Novel Research Regarding Topical Use of Diclofenac in Dermatology—Non-Clinical and Clinical Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Part I: Experimental Study
2.1.1. Animals and Substances
2.1.2. Experimental Design
- The orthokeratosis degree was calculated according to the following formula:
- G/S × 100
- G = the granular layer length developed within the scale.
- S = the scale length measured between two hair follicles.
- Ten consecutive scales were analyzed for each animal, 60 scales per group. Dimensions were calculated in micrometers.
- The relative drug efficacy was calculated according to:
- (OKtest − OKcontrol)/(100 − OKcontrol) × 100.
- OKtest = mean orthokeratosis values obtained for the test substances.
- OKcontrol = mean values of orthokeratosis obtained for negative control with the ointment base.
- Mean epidermal thickness was calculated after measuring the epidermal thickness from the inferior part of the epidermis to the stratum corneum (5 measurements for each scale, 10 scales per animal, 300 measurements per group).
2.1.3. Statistical Analysis
2.1.4. Experimental Results
2.2. Part II: Literature Review Regarding the Use of Topical Diclofenac in Dermatological Diseases (2014–2025)
2.2.1. Method
2.2.2. Actinic Keratosis, Actinic Cheilitis, and Field Cancerization
2.2.3. Malignant Pathologies
Basal Cell Carcinoma
Bowen Disease
2.2.4. Darier Disease
2.2.5. Pityriasis Versicolor
2.2.6. Seborrheic Keratoses
2.2.7. Porokeratosis
2.2.8. Wound Healing
2.2.9. Anti-Aging
3. Discussion
3.1. Experimental Study
Limitation of the Experimental Study
3.2. Literature Review
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grosser, T. Biological basis for the cardiovascular consequences of COX-2 inhibition: Therapeutic challenges and opportunities. J. Clin. Investig. 2005, 116, 4–15. [Google Scholar] [CrossRef]
- Hernandez-Diaz, S.; Varas-Lorenzo, C.; Garcia Rodriguez, L.A. Non-Steroidal Antiinflammatory Drugs and the Risk of Acute Myocardial Infarction. Basic Clin. Pharmacol. Toxicol. 2006, 98, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Bort, R.; Ponsoda, X.; Jover, R.; Gómez-Lechón, M.J.; Castell, J.V. Diclofenac toxicity to hepatocytes: A role for drug metabolism in cell toxicity. J. Pharmacol. Exp. Ther. 1999, 288, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Hickey, E.J.; Raje, R.R.; Reid, V.E.; Gross, S.M.; Ray, S.D. Diclofenac induced in vivo nephrotoxicity may involve oxidative stress-mediated massive genomic DNA fragmentation and apoptotic cell death. Free Radic. Biol. Med. 2001, 31, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Sinha, M.; Gautam, L.; Shukla, P.K.; Kaur, P.; Sharma, S.; Singh, T.P. Current Perspectives in NSAID-Induced Gastropathy. Mediat. Inflamm. 2013, 2013, 258209. [Google Scholar] [CrossRef]
- Patrignani, P.; Tacconelli, S.; Bruno, A.; Sostres, C.; Lanas, A. Managing the adverse effects of nonsteroidal anti-inflammatory drugs. Expert. Rev. Clin. Pharmacol. 2011, 4, 605–621. [Google Scholar] [CrossRef]
- Hajjar, B.; Zuo, J.; Park, C.; Azarmi, S.; Silva, D.A.; Bou-Chacra, N.A.; Löbenberg, R. In Vitro Evaluation of a Foamable Microemulsion Towards an Improved Topical Delivery of Diclofenac Sodium. AAPS PharmSciTech 2022, 23, 102. [Google Scholar] [CrossRef]
- Martin, G.M.; Stockfleth, E. Diclofenac sodium 3% gel for the management of actinic keratosis: 10+ years of cumulative evidence of efficacy and safety. J. Drugs Dermatol. 2012, 11, 600–608. [Google Scholar]
- Bakry, O.; Samaka, R.; Shoeib, M.; Abdel Aal, S. Nuclear factor kappa B and cyclo-oxygenase-2: Two concordant players in psoriasis pathogenesis. Ultrastruct. Pathol. 2015, 39, 49–61. [Google Scholar] [CrossRef]
- Nițescu, D.A.M.; Păunescu, H.; Ștefan, A.E.; Coman, L.; Georgescu, C.C.; Stoian, A.C.; Gologan, D.; Fulga, I.; Coman, O.A. Anti-Psoriasis Effect of Diclofenac and Celecoxib Using the Tail Model for Psoriasis. Pharmaceutics 2022, 14, 885. [Google Scholar] [CrossRef]
