Effect of Solute Concentration and Filtration Rate on the Scale Production of a Physically Stable Amorphous Solid Form of Nilotinib
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Neutralization Precipitation
2.2.2. Characterization
Powder X-Ray Diffraction (PXRD)
Differential Scanning Calorimetry (DSC)
Thermogravimetric Analysis (TGA)
Focused Beam Reflectance Measurement (FBRM)
2.2.3. Pair Distribution Function (PDF)
2.2.4. Principal Component Analysis (PCA)
2.2.5. Accelerated Stability Test
3. Results and Discussion
3.1. Optimization of the Concentration of Nilotinib
3.1.1. PDF and PCA of PXRD for the Optimization of the Concentration of Nilotinib
3.1.2. Rc Analysis of DSC Data for the Optimization of the Concentration of Nilotinib
3.1.3. Filtration Rate Analysis for the Optimization of the Concentration of Nilotinib
3.2. Optimization of the Filtration Rate
3.2.1. PDF and PCA of PXRD for the Optimization of the Filtration Rate
3.2.2. Rc Analysis of DSC Data for the Optimization of the Filtration Rate
3.2.3. TGA for the Optimization of the Filtration Rate
3.3. Optimization of the Scale of Nilotinib
3.3.1. PDF and PCA of PXRD for the Optimization of the Scale of Nilotinib
3.3.2. Rc Analysis of DSC Data for the Optimization of the Scale of Nilotinib
3.3.3. Filtration Rate Analysis for the Optimization of the Scale of Nilotinib
3.4. Accelerated Stability Test Results
3.5. Discussion on Future Work
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Queiroz, L.H.S.; Barros, R.S.; de Sousa, F.F.; Lage, M.R.; Sarraguça, M.C.; Ribeiro, P.R.S. Preparation and characterization of a rifampicin coamorphous material with tromethamine coformer: An experimental–theoretical study. Mol. Pharm. 2024, 21, 1272–1284. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, P.; Ma, R.; Jia, J.; Fu, Q. Drug-drug co-amorphous systems: An emerging formulation strategy for poorly water-soluble drugs. Drug Discov. Today 2024, 29, 103883. [Google Scholar] [CrossRef]
- Bapat, P.; Paul, S.; Tseng, Y.-C.; Taylor, L.S. Interplay of drug-polymer interactions and release performance for HPMCAS-based amorphous solid dispersions. Mol. Pharm. 2024, 21, 1466–1478. [Google Scholar] [CrossRef]
- B, S.; Ghosh, A. Mechanistic insights into amorphous solid dispersions: Bridging theory and practice in drug delivery. Pharm. Res. 2025, 42, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Kolisnyk, T.; Mohylyuk, V.; Fil, N.; Bickerstaff, E.; Li, S.; Jones, D.S.; Andrews, G.P. High drug-loaded amorphous solid dispersions of a poor glass forming drug: The impact of polymer type and cooling rate on amorphous drug behaviour. Int. J. Pharm. 2025, 670, 125095. [Google Scholar] [CrossRef] [PubMed]
- Martynek, D.; Ridvan, L.; Sivén, M.; Šoóš, M. Stability and recrystallization of amorphous solid dispersions prepared by hot-melt extrusion and spray drying. Int. J. Pharm. 2025, 672, 125331. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Aalling-Frederiksen, O.; Madsen, A.Ø.; Jensen, K.M.Ø.; Jørgensen, M.R.V.; Gong, J.; Rades, T.; Martins, I.C.B. Different or the same? Exploring the physicochemical properties and molecular mobility of celecoxib amorphous forms. Int. J. Pharm. 2024, 661, 124470. [Google Scholar] [CrossRef]
- Chakraborty, S.; Bansal, A. Application of atomic force microscopy in the development of amorphous solid dispersion. J. Pharm. Sci. 2025, 114, 70–81. [Google Scholar] [CrossRef]
- Cordova, M.; Moutzouri, P.; Nilsson Lill, S.O.; Cousen, A.; Kearns, M.; Norberg, S.T.; Ankarberg, A.S.; McCabe, J.; Pinon, A.C.; Schantz, S.; et al. Atomic-level structure determination of amorphous molecular solids by NMR. Nat. Commun. 2023, 14, 5138. [Google Scholar] [CrossRef] [PubMed]
- Belenguer, A.M. A focus on chasing pharmaceutical polyamorphs to design better oral drug formulations. Chem. Sci. 2025, 16, 2480–2482. [Google Scholar] [CrossRef]
- Yuan, Z.; Liao, X.; Zhang, B.; Nawaz, A.; Li, Z. Influence of neutralization precipitation conditions on the physical stability of amorphous solid pharmaceuticals. Molecules 2025, 30, 764. [Google Scholar] [CrossRef]
