign direct investment (FDI) have been sources of foreign capital flow that have positively influenced many less developed economies, including ECOWAS (ECOWAS stands for Economic Community of West African States). Nevertheless, these financial flows have exhibited significant inconsistencies, primarily resulting from economic downturns in migrants’ destination countries, with remarkable implications for beneficiary economies. This study, therefore, examines the effect of remittances and FDI on employment in ECOWAS. Specifically, the study assesses the effects of the inflow of remittances and FDI on employment using panel dynamic ordinary least squares (PDOLS) and also investigates the shock effects of remittances and FDI by employing Panel Vector Error Correction (PVECM), which involves variance decomposition. The results show that foreign direct investment (FDI) positively and significantly affects employment. Other variables that show a significant relationship with employment are wage rate, education expenditure, and interest rate. The variance decomposition result revealed that external shocks on remittances and FDI have short- and long-term effects on employment. The above findings imply that foreign direct investment has a far-reaching positive impact on the economy-wide management of the West African sub-region and thus calls for relevant policy options. Full article
(This article belongs to the Special Issue Macroeconomic Dynamics and Economic Growth)
18 pages, 7274 KiB  
Article
Functional Compression Fabrics with Dual Scar-Suppressing and Antimicrobial Properties: Microencapsulation Design and Performance Evaluation
by Lihuan Zhao, Changjing Li, Mingzhu Yuan, Rong Zhang, Xinrui Liu, Xiuwen Nie and Bowen Yan
J. Funct. Biomater. 2025, 16(8), 287; https://doi.org/10.3390/jfb16080287 - 5 Aug 2025
Abstract
Pressure therapy combined with silicone has a significant effect on scar hyperplasia, but limitations such as long-term wearing of compression garments (CGs) can easily cause bacterial infection, cleanliness, and lifespan problems of CGs caused by the tedious operation of applying silicone. In this [...] Read more.
Pressure therapy combined with silicone has a significant effect on scar hyperplasia, but limitations such as long-term wearing of compression garments (CGs) can easily cause bacterial infection, cleanliness, and lifespan problems of CGs caused by the tedious operation of applying silicone. In this study, a compression garment fabric (CGF) with both inhibition of scar hyperplasia and antibacterial function was prepared. A polydimethylsiloxane (PDMS)-loaded microcapsule (PDMS-M) was prepared with chitosan quaternary ammonium salt (HACC) and sodium alginate (SA) as wall materials and PDMS as core materials by the complex coagulation method. The PDMS-Ms were finished on CGF and modified with (3-aminopropyl)triethoxysilane (APTES) to obtain PDMS-M CGF, which was further treated with HACC to produce PDMS-M-HACC CGF. X-ray Photoelectron Spectroscopy(XPS) and Fourier transform infrared spectroscopy (FTIR) analysis confirmed the formation of covalent bonding between PDMS-M and CGF. The PDMS-M CGF exhibited antibacterial rates of 94.2% against Gram-negative bacteria Escherichia coli (E. coli, AATCC 6538) and of 83.1% against Gram-positive bacteria Staphylococcus aureus (S. aureus, AATCC 25922). The antibacterial rate of PDMS-M-HACC CGF against both E. coli and S. aureus reached 99.9%, with wash durability reaching grade AA for E. coli and approaching grade A for S. aureus. The finished CGF maintained good biocompatibility and showed minimal reduction in moisture permeability compared to unfinished CGF, though with decreased elastic recovery, air permeability and softness. The finished CGF of this study is expected to improve the therapeutic effect of hypertrophic scars and improve the quality of life of patients with hypertrophic scars. Full article
Show Figures