- Lapidus, A.H.; Lee, S.; Liu, Z.F.; Smithson, S.; Chew, C.Y.; Gin, D. Topical Calcipotriol Plus 5-Fluorouracil in the Treatment of Actinic Keratosis, Bowen’s Disease, and Squamous Cell Carcinoma: A Systematic Review. J. Cutan. Med. Surg. 2024, 28, 375–380. [Google Scholar] [CrossRef]
- Bakirtzi, K.; Papadimitriou, I.; Vakirlis, E.; Lallas, A.; Sotiriou, E. Photodynamic Therapy for Field Cancerization in the Skin: Where Do We Stand? Dermatol. Pract. Concept. 2023, 13, e2023291. [Google Scholar] [CrossRef]
- Kirchberger, M.C.; Gfesser, M.; Erdmann, M.; Schliep, S.; Berking, C.; Heppt, M.V. Tirbanibulin 1% Ointment Significantly Reduces the Actinic Keratosis Area and Severity Index in Patients with Actinic Keratosis: Results from a Real-World Study. J. Clin. Med. 2023, 12, 4837. [Google Scholar] [CrossRef] [PubMed]
- Rosan, T.; Ljubojević Hadžavdić, S. Ketoprofen-induced Photoallergic Reaction. Acta Dermatovenerol. Croat. 2022, 30, 197–198. [Google Scholar] [PubMed]
- Miller, A.C.; Adjei, S.; Temiz, L.A.; Tyring, S.K. Tirbanibulin for the Treatment of Actinic Keratosis: A Review. Ski. Ther. Lett. 2022, 27, 4–7. [Google Scholar]
- Barakat, L.; Dereure, O.; Raison-Peyron, N. A police case: Finding propylene glycol guilty as culprit allergen. Contact Dermat. 2021, 85, 475–476. [Google Scholar] [CrossRef]
- Agozzino, M.; Russo, T.; Franceschini, C.; Mazzilli, S.; Garofalo, V.; Campione, E.; Bianchi, L.; Milani, M.; Argenziano, G. Effects of topical piroxicam and sun filters in actinic keratosis evolution and field cancerization: A two-center, assessor-blinded, clinical, confocal microscopy and dermoscopy evaluation trial. Curr. Med. Res. Opin. 2019, 35, 1785–1792. [Google Scholar] [CrossRef]
- Wollina, U.; Gaber, B.; Koch, A. Photodynamic Treatment with Nanoemulsified 5-Aminolevulinic Acid and Narrow Band Red Light for Field Cancerization Due to Occupational Exposure to Ultraviolet Light Irradiation. Georgian Med. News 2018, 274, 138–143. [Google Scholar]
- Adil, M.; Amin, S.S.; Arif, T. Nicolau’s syndrome: A rare but preventable iatrogenic disease. Acta Dermatovenerol. Croat. 2017, 25, 251–253. [Google Scholar]
- Garofalo, V.; Ventura, A.; Mazzilli, S.; Diluvio, L.; Bianchi, L.; Toti, L.; Tisone, G.; Milani, M.; Campione, E. Treatment of Multiple Actinic Keratosis and Field of Cancerization with Topical Piroxicam 0.8% and Sunscreen 50+ in Organ Transplant Recipients: A Series of 10 Cases. Case Rep. Dermatol. 2017, 9, 211–216. [Google Scholar] [CrossRef]
- Damps, T.; Laskowska, A.K.; Kowalkowski, T.; Prokopowicz, M.; Puszko, A.K.; Sosnowski, P.; Czuwara, J.; Konop, M.; Różycki, K.; Borkowska, J.K.; et al. The effect of wool hydrolysates on squamous cell carcinoma cells in vitro. Possible implications for cancer treatment. PLoS ONE 2017, 12, e0184034. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.P.; Rivers, J.K. ActikerallTM (5-Fluorouracil 0.5% and Salicylic Acid 10%) Topical Solution for Patient-directed Treatment of Actinic Keratoses. Ski. Ther. Lett. 2016, 21, 1–3. [Google Scholar]
- Pruitt, L.G.; Hsia, L.L.B.; Burke, W.A. Disseminated superficial porokeratosis involving the groin and genitalia in a 72-year-old immunocompetent man. JAAD Case Rep. 2015, 1, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Babino, G.; Diluvio, L.; Bianchi, L.; Orlandi, A.; Di Prete, M.; Chimenti, S.; Milani, M.; Campione, E. Long-term use of a new topical formulation containing piroxicam 0.8% and sunscreen: Efficacy and tolerability on actinic keratosis. A proof of concept study. Curr. Med. Res. Opin. 2016, 32, 1345–1349. [Google Scholar] [CrossRef]
- Herbig, M.E.; Houdek, P.; Gorissen, S.; Zorn-Kruppa, M.; Wladykowski, E.; Volksdorf, T.; Grzybowski, S.; Kolios, G.; Willers, C.; Mallwitz, H.; et al. A custom tailored model to investigate skin penetration in porcine skin and its comparison with human skin. Eur. J. Pharm. Biopharm. 2015, 95, 99–109. [Google Scholar] [CrossRef]
- Russo, J.; Fiegel, J.; Brogden, N.K. Effect of Salt Form on Gelation and Drug Delivery Properties of Diclofenac-Loaded Poloxamer Gels for Delivery to Impaired Skin. Pharm. Res. 2022, 39, 2515–2527. [Google Scholar] [CrossRef]