- Li, Z.; Gong, Z.; Zhang, B.; Nawaz, A. Investigation of the influence of anti-solvent precipitation parameters on the physical stability of amorphous solids. Molecules 2024, 29, 1275. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Luo, J.; Chen, X.; Zhang, B.; Nawaz, A.; Dessie, W. Optimization of precipitation conditions for producing physically stable amorphous solids using pair distribution function and reduced crystallization temperature. J. Drug Deliv. Sci. Technol. 2024, 91, 105268. [Google Scholar] [CrossRef]
- Li, Z.; Liao, X.; Gong, Z.; Zhang, B.; Nawaz, A. An investigation of the impact of precipitation temperature and filter cake thickness on the physical stability of amorphous solids: A case study. Molecules 2024, 29, 2327. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Li, Z.; Luo, J.; Nawaz, A.; Zhang, B.; Dessie, W. The optimization of pair distribution functions for the evaluation of the degree of disorder and physical stability in amorphous solids. Molecules 2024, 29, 2379. [Google Scholar] [CrossRef]
- Bøtker, J.P.; Karmwar, P.; Strachan, C.J.; Cornett, C.; Tian, F.; Zujovic, Z.; Rantanen, J.; Rades, T. Assessment of crystalline disorder in cryo-milled samples of indomethacin using atomic pair-wise distribution functions. Int. J. Pharm. 2011, 417, 112–119. [Google Scholar] [CrossRef]
- Naelapää, K.; Boetker, J.P.; Veski, P.; Rantanen, J.; Rades, T.; Kogermann, K. Polymorphic form of piroxicam influences the performance of amorphous material prepared by ball-milling. Int. J. Pharm. 2012, 429, 69–77. [Google Scholar] [CrossRef]
- Zhu, S.; Yu, R.; Qian, G.; Deng, L. A supersaturating drug delivery system to enhance the oral bioavailability of nilotinib. J. Drug Deliv. Sci. Technol. 2022, 68, 103038. [Google Scholar] [CrossRef]
- Koehl, N.J.; Holm, R.; Kuentz, M.; Jannin, V.; Griffin, B.T. Exploring the impact of surfactant type and digestion: Highly digestible surfactants improve oral bioavailability of nilotinib. Mol. Pharm. 2020, 17, 3202–3213. [Google Scholar] [CrossRef]
- Andersson, P.; Von Euler, M.; Beckert, M. Comparable pharmacokinetics of 85 Mg Rightsize nilotinib (XS003) and 150 Mg Tasigna in healthy volunteers using a hybrid nanoparticle-based formulation platform for protein kinase inhibitors. J. Clin. Oncol. 2014, 32, e13551. [Google Scholar] [CrossRef]
- Bhugra, C.; Telang, C.; Schwabe, R.; Zhong, L. Reduced crystallization temperature methodology for polymer selection in amorphous solid dispersions: Stability perspective. Mol. Pharm. 2016, 13, 3326–3333. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Thompson, J.W.; Billinge, S.J.L. PDFgetX2: A GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data. J. Appl. Crystallogr. 2004, 37, 678. [Google Scholar] [CrossRef]
- Karmwar, P.; Boetker, J.P.; Graeser, K.A.; Strachan, C.J.; Rantanen, J.; Rades, T. Investigations on the effect of different cooling rates on the stability of amorphous indomethacin. Eur. J. Pharm. Sci. 2011, 44, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Kaduk, J.A.; Zhong, K.; Gindhart, A.M.; Blanton, T.N. Crystal structure of nilotinib, C28H22F3N7O. Powder Diffr. 2015, 30, 270–277. [Google Scholar] [CrossRef]
- Boetker, J.P.; Koradia, V.; Rades, T.; Rantanen, J.; Savolainen, M. Atomic pairwise distribution function analysis of the amorphous phase prepared by different manufacturing routes. Pharmaceutics 2012, 4, 93–103. [Google Scholar] [CrossRef]
- Newman, A.; Engers, D.; Bates, S.; Ivanisevic, I.; Kelly, R.C.; Zografi, G. Characterization of amorphous API: Polymer mixtures using X-ray powder diffraction. J. Pharm. Sci. 2008, 97, 4840–4856. [Google Scholar] [CrossRef]
- Singh, G.; Kaur, L.; Mahajan, A.; Kaur, N.; Dhawan, R.K. A review on the physical stability of amorphous solid dispersion. Int. J. Pharmacogn. Pharm. Sci. 2021, 3, 26–31. [Google Scholar] [CrossRef]
- Castillo, R.; Koch, B.; Ruiz, P.; Delmon, B. Preparation of titania supported on silica via the vapor phase grafting method: Application of statistical and physico-chemical methods. In Studies in Surface Science and Catalysis; Delmon, B., Jacobs, P.A., Maggi, R., Martens, J.A., Grange, P., Poncelet, G., Eds.; Elsevier: Amsterdam, The Netherlands, 1998; Volume 118, pp. 827–835. [Google Scholar]