Figure 1

27 pages, 3015 KiB  
Article
Preparation of Auricularia auricula-Derived Immune Modulators and Alleviation of Cyclophosphamide-Induced Immune Suppression and Intestinal Microbiota Dysbiosis in Mice
by Ming Zhao, Huiyan Huang, Bowen Li, Yu Pan, Chuankai Wang, Wanjia Du, Wenliang Wang, Yansheng Wang, Xue Mao and Xianghui Kong
Life 2025, 15(8), 1236; https://doi.org/10.3390/life15081236 - 4 Aug 2025
Viewed by 15
Abstract
With the acceleration of the pace of life, increased stress levels, and changes in lifestyle factors such as diet and exercise, the incidence of diseases such as cancer and immunodeficiency has been on the rise, which is closely associated with the impaired antioxidant [...] Read more.
With the acceleration of the pace of life, increased stress levels, and changes in lifestyle factors such as diet and exercise, the incidence of diseases such as cancer and immunodeficiency has been on the rise, which is closely associated with the impaired antioxidant capacity of the body. Polypeptides and polysaccharides derived from edible fungi demonstrate significant strong antioxidant activity and immunomodulatory effects. Auricularia auricula, the second most cultivated mushroom in China, is not only nutritionally rich but also offers considerable health benefits. In particular, its polysaccharides have been widely recognized for their immunomodulatory activities, while its abundant protein content holds great promise as a raw material for developing immunomodulatory peptides. To meet the demand for high-value utilization of Auricularia auricula resources, this study developed a key technology for the stepwise extraction of polypeptides (AAPP1) and polysaccharides (AAPS3) using a composite enzymatic hydrolysis process. Their antioxidant and immunomodulatory effects were assessed using cyclophosphamide (CTX)-induced immune-suppressed mice. The results showed that both AAPP1 and AAPS3 significantly reversed CTX-induced decreases in thymus and spleen indices (p < 0.05); upregulated serum levels of cytokines (e.g., IL-4, TNF-α) and immunoglobulins (e.g., IgA, IgG); enhanced the activities of hepatic antioxidant enzymes SOD and CAT (p < 0.05); and reduced the content of MDA, a marker of oxidative damage. Intestinal microbiota analysis revealed that these compounds restored CTX-induced reductions in microbial α-diversity, increased the abundance of beneficial bacteria (Paramuribaculum, Prevotella; p < 0.05), decreased the proportion of pro-inflammatory Duncaniella, and reshaped the balance of the Bacteroidota/Firmicutes phyla. This study represents the first instance of synergistic extraction of polypeptides and polysaccharides from Auricularia auricula using a single process. It demonstrates their immune-enhancing effects through multiple mechanisms, including “antioxidation-immune organ repair-intestinal microbiota regulation.” The findings offer a theoretical and technical foundation for the deep processing of Auricularia auricula and the development of functional foods. Full article
(This article belongs to the Special Issue Research Progress of Cultivation of Edible Fungi: 2nd Edition)
Show Figures

Figure 1

27 pages, 2361 KiB  
Review
Review of Thrust Regulation and System Control Methods of Variable-Thrust Liquid Rocket Engines in Space Drones
by Meng Sun, Xiangzhou Long, Bowen Xu, Haixia Ding, Xianyu Wu, Weiqi Yang, Wei Zhao and Shuangxi Liu
Actuators 2025, 14(8), 385; https://doi.org/10.3390/act14080385 - 4 Aug 2025
Viewed by 36
Abstract
Variable-thrust liquid rocket engines are essential for precision landing in deep-space exploration, reusable launch vehicle recovery, high-accuracy orbital maneuvers, and emergency obstacle evasions of space drones. However, with the increasingly complex space missions, challenges remain with the development of different technical schemes. In [...] Read more.
Variable-thrust liquid rocket engines are essential for precision landing in deep-space exploration, reusable launch vehicle recovery, high-accuracy orbital maneuvers, and emergency obstacle evasions of space drones. However, with the increasingly complex space missions, challenges remain with the development of different technical schemes. In view of these issues, this paper systematically reviews the technology’s evolution through mechanical throttling, electromechanical precision regulation, and commercial space-driven deep throttling. Then, the development of key variable thrust technologies for liquid rocket engines is summarized from the perspective of thrust regulation and control strategy. For instance, thrust regulation requires synergistic flow control devices and adjustable pintle injectors to dynamically match flow rates with injection pressure drops, ensuring combustion stability across wide thrust ranges—particularly under extreme conditions during space drones’ high-maneuver orbital adjustments—though pintle injector optimization for such scenarios remains challenging. System control must address strong multivariable coupling, response delays, and high-disturbance environments, as well as bottlenecks in sensor reliability and nonlinear modeling. Furthermore, prospects are made in response to the research progress, and breakthroughs are required in cryogenic wide-range flow regulation for liquid oxygen-methane propellants, combustion stability during deep throttling, and AI-based intelligent control to support space drones’ autonomous orbital transfer, rapid reusability, and on-demand trajectory correction in complex deep-space missions. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

22 pages, 6855 KiB  
Article
Estimation of the Kinetic Coefficient of Friction of Asphalt Pavements Using the Top Topography Surface Roughness Power Spectrum
by Bo Sun, Haoyuan Luo, Yibo Rong and Yanqin Yang
Materials 2025, 18(15), 3643; https://doi.org/10.3390/ma18153643 - 2 Aug 2025
Viewed by 229
Abstract
This study proposes a method for estimating the kinetic coefficient of friction (COF) for asphalt pavements by improving and applying Persson’s friction theory. The method utilizes the power spectral density (PSD) of the top surface topography instead of the full PSD to better [...] Read more.
This study proposes a method for estimating the kinetic coefficient of friction (COF) for asphalt pavements by improving and applying Persson’s friction theory. The method utilizes the power spectral density (PSD) of the top surface topography instead of the full PSD to better reflect the actual contact conditions. This approach avoids including deeper roughness components that do not contribute to real rubber–pavement contact due to surface skewness. The key aspect of the method is determining an appropriate cutting plane to isolate the top surface. Four cutting strategies were evaluated. Results show that the cutting plane defined at 0.5 times the root mean square (RMS) height exhibits the highest robustness across all pavement types, with the estimated COF closely matching the measured values for all four tested surfaces. This study presents an improved method for estimating the kinetic coefficient of friction (COF) of asphalt pavements by employing the power spectral density (PSD) of the top surface roughness, rather than the total surface profile. This refinement is based on Persson’s friction theory and aims to exclude the influence of deep surface irregularities that do not make actual contact with the rubber interface. The core of the method lies in defining an appropriate cutting plane to isolate the topographical features that contribute most to frictional interactions. Four cutting strategies were investigated. Among them, the cutting plane positioned at 0.5 times the root mean square (RMS) height demonstrated the best overall applicability. COF estimates derived from this method showed strong consistency with experimentally measured values across all four tested asphalt pavement surfaces, indicating its robustness and practical potential. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

23 pages, 3916 KiB  
Article
Leveraging Wearable Sensors for the Identification and Prediction of Defensive Pessimism Personality Traits
by You Zhou, Dongfen Li, Bowen Deng and Weiqian Liang
Micromachines 2025, 16(8), 906; https://doi.org/10.3390/mi16080906 (registering DOI) - 2 Aug 2025
Viewed by 219
Abstract
Defensive pessimism, an important emotion regulation and motivation strategy, has increasingly attracted scholarly attention in psychology. Recently, sensor-based methods have begun to supplement or replace traditional questionnaire surveys in personality research. However, current approaches for collecting vital signs data face several challenges, including [...] Read more.
Defensive pessimism, an important emotion regulation and motivation strategy, has increasingly attracted scholarly attention in psychology. Recently, sensor-based methods have begun to supplement or replace traditional questionnaire surveys in personality research. However, current approaches for collecting vital signs data face several challenges, including limited monitoring durations, significant data deviations, and susceptibility to external interference. This paper proposes a novel approach using a NiCr/NiSi alloy film temperature sensor, which has a K-type structure and flexible piezoelectric pressure sensor to identify and predict defensive pessimism personality traits. Experimental results indicate that the Seebeck coefficients for K-, T-, and E-type thermocouples are approximately 41 μV/°C, 39 μV/°C, and 57 μV/°C, respectively, which align closely with national standards and exhibit good consistency across multiple experimental groups. Moreover, radial artery frequency experiments demonstrate a strong linear relationship between pulse rate and the intensity of external stimuli, where stronger stimuli correspond to faster pulse rates. Simulation experiments further reveal a high correlation between radial artery pulse frequency and skin temperature, and a regression model based on the physiological sensor data shows a good fit (p < 0.05). These findings verify the feasibility of using temperature and flexible piezoelectric pressure sensors to identify and predict defensive pessimism personality characteristics. Full article
Show Figures

Figure 1

33 pages, 7206 KiB  
Article
From Development to Regeneration: Insights into Flight Muscle Adaptations from Bat Muscle Cell Lines
by Fengyan Deng, Valentina Peña, Pedro Morales-Sosa, Andrea Bernal-Rivera, Bowen Yang, Shengping Huang, Sonia Ghosh, Maria Katt, Luciana Andrea Castellano, Lucinda Maddera, Zulin Yu, Nicolas Rohner, Chongbei Zhao and Jasmin Camacho
Cells 2025, 14(15), 1190; https://doi.org/10.3390/cells14151190 - 1 Aug 2025
Viewed by 227
Abstract
Skeletal muscle regeneration depends on muscle stem cells, which give rise to myoblasts that drive muscle growth, repair, and maintenance. In bats—the only mammals capable of powered flight—these processes must also sustain contractile performance under extreme mechanical and metabolic stress. However, the cellular [...] Read more.
Skeletal muscle regeneration depends on muscle stem cells, which give rise to myoblasts that drive muscle growth, repair, and maintenance. In bats—the only mammals capable of powered flight—these processes must also sustain contractile performance under extreme mechanical and metabolic stress. However, the cellular and molecular mechanisms underlying bat muscle physiology remain largely unknown. To enable mechanistic investigation of these traits, we established the first myoblast cell lines from the pectoralis muscle of Pteronotus mesoamericanus, a highly maneuverable aerial insectivore. Using both spontaneous immortalization and exogenous hTERT/CDK4 gene overexpression, we generated two stable cell lines that retain proliferative capacity and differentiate into contractile myotubes. These cells exhibit frequent spontaneous contractions, suggesting robust functional integrity at the neuromuscular junction. In parallel, we performed transcriptomic and metabolic profiling of native pectoralis tissue in the closely related Pteronotus parnellii to define molecular programs supporting muscle specialization. Gene expression analyses revealed enriched pathways for muscle metabolism, development, and regeneration, highlighting supporting roles in tissue maintenance and repair. Consistent with this profile, the flight muscle is triglyceride-rich, which serves as an important fuel source for energetically demanding processes, including muscle contraction and cellular recovery. Integration of transcriptomic and metabolic data identified three key metabolic modules—glucose utilization, lipid handling, and nutrient signaling—that likely coordinate ATP production and support metabolic flexibility. Together, these complementary tools and datasets provide the first in vitro platform for investigating bat muscle research, enabling direct exploration of muscle regeneration, metabolic resilience, and evolutionary physiology. Full article
Show Figures

Graphical abstract

30 pages, 12322 KiB  
Article
Dynamic Modeling and Validation of Dual-Cable Double-Pendulum Systems for Gantry Cranes
by Bowen Jin, Ji Zeng, Pan Gao, He Zhang and Shenwei Ge
Machines 2025, 13(8), 676; https://doi.org/10.3390/machines13080676 - 1 Aug 2025
Viewed by 158
Abstract
This paper presents a novel dynamic modeling framework for gantry crane systems based on the cart double pendulum with dual cables (CDPD) model. The CDPD model systematically incorporates the effects of dual suspension cables, equalizer beams, and closed-chain kinematic constraints, enabling an accurate [...] Read more.
This paper presents a novel dynamic modeling framework for gantry crane systems based on the cart double pendulum with dual cables (CDPD) model. The CDPD model systematically incorporates the effects of dual suspension cables, equalizer beams, and closed-chain kinematic constraints, enabling an accurate simulation of both symmetric and asymmetric lifting scenarios. Utilizing Kane’s method, the model efficiently handles redundant coordinates and holonomic constraints, resulting in a compact and numerically robust formulation. Validation results demonstrate strict energy conservation and consistency with traditional models in limiting cases. The proposed approach provides a unified and extensible foundation for the advanced analysis, control, and optimization of large-scale gantry crane operations. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

22 pages, 5738 KiB  
Article
Effect of Solute Concentration and Filtration Rate on the Scale Production of a Physically Stable Amorphous Solid Form of Nilotinib
by Zhihui Yuan, Bowen Zhang, Asad Nawaz and Zunhua Li
Pharmaceutics 2025, 17(8), 998; https://doi.org/10.3390/pharmaceutics17080998 (registering DOI) - 31 Jul 2025
Viewed by 227
Abstract
Background/Objectives: Amorphous solid drugs exhibit physical instability and a propensity for crystallization, which leads to reduced solubility and bioavailability. Hence, this study optimized scale manufacturing parameters for producing a physically stable amorphous solid form of nilotinib using neutralization precipitation. Methods: A systematic evaluation [...] Read more.
Background/Objectives: Amorphous solid drugs exhibit physical instability and a propensity for crystallization, which leads to reduced solubility and bioavailability. Hence, this study optimized scale manufacturing parameters for producing a physically stable amorphous solid form of nilotinib using neutralization precipitation. Methods: A systematic evaluation of the effects of the solute concentration and filtration rate on amorphous physical stability was conducted using the pair distribution function (PDF), principal component analysis (PCA), and reduced crystallization temperature (Rc) values. Results: It showed concentration-dependent crystallization resistance, with optimal physical stability achieved at a solute concentration of 0.126 mol/L and a 124 mL/min filtration rate. Experiments carried out at a scale of 50 g confirmed the stability of the production process. Conclusions: These findings provide a validated framework for developing lab-scale amorphous drug products with improved shelf-life stability, assessed using indirect indicators (PDF, Rc) and confirmed through accelerated stability tests. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

20 pages, 5568 KiB  
Article
Dynamic Wear Modeling and Experimental Verification of Guide Cone in Passive Compliant Connectors Based on the Archard Model
by Yuanping He, Bowen Wang, Feifei Zhao, Xingfu Hong, Liang Fang, Weihao Xu, Ming Liao and Fujing Tian
Polymers 2025, 17(15), 2091; https://doi.org/10.3390/polym17152091 - 30 Jul 2025
Viewed by 243
Abstract
To address the wear life prediction challenge of Guide Cones in passive compliant connectors under dynamic loads within specialized equipment, this study proposes a dynamic wear modeling and life assessment method based on the improved Archard model. Through integrated theoretical modeling, finite element [...] Read more.
To address the wear life prediction challenge of Guide Cones in passive compliant connectors under dynamic loads within specialized equipment, this study proposes a dynamic wear modeling and life assessment method based on the improved Archard model. Through integrated theoretical modeling, finite element simulation, and experimental validation, we establish a bidirectional coupling framework analyzing dynamic contact mechanics and wear evolution. By developing phased contact state identification criteria and geometric constraints, a transient load calculation model is established, revealing dynamic load characteristics with peak contact forces reaching 206.34 N. A dynamic contact stress integration algorithm is proposed by combining Archard’s theory with ABAQUS finite element simulation and ALE adaptive meshing technology, enabling real-time iterative updates of wear morphology and contact stress. This approach constructs an exponential model correlating cumulative wear depth with docking cycles (R2 = 0.997). Prototype experiments demonstrate a mean absolute percentage error (MAPE) of 14.6% between simulated and measured wear depths, confirming model validity. With a critical wear threshold of 0.8 mm, the predicted service life reaches 45,270 cycles, meeting 50-year operational requirements (safety margin: 50.9%). This research provides theoretical frameworks and engineering guidelines for wear-resistant design, material selection, and life evaluation in high-reliability automatic docking systems. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

26 pages, 685 KiB  
Article
Novel Research Regarding Topical Use of Diclofenac in Dermatology—Non-Clinical and Clinical Data
by Diana Ana-Maria Nițescu, Horia Păunescu, Mihnea Costescu, Bogdan Nițescu, Laurențiu Coman, Ion Fulga and Oana Andreia Coman
Sci. Pharm. 2025, 93(3), 34; https://doi.org/10.3390/scipharm93030034 - 30 Jul 2025
Viewed by 230
Abstract
Diclofenac, an aryl-acetic acid derivative from the non-steroidal anti-inflammatory drug class, is the subject of multiple non-clinical and clinical studies regarding its usefulness in treating some dermatologic pathologies with an inflammatory, auto-immune, or proliferative component. Diclofenac is now approved for the topical treatment [...] Read more.
Diclofenac, an aryl-acetic acid derivative from the non-steroidal anti-inflammatory drug class, is the subject of multiple non-clinical and clinical studies regarding its usefulness in treating some dermatologic pathologies with an inflammatory, auto-immune, or proliferative component. Diclofenac is now approved for the topical treatment of actinic keratoses (AK), pre-malignant entities that have the risk of transformation into skin carcinomas. The hypothesis that diclofenac increases granular layer development in the mice tail model, having an anti-psoriatic effect, was demonstrated in a previous study in which 1% and 2% diclofenac ointment was evaluated. The aim of the present study was to perform experimental research on the topical effect of diclofenac in the mice tail model, by testing 4% and 8% diclofenac ointment, which is presented in the first part of the manuscript. In the second part of the manuscript, we also aimed to conduct a literature review regarding topical diclofenac uses in specific dermatological entities by evaluating the articles published in PubMed and Scopus databases during 2014–2025. The studies regarding the efficacy of topical diclofenac in dermatological diseases such as AK and field cancerization, actinic cheilitis, basal cell carcinoma, Bowen disease, Darier disease, seborrheic keratoses, and porokeratosis, were analyzed. The results of the experimental work showed a significant effect of 4% and 8% diclofenac ointment on orthokeratosis degree when compared to the negative control groups. Diclofenac in the concentration of 4% and 8% significantly increased the orthokeratosis degree compared to the negative control with untreated mice (p = 0.006 and p = 0.011, respectively, using the Kruskal–Wallis test) and to the negative control with vehicle (p = 0.006 and p = 0.011, respectively, using the Kruskal–Wallis test). The mean epidermal thickness was increased for the diclofenac groups, but not significantly when compared to the control groups. The results are concordant with our previous experiment, emphasizing the need for future clinical trials on the use of topical diclofenac in psoriasis. Full article
Show Figures

Graphical abstract

31 pages, 2317 KiB  
Review
Roles of Ion Channels in Oligodendrocyte Precursor Cells: From Physiology to Pathology
by Jianing Wang, Yu Shen, Ping Liao, Bowen Yang and Ruotian Jiang
Int. J. Mol. Sci. 2025, 26(15), 7336; https://doi.org/10.3390/ijms26157336 - 29 Jul 2025
Viewed by 255
Abstract
Oligodendrocyte precursor cells (OPCs) are a distinct and dynamic glial population that retain proliferative and migratory capacities throughout life. While traditionally recognized for differentiating into oligodendrocytes (OLs) and generating myelin to support rapid nerve conduction, OPCs are now increasingly appreciated for their diverse [...] Read more.
Oligodendrocyte precursor cells (OPCs) are a distinct and dynamic glial population that retain proliferative and migratory capacities throughout life. While traditionally recognized for differentiating into oligodendrocytes (OLs) and generating myelin to support rapid nerve conduction, OPCs are now increasingly appreciated for their diverse and non-canonical roles in the central nervous system (CNS), including direct interactions with neurons. A notable feature of OPCs is their expression of diverse ion channels that orchestrate essential cellular functions, including proliferation, migration, and differentiation. Given their widespread distribution across the CNS, OPCs are increasingly recognized as active contributors to the development and progression of various neurological disorders. This review aims to present a detailed summary of the physiological and pathological functions of ion channels in OPCs, emphasizing their contribution to CNS dysfunction. We further highlight recent advances suggesting that ion channels in OPCs may serve as promising therapeutic targets across a broad range of disorders, including, but not limited to, multiple sclerosis (MS), spinal cord injury, amyotrophic lateral sclerosis (ALS), psychiatric disorders, Alzheimer’s disease (AD), and neuropathic pain (NP). Finally, we discuss emerging therapeutic strategies targeting OPC ion channel function, offering insights into potential future directions in the treatment of CNS diseases. Full article
(This article belongs to the Special Issue Ion Channels as a Potential Target in Pharmaceutical Designs 2.0)
Show Figures

Figure 1

8 pages, 172 KiB  
Editorial
Toxicity Characterization, Detection and Remediation of Contaminants in Soils and Groundwater
by Bowen Liu, Haoyang Xiong, Junhao Qin, Peidong Su, Feng Zhu and Lin Ding
Toxics 2025, 13(8), 635; https://doi.org/10.3390/toxics13080635 - 28 Jul 2025
Viewed by 186
Abstract
Soil and groundwater contamination remains a critical environmental and public health challenge worldwide [...] Full article
14 pages, 1663 KiB  
Article
Carbon Dioxide Absorption by Polyethylene Glycol Dimethyl Ether Modified by 2-methylimidazole
by Yan Wu, Zicheng Wang, Hui Yu, Bin Ding, Ke Fei, Xueli Ma, Baoshen Xu, Yonghu Zhang, Xiaoning Fu, Bowen Ding and Nan Li
Separations 2025, 12(8), 198; https://doi.org/10.3390/separations12080198 - 28 Jul 2025
Viewed by 243
Abstract
Developing and utilizing capture and storage technologies for CO2 has become a critical research topic due to the significant greenhouse effect caused by excessive CO2 emissions. A conventional physical absorption process for CO2 capture is polyethylene glycol dimethyl ether (NHD); [...] Read more.
Developing and utilizing capture and storage technologies for CO2 has become a critical research topic due to the significant greenhouse effect caused by excessive CO2 emissions. A conventional physical absorption process for CO2 capture is polyethylene glycol dimethyl ether (NHD); however, its limited application range is caused by its poor absorption of CO2 at low pressures. In this work, the CO2 absorption of NHD was enhanced by combining NHD with a novel chemical absorbent 2-methylimidazole (2-mIm)-ethylene glycol (EG) solution to improve CO2 absorption. Viscosity and CO2 solubility were examined in various compositions. The CO2 solubility in the mixed solution was found to be at maximum when the mass fractions of NHD, 2-mIm, and EG were 20%, 40%, and 40%, respectively. In comparison to pure NHD, the solubility of CO2 in this mixed solution at 30 °C and 0.5 MPa increased by 161.2%, and the desorption heat was less than 30 kJ/mol. The complex solution exhibits high selectivity and favorable regeneration performance in the short term. However, it is more sensitive to moisture content. The results of this study can provide important data to support the construction of new low-energy solvent systems and the development of novel CO2 capture processes. Full article
(This article belongs to the Section Separation Engineering)
Show Figures

Figure 1

Back to TopTop