- Do, L.H.D.; Law, R.M.; Maibach, H.I. Dose response effect of chemical surface concentration on percutaneous penetration in human: In vivo + in vitro. Regul. Toxicol. Pharmacol. 2022, 132, 105186. [Google Scholar] [CrossRef]
- Heppt, M.V.; Dykukha, I.; Graziadio, S.; Salido-Vallejo, R.; Chapman-Rounds, M.; Edwards, M. Comparative Efficacy and Safety of Tirbanibulin for Actinic Keratosis of the Face and Scalp in Europe: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2022, 11, 1654. [Google Scholar] [CrossRef]
- Wisuitiprot, V.; Ingkaninan, K.; Chakkavittumrong, P.; Wisuitiprot, W.; Neungchamnong, N.; Chantakul, R.; Waranuch, N. Effects of Acanthus ebracteatus Vahl. extract and verbascoside on human dermal papilla and murine macrophage. Sci. Rep. 2022, 12, 1491. [Google Scholar]
- Dao, D.P.D.; Sahni, V.N.; Sahni, D.R.; Balogh, E.A.; Grada, A.; Feldman, S.R. 1% Tirbanibulin Ointment for the Treatment of Actinic Keratoses. Ann. Pharmacother. 2022, 56, 494–500. [Google Scholar] [CrossRef]
- Kash, N.; Silapunt, S. A review of emerging and non-US FDA-approved topical agents for the treatment of basal cell carcinoma. Future Oncol. 2021, 17, 3111–3132. [Google Scholar] [CrossRef]
- Russo, J.; Fiegel, J.; Brogden, N.K. Rheological and Drug Delivery Characteristics of Poloxamer-Based Diclofenac Sodium Formulations for Chronic Wound Site Analgesia. Pharmaceutics 2020, 12, 1214. [Google Scholar] [CrossRef]
- O’Grady, C.; Flynn, A.; Mulligan, N.; Moloney, F.J. Pemphigus foliaceous triggered by topical diclofenac. Australas. J. Dermatol. 2020, 61, e442–e443. [Google Scholar] [CrossRef]
- Steeb, T.; Heppt, M.V.; Becker, L.; Kohl, C.; French, L.E.; Berking, C. Long-term efficacy of interventions for actinic keratosis: Protocol for a systematic review and network meta-analysis. Syst. Rev. 2019, 8, 237. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.; Savas, J.; Doerfler, L. Nonsurgical Treatments for Nonmelanoma Skin Cancer. Dermatol. Clin. 2019, 37, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Nemer, K.M.; Council, M.L. Topical and Systemic Modalities for Chemoprevention of Nonmelanoma Skin Cancer. Dermatol. Clin. 2019, 37, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Puviani, M.; Galloni, C.; Marchetti, S.; Sergio Pavone, P.; Lovati, S.; Pistone, G.; Caputo, V.; Tilotta, G.; Scarcella, G.; Campione, E.; et al. Efficacy of a film-forming medical device containing sunscreen (50+) and piroxicam 0.8% in actinic keratosis and field cancerization: A multicenter, assessor-blinded, 3 month trial. Curr. Med. Res. Opin. 2017, 33, 1255–1259. [Google Scholar] [CrossRef]
- Asche, C.V.; Zografos, P.; Norlin, J.M.; Urbanek, B.; Mamay, C.; Makin, C.; Erntoft, S.; Chen, C.C.; Hines, D.M.; Mark Siegel, D. Evaluation of Resource Utilization and Treatment Patterns in Patients with Actinic Keratosis in the United States. Value Health 2016, 19, 239–248. [Google Scholar] [CrossRef]
- Zarchi, K.; Jemec, G.B.E. Ingenol mebutate: From common weed to cancer cure. Curr. Probl. Dermatol. 2015, 46, 136–142. [Google Scholar]
- Philipp-Dormston, W.G. Field cancerization: From molecular basis to selective field-directed management of actinic keratosis. Curr. Probl. Dermatol. 2015, 46, 115–121. [Google Scholar]
- Altenburg, A.; El-Haj, N.; Micheli, C.; Puttkammer, M.; Abdel-Naser, M.; Zouboulis, C.C. The Treatment of Chronic Recurrent Oral Aphthous Ulcers. Dtsch. Arztebl. Int. 2014, 111, 665–673. [Google Scholar] [CrossRef]
- Javor, S.; Cozzani, E.; Parodi, A. Topical treatment of actinic keratosis with 3.0% diclofenac in 2.5% hyaluronan gel: Review of the literature about the cumulative evidence of its efficacy and safety. G. Ital. Dermatol. Venereol. Organo Uff. Soc. Ital. Dermatol. Sifilogr. 2016, 151, 275–280. [Google Scholar]
- Ulrich, M.; Pellacani, G.; Ferrandiz, C.; Lear, J.T. Evidence for field cancerisation treatment of actinic keratoses with topical diclofenac in hyaluronic acid. Eur. J. Dermatol. 2014, 24, 158–167. [Google Scholar] [CrossRef]
- Messerschmidt, A.; Schultheis, K.; Ochsendorf, F. Topische Therapie von Infektionen, Hauttumoren und Hyperkeratosen. Hautarzt 2014, 65, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Esmann, S.; Jemec, G.B.E. Patients’ perceptions of topical treatments of actinic keratosis. J. Dermatol. Treat. 2014, 25, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Jeter, J.M.; Curiel-Lewandrowski, C.; Stratton, S.P.; Myrdal, P.B.; Warneke, J.A.; Einspahr, J.G.; Bartels, H.G.; Yozwiak, M.; Bermudez, Y.; Hu, C.; et al. Phase IIB Randomized Study of Topical Difluoromethylornithine and Topical Diclofenac on Sun-Damaged Skin of the Forearm. Cancer Prev. Res. 2016, 9, 128–134. [Google Scholar] [CrossRef]
- Kovács, A.; Falusi, F.; Gácsi, A.; Budai-Szűcs, M.; Csányi, E.; Veréb, Z.; Monostori, T.; Csóka, I.; Berkó, S. Formulation and investigation of hydrogels containing an increased level of diclofenac sodium using risk assessment tools. Eur. J. Pharm. Sci. 2024, 193, 106666. [Google Scholar] [CrossRef] [PubMed]
- Birngruber, T.; Vought, K.; Schwingenschuh, S.; Reisenegger, P.; Maibach, H.; Lissin, D. Topical Delivery Systems Effectively Transport Analgesics to Areas of Localized Pain via Direct Diffusion. Pharmaceutics 2023, 15, 2563. [Google Scholar] [CrossRef]
- Michelini, M. Photodynamic therapy activated by intense pulsed light in the treatment of actinic keratosis. G. Ital. Dermatol. Venereol. 2020, 155, 470–476. [Google Scholar] [CrossRef]
- Jolaoye, O.O. A Rare Manifestation of Sunburn Rash: A Case Report of Brachioradial Pruritus. Cureus 2025, 17, e82806. [Google Scholar] [CrossRef]
- Chaiyabutr, C.; Dawe, R.; Lesar, A.; Ibbotson, S.H. Topical Photodynamic Therapy in a Medical Centre: The Scottish Dermatology Experience. Photodermatol. Photoimmunol. Photomed. 2025, 41, e70010. [Google Scholar] [CrossRef]
- Bera, S.; Datta, H.K.; Dastidar, P. An injectable supramolecular hydrogel as a self-drug-delivery system for local chemoimmunotherapy against melanoma. Biomater. Sci. 2023, 11, 5618–5633. [Google Scholar] [CrossRef] [PubMed]
- Albanell-Fernández, M.; Luque-Luna, M.; López-Cabezas, C.; Alamon-Reig, F.; Espinosa-Villaseñor, N.; Barboza-Guadagnini, L.; Mascaró, J.M. Treatment of Porokeratosis Ptychotropica with a Topical Combination of Cholesterol and Simvastatin. JAMA Dermatol. 2023, 159, 458. [Google Scholar] [CrossRef] [PubMed]
- Ngo, J.L.; Ramirez Quizon, M.; Balagat, R. A rare case of Acrodermatitis continua of Hallopeau successfully treated with topical calcipotriol/betamethasone dipropionate ointment associated with Jaccaud’s arthropathy: A case report. SAGE Open Med. Case Rep. 2022, 10, 2050313X221136766. [Google Scholar] [CrossRef] [PubMed]
- Montero-Vilchez, T.; Pozo-Román, T.; Sánchez-Velicia, L.; Vega-Gutiérrez, J.; Arias-Santiago, S.; Molina-Leyva, A. Ustekinumab in the treatment of patients with hidradenitis suppurativa: Multicenter case series and systematic review. J. Dermatol. Treat. 2022, 33, 348–353. [Google Scholar] [CrossRef]
- Peterson, H.; Luke, J. Ingenol Mebutate. J. Dermatol. Nurses Assoc. 2021, 13, 63–66. [Google Scholar] [CrossRef]
- Tater, K.C.; Gwaltney-Brant, S.; Wismer, T. Dermatological topical products used in the US population and their toxicity to dogs and cats. Vet. Dermatol. 2019, 30, 474. [Google Scholar] [CrossRef]
- Masnec, S.; Vidas Pauk, S.; Jurilj, M.; Kalauz, M.; Kuzman, T.; Škegro, I.; Jukić, T.; Jandroković, S.; Seiwerth, S.; Barišić Kutija, M. Enterococcus Faecalis Corneal Ulcers with Endophthalmitis and Consequent Bilateral Blindness as a Result of Unrecognised Intentional Self-Injury—A Case Report. Psychiatr. Danub. 2021, 33, 676–680. [Google Scholar]
- Alonso, C.; Carrer, V.; Espinosa, S.; Zanuy, M.; Córdoba, M.; Vidal, B.; Domínguez, M.; Godessart, N.; Coderch, L.; Pont, M. Prediction of the skin permeability of topical drugs using in silico and in vitro models. Eur. J. Pharm. Sci. 2019, 136, 104945. [Google Scholar] [CrossRef]
- Kirby, J.S.; Silva, C.F.; Ferguson, S.B.; Shupp, D.; Marks, J.G.; Miller, J.J. Bundled payment for actinic keratosis management: Pilot evaluation of developed models. J. Am. Acad. Dermatol. 2019, 80, 679–684. [Google Scholar] [CrossRef]
- Poulin, P.; Collet, S.H.; Atrux-Tallau, N.; Linget, J.M.; Hennequin, L.; Wilson, C.E. Application of the Tissue Composition–Based Model to Minipig for Predicting the Volume of Distribution at Steady State and Dermis-to-Plasma Partition Coefficients of Drugs Used in the Physiologically Based Pharmacokinetics Model in Dermatology. J. Pharm. Sci. 2019, 108, 603–619. [Google Scholar] [CrossRef]
- Zito, P.M.; Murgia, R.D. Pentoxifylline (Trental) in Venous Insufficiency and Venous Leg Ulcers. J. Dermatol. Nurses Assoc. 2018, 10, 294–296. [Google Scholar] [CrossRef]
- Wen, X.; Li, Y.; Hamblin, M.R. Photodynamic therapy in dermatology beyond non-melanoma cancer: An update. Photodiagn. Photodyn. Ther. 2017, 19, 140–152. [Google Scholar] [CrossRef]
- Kostovic, K.; Gulin, S.J.; Mokos, Z.B.; Ceovic, R. Topical Ingenol Mebutate: A New Treatment Modality for Multiple Actinic Keratoses and Field Cancerization. Anti-Cancer Agents Med. Chem. 2017, 17, 1304–1311. [Google Scholar] [CrossRef]
- Bettencourt, M.S. Tolerability of Ingenol Mebutate Gel, 0.05%, for Treating Patients with Actinic Keratosis on the Scalp in a Community Dermatology Practice. J. Clin. Aesthetic Dermatol. 2016, 9, 20–24. [Google Scholar]
- Nagelreiter, C.; Kratochvilova, E.; Valenta, C. Dilution of semi-solid creams: Influence of various production parameters on rheological properties and skin penetration. Int. J. Pharm. 2015, 478, 429–438. [Google Scholar] [CrossRef]
- Alchin, D.R. Ingenol Mebutate: A Succinct Review of a Succinct Therapy. Dermatol. Ther. 2014, 4, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Bettencourt, M.S. Use of ingenol mebutate gel for actinic keratosis in patients in a community dermatology practice. J. Drugs Dermatol. 2014, 13, 269–273. [Google Scholar] [PubMed]
- Quinton, J.F.; Prélaud, P.; Poujade, A.; Cochet Faivre, N. A Case of Actinic Keratosis in a Rabbit. J. Exot. Pet. Med. 2014, 23, 283–286. [Google Scholar] [CrossRef]
- Javor, S.; Chimenti, S.; Patrizi, A.; Stingeni, L.; Pellacani, G.; Cavicchini, S.; Sala, R.; Rongioletti, F.; Parodi, A. Relapsed actinic keratosis evaluation: An observational Italian multicenter prospective study. Does Gend. Have a Role? G. Ital. Dermatol. Venereol. Organo Uff. Soc. Ital. Dermatol. Sifilogr. 2014, 149, 199–204. [Google Scholar]
- Cantisani, C.; Paolino, G.; Faina, V.; Frascani, F.; Cantoresi, F.; Bianchini, D.; Fazia, G.; Calvieri, S. Overview on Topical 5-ALA Photodynamic Therapy Use for Non Melanoma Skin Cancers. Int. J. Photoenergy 2014, 2014, 304862. [Google Scholar] [CrossRef]
- Peris, K.; Neri, L.; Calzavara Pinton, P.; Catricalà, C.; Pellacani, G.; Pimpinelli, N.; Peserico, A. Physicians’ opinions and clinical practice patterns for actinic keratosis management in Italy. G. Ital. Dermatol. Venereol. Organo Uff. Soc. Ital. Dermatol. Sifilogr. 2014, 149, 185–192. [Google Scholar]
- Willenbrink, T.J.; Ruiz, E.S.; Cornejo, C.M.; Schmults, C.D.; Arron, S.T.; Jambusaria-Pahlajani, A. Field cancerization: Definition, epidemiology, risk factors, and outcomes. J. Am. Acad. Dermatol. 2020, 83, 709–717. [Google Scholar] [CrossRef]
- Eisen, D.B.; Asgari, M.M.; Bennett, D.D.; Connolly, S.M.; Dellavalle, R.P.; Freeman, E.E.; Goldenberg, G.; Leffell, D.J.; Peschin, S.; Sligh, J.E.; et al. Guidelines of care for the management of actinic keratosis. J. Am. Acad. Dermatol. 2021, 85, e209–e233. [Google Scholar] [CrossRef]
- Gutzmer, R.; Wiegand, S.; Kölbl, O.; Wermker, K.; Heppt, M.; Berking, C. Actinic Keratosis and Cutaneous Squamous Cell Carcinoma. Dtsch. Ärzteblatt Int. 2019, 116, 616. [Google Scholar] [CrossRef] [PubMed]
- Dréno, B.; Amici, J.M.; Basset-Seguin, N.; Cribier, B.; Claudel, J.P.; Richard, M.A. Management of actinic keratosis: A practical report and treatment algorithm from AKTeamTM expert clinicians. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Kandolf, L.; Peris, K.; Malvehy, J.; Mosterd, K.; Heppt, M.V.; Fargnoli, M.C.; Berking, C.; Arenberger, P.; Bylaite-Bučinskiene, M.; Del Marmol, V.; et al. European consensus-based interdisciplinary guideline for diagnosis, treatment and prevention of actinic keratoses, epithelial UV-induced dysplasia and field cancerization on behalf of European. J. Eur. Acad. Dermatol. Venereol. 2024, 38, 1024–1047. [Google Scholar] [CrossRef] [PubMed]
- Reich, A.; Lesiak, A.; Narbutt, J.; Owczarczyk-Saczonek, A.; Pastuszczak, M.; Sobjanek, M.; Szepietowski, J.; Walecka, I.; Owczarek, W. Actinic keratosis–diagnostic and therapeutic recommendations of the Polish Dermatological Society. Dermatol. Rev. 2024, 111, 81–96. [Google Scholar] [CrossRef]
- Stockfleth, E.; Bastian, M. Pharmacokinetic and pharmacodynamic evaluation of ingenol mebutate for the treatment of actinic keratosis. Expert. Opin. Drug Metab. Toxicol. 2018, 14, 911–918. [Google Scholar] [CrossRef]
- Bernal Masferrer, L.; Gracia Cazaña, T.; Bernad Alonso, I.; Álvarez-Salafranca, M.; Almenara Blasco, M.; Gallego Rentero, M.; Juarranz De La Fuente, Á.; Gilaberte, Y. Topical Immunotherapy for Actinic Keratosis and Field Cancerization. Cancers 2024, 16, 1133. [Google Scholar] [CrossRef]
- Maltusch, A.; Röwert-Huber, J.; Matthies, C.; Lange-Asschenfeldt, S.; Stockfleth, E. Modes of action of diclofenac 3%/hyaluronic acid 2.5% in the treatment of actinic keratosis: Diclofenac 3%/hyaluronic acid 2.5% and actinic keratosis. J. Dtsch. Dermatol. Ges. 2011, 9, 1011–1017. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Wang, J.; Bitterman, D.; Mineroff, J.; Austin, E.; Jagdeo, J. Systematic review of randomized controlled trials of topicals for actinic keratosis field therapy. Arch. Dermatol. Res. 2024, 316, 108. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, I.; Puyana, C.; Chandan, N.; Jetter, N.; Tsoukas, M. Field Cancerization Therapies for the Management of Actinic Keratosis: An Updated Review. Am. J. Clin. Dermatol. 2024, 25, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Arcuri, D.; Ramchatesingh, B.; Lagacé, F.; Iannattone, L.; Netchiporouk, E.; Lefrançois, P.; Litvinov, I.V. Pharmacological Agents Used in the Prevention and Treatment of Actinic Keratosis: A Review. Int. J. Mol. Sci. 2023, 24, 4989. [Google Scholar] [CrossRef]
- Tampucci, S.; Carpi, S.; Digiacomo, M.; Polini, B.; Fogli, S.; Burgalassi, S.; Macchia, M.; Nieri, P.; Manera, C.; Monti, D. Diclofenac-Derived Hybrids for Treatment of Actinic Keratosis and Squamous Cell Carcinoma. Molecules 2019, 24, 1793. [Google Scholar] [CrossRef]
- Collins, L.; Asfour, L.; Stephany, M.; Lear, J.T.; Stasko, T. Management of Non-melanoma Skin Cancer in Transplant Recipients. Clin. Oncol. 2019, 31, 779–788. [Google Scholar] [CrossRef]
- Dodds, A.; Chia, A.; Shumack, S. Actinic Keratosis: Rationale and Management. Dermatol. Ther. 2014, 4, 11–31. [Google Scholar] [CrossRef]
- Micali, G.; Lacarrubba, F.; Nasca, M.R.; Schwartz, R.A. Topical pharmacotherapy for skin cancer: Part I. Pharmacology. J. Am. Acad. Dermatol. 2014, 70, 965.e1–965.e12. [Google Scholar] [CrossRef]
- Piaserico, S.; Mazzetto, R.; Sartor, E.; Bortoletti, C. Combination-Based Strategies for the Treatment of Actinic Keratoses with Photodynamic Therapy: An Evidence-Based Review. Pharmaceutics 2022, 14, 1726. [Google Scholar] [CrossRef]
- Segatto, M.M.; Dornelles, S.I.T.; Silveira, V.B.; Frantz, G.D.O. Comparative study of actinic keratosis treatment with 3% diclofenac sodium and 5% 5-fluorouracil. An. Bras. Dermatol. 2013, 88, 732–738. [Google Scholar] [CrossRef]
- Zane, C.; Facchinetti, E.; Rossi, M.T.; Specchia, C.; Calzavara-Pinton, P.G. A randomized clinical trial of photodynamic therapy with methyl aminolaevulinate vs. diclofenac 3% plus hyaluronic acid gel for the treatment of multiple actinic keratoses of the face and scalp. Br. J. Dermatol. 2014, 170, 1143–1150. [Google Scholar] [CrossRef]
- Khanna, R.; Bakshi, A.; Amir, Y.; Goldenberg, G. Patient satisfaction and reported outcomes on the management of actinic keratosis. Clin. Cosmet. Investig. Dermatol. 2017, 10, 179–184. [Google Scholar] [CrossRef]
- Lang, B.M.; Zielbauer, S.; Stege, H.; Grabbe, S.; Staubach, P. If patients had a choice–Treatment satisfaction and patients’ preference in therapy of actinic keratoses. J. Dtsch. Dermatol. Ges. 2024, 22, 1362–1368. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.J.; Ushcatz, I.; Tadrous, M.; Aoki, V.; Chang, A.Y.; Levell, N.J.; Von Schuckmann, L.; Drucker, A.M. International time trends and differences in topical actinic keratosis therapy utilization. JAAD Int. 2024, 16, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Koch, E.A.T.; Steeb, T.; Bender-Säbelkampf, S.; Busch, D.; Feustel, J.; Kaufmann, M.D.; Maronna, A.; Meder, C.; Ronicke, M.; Toussaint, F.; et al. Poor Adherence to Self-Applied Topical Drug Treatment Is a Common Source of Low Lesion Clearance in Patients with Actinic Keratosis—A Cross-Sectional Study. J. Clin. Med. 2023, 12, 3813. [Google Scholar] [CrossRef] [PubMed]
- Koch, E.A.T.; Wessely, A.; Steeb, T.; Berking, C.; Heppt, M.V. Safety of topical interventions for the treatment of actinic keratosis. Expert. Opin. Drug Saf. 2021, 20, 801–814. [Google Scholar] [CrossRef]
- Jedlowski, P.M. Ingenol Mebutate Is Associated with Increased Reporting Odds for Squamous Cell Carcinoma in Actinic Keratosis Patients, a Pharmacovigilance Study of the FDA Adverse Event Reporting System (FAERS). J. Cutan. Med. Surg. 2023, 27, 39–43. [Google Scholar] [CrossRef]
- Moretta, G.; Samela, T.; Sampogna, F.; Ricci, F.; Carlesimo, F.; Panebianco, A.; D’Erme, A.M.; Di Lella, G.; Pallotta, S.; Dellambra, E.; et al. Attitudes among dermatologists regarding actinic keratosis treatment options. Dermatol. Rep. 2022, 14, 9392. [Google Scholar] [CrossRef]
- Perino, F.; Fattori, A.; Piccerillo, A.; Bianchi, L.; Fargnoli, M.C.; Frascione, P.; Pellacani, G.; Carbone, A.; Campione, E.; Esposito, M.; et al. Treatment adherence with diclofenac 3% gel among patients with multiple actinic keratoses: An integrated low-intensity intervention program versus standard-of-care. Ital. J. Dermatol. Venereol. 2022, 157, 164–172. [Google Scholar] [CrossRef]
- Norrlid, H.; Norlin, J.M.; Holmstrup, H.; Malmberg, I.; Sartorius, K.; Thormann, H.; Jemec, G.B.E.; Ragnarson Tennvall, G. Patient-reported outcomes in topical field treatment of actinic keratosis in Swedish and Danish patients. J. Dermatol. Treat. 2018, 29, 68–73. [Google Scholar] [CrossRef]
- Calzavara-Pinton, P.; Tanova, N.; Hamon, P. Evaluation of the treatment costs and duration of topical treatments for multiple actinic keratosis based on the area of the cancerization field and not on the number of lesions. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Mazzella, C.; Greco, V.; Costa, C.; Scalvenzi, M.; Russo, D.; Savastano, R.; Staibano, S.; Fabbrocini, G. Management of clinical and subclinical actinic keratoses with histological and immunohistochemical assessments by confocal microscopy. Dermatol. Ther. 2018, 31, e12672. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, L.; Gupta, G.; Segert, M.H.; Kost, R.; Sternberg, J.; Gambichler, T.; Stockfleth, E.; Dirschka, T. Diclofenac Sodium 3% in Hyaluronic Acid 2.5% Gel Significantly Diminishes the Actinic Keratosis Area and Severity Index. Ski. Pharmacol. Physiol. 2018, 31, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Faghihi, G.; Elahipoor, A.; Iraji, F.; Behfar, S.; Abtahi-Naeini, B. Topical Colchicine Gel versus Diclofenac Sodium Gel for the Treatment of Actinic Keratoses: A Randomized, Double-Blind Study. Adv. Med. 2016, 2016, 5918393. [Google Scholar] [CrossRef]
- Singer, K.; Dettmer, K.; Unger, P.; Schönhammer, G.; Renner, K.; Peter, K.; Siska, P.J.; Berneburg, M.; Herr, W.; Oefner, P.J.; et al. Topical Diclofenac Reprograms Metabolism and Immune Cell Infiltration in Actinic Keratosis. Front. Oncol. 2019, 9, 605. [Google Scholar] [CrossRef]
- Husein-ElAhmed, H.; Almazan-Fernandez, F.M.; Husein-ElAhmed, S. Ingenol mebutate versus imiquimod versus diclofenac for actinic cheilitis: A 6-month follow-up clinical study. Clin. Exp. Dermatol. 2019, 44, 231–234. [Google Scholar] [CrossRef]
- Neri, L.; Peris, K.; Longo, C.; Calvieri, S.; Frascione, P.; Parodi, A.; Eibenschuz, L.; Bottoni, U.; Pellacani, G.; the Actinic Keratosis–TReatment Adherence INitiative (AK-TRAIN) study group. Physician–patient communication and patient-reported outcomes in the actinic keratosis treatment adherence initiative (AK-TRAIN): A multicenter, prospective, real-life study of treatment satisfaction, quality of life and adherence to topical field-directed therapy for the treatment of actinic keratosis in Italy. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 93–107. [Google Scholar]
- Nisticò, S.; Del Duca, E.; Torchia, V.; Gliozzi, M.; Bottoni, U.; Muscoli, C. Cost-efficacy analysis of 3% diclofenac sodium, ingenol mebutate, and 3.75% imiquimod in the treatment of actinic keratosis. Int. J. Immunopathol. Pharmacol. 2018, 31, 2058738418757925. [Google Scholar] [CrossRef]
- Tolley, K.; Argenziano, G.; Calzavara-Pinton, P.G.; Larsson, T.; Ryttig, L. Pharmacoeconomic evaluations in the treatment of actinic keratoses. Int. J. Immunopathol. Pharmacol. 2017, 30, 178–181. [Google Scholar] [CrossRef]
- Delvin, T.; Bygum, A.; Lund, L.C.; Andersen, J.H.; Hallas, J. Screening of dermatology drugs for aberrant use-patterns: An application of epidemiologic estimates and measures of inequality in drug use. Br. J. Clin. Pharmacol. 2024, 90, 1450–1462. [Google Scholar] [CrossRef]
- Dirschka, T.; Lear, J.T. Sequential Treatment of Multiple Actinic Keratoses with Solaraze and Actikerall. Case Rep. Dermatol. 2014, 6, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Jetter, N.; Chandan, N.; Wang, S.; Tsoukas, M. Field Cancerization Therapies for Management of Actinic Keratosis: A Narrative Review. Am. J. Clin. Dermatol. 2018, 19, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, C.K.S.; de França, G.M.; Lima JGda, C.; Pinheiro, J.C.; Almeida DRde, M.F.; Santos PPde, A. Use of topical anti-inflammatory and antineoplastic agents in the treatment of young-aged actinic cheilitis: A systematic review. J. Cosmet. Dermatol. 2022, 21, 473–481. [Google Scholar] [CrossRef]
- Bakirtzi, K.; Papadimitriou, I.; Andreadis, D.; Sotiriou, E. Treatment Options and Post-Treatment Malignant Transformation Rate of Actinic Cheilitis: A Systematic Review. Cancers 2021, 13, 3354. [Google Scholar] [CrossRef] [PubMed]
- Gonzaga, A.K.G.; De Oliveira, P.T.; Da Silveira, É.J.D.; Queiroz, L.M.G.; De Medeiros, A.M.C. Diclofenac sodium gel therapy as an alternative to actinic cheilitis. Clin. Oral Investig. 2018, 22, 1319–1325. [Google Scholar] [CrossRef]
- Batra, R.; Sundararajan, S.; Sandramouli, S. Topical Diclofenac Gel for the Management of Periocular Actinic Keratosis. Ophthal Plast. Reconstr. Surg. 2012, 28, 1–3. [Google Scholar] [CrossRef]
- Buján Bonino, C.; Rodríguez-Blanco, I.; Sánchez-Aguilar Rojas, D.; Vázquez Veiga, H.A.; Flórez, Á. Topical and Intralesional Immunotherapy for the Management of Skin Cancer in Special Locations: Lips and Eyelids. Cancers 2023, 15, 5018. [Google Scholar] [CrossRef]
- Beutner, C.; Forkel, S.; Kreipe, K.; Geier, J.; Buhl, T. Contact allergy to topical diclofenac with systemic tolerance. Contact Dermat. 2022, 86, 41–43. [Google Scholar] [CrossRef]
- Gulin, S.J.; Chiriac, A. Diclofenac-Induced Allergic Contact Dermatitis: A Series of Four Patients. Drug Saf. Case Rep. 2016, 3, 15. [Google Scholar] [CrossRef]
- Thomas, G.J.; Herranz, P.; Cruz, S.B.; Parodi, A. Treatment of actinic keratosis through inhibition of cyclooxygenase-2: Potential mechanism of action of diclofenac sodium 3% in hyaluronic acid 2.5. Dermatol. Ther. 2019, 32, e12800. [Google Scholar] [CrossRef]
- Costa, C.; Scalvenzi, M.; Ayala, F.; Fabbrocini, G.; Monfrecola, G. How to treat actinic keratosis? An update. J. Dermatol. Case Rep