- Shi, X.; Chen, Q.; Deng, Y.; Xing, X.; Wang, C.; Ding, Z.; Su, W. New case of pharmaceutical solid-state forms: Several novel solvates/polymorphs of nilotinib and their phase transformation controls. Cryst. Growth Des. 2022, 22, 4794–4812. [Google Scholar] [CrossRef]
- Shi, X.; Deng, Y.; Wang, Z.; Liu, X.; Chen, Q.; Peng, J.; Xing, X.; Su, W. Two new nilotinib polymorphs with solubility advantages prepared by the melt crystallization process. J. Drug Deliv. Sci. Tec. 2023, 84, 104511. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, H.; Wu, D.; Chen, K.; Wang, N.; Wang, T.; Huang, X.; Zhou, L.; Hao, H. Polymorph transformation of solid drugs and inhibiting strategies. CrystEngComm 2024, 26, 6510–6544. [Google Scholar] [CrossRef]
- Liu, B.; Dong, K.; Chen, R.-J.; Chang, S.-T.; Chu, G.-W.; Zhang, L.-L.; Zou, H.-K.; Sun, B.-C. Study on the solid-liquid mass-transfer performance of suspension in a rotating packed bed. Ind. Eng. Chem. Res. 2023, 62, 8063–8070. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Xia, W.; Xie, G. Filtration of kaolinite and coal mixture suspension: Settling behavior and filter cake structure analysis. Powder Technol. 2021, 381, 122–128. [Google Scholar] [CrossRef]
- Gao, P.; Shi, Y. Characterization of supersaturatable formulations for improved absorption of poorly soluble drugs. AAPS J. 2012, 14, 703–713. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Bhamidi, V.; Tan, R.B.H.; Kenis, P.J.A.; Zukoski, C.F. Determination of critical supersaturation from microdroplet evaporation experiments. Cryst. Growth Des. 2006, 6, 1175–1180. [Google Scholar] [CrossRef]
- Mota, M.; Flickinger, M.C. Modeling the influence of slurry concentration on saccharomyces cerevisiae cake porosity and resistance during microfiltration. Biotechnol. Progr. 2012, 28, 1534–1541. [Google Scholar] [CrossRef]
- Kinnarinen, T.; Tuunila, R.; Kkinen, H.A. Reduction of the width of particle size distribution to improve pressure filtration properties of slurries. Miner. Eng. 2017, 102, 68–74. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, H.; Jia, J.; Song, D.; Yang, L.; Tang, X.; He, Z.; Fu, Q. Moisture-induced limited recrystallization may not reduce the dissolution of amorphous solid dispersions: A case of nitrendipine. J. Ind. Eng. Chem. 2024, 137, 235–242. [Google Scholar] [CrossRef]
- Sarkar, T.; Seth, S.; Laha, B. Chapter 21-Pilot plant scale-up techniques in pharmaceutical product development. In Physico-Chemical Aspects of Dosage Forms and Biopharmaceutics; Nayak, A.K., Sen, K.K., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 387–406. [Google Scholar]
Numbers | Filtration Rate | Glass Transition Temperature (Tg), °C | Water Content, % |
---|---|---|---|
1 | 14 | 80.72 | 3.78 |
2 | 76 | 83.49 | 2.50 |
3 | 124 | 86.28 | 1.25 |
4 | 158 | 89.93 | 1.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Z.; Zhang, B.; Nawaz, A.; Li, Z. Effect of Solute Concentration and Filtration Rate on the Scale Production of a Physically Stable Amorphous Solid Form of Nilotinib. Pharmaceutics 2025, 17, 998. https://doi.org/10.3390/pharmaceutics17080998
Yuan Z, Zhang B, Nawaz A, Li Z. Effect of Solute Concentration and Filtration Rate on the Scale Production of a Physically Stable Amorphous Solid Form of Nilotinib. Pharmaceutics. 2025; 17(8):998. https://doi.org/10.3390/pharmaceutics17080998
Chicago/Turabian StyleYuan, Zhihui, Bowen Zhang, Asad Nawaz, and Zunhua Li. 2025. "Effect of Solute Concentration and Filtration Rate on the Scale Production of a Physically Stable Amorphous Solid Form of Nilotinib" Pharmaceutics 17, no. 8: 998. https://doi.org/10.3390/pharmaceutics17080998
APA StyleYuan, Z., Zhang, B., Nawaz, A., & Li, Z. (2025). Effect of Solute Concentration and Filtration Rate on the Scale Production of a Physically Stable Amorphous Solid Form of Nilotinib. Pharmaceutics, 17(8), 998. https://doi.org/10.3390/pharmaceutics17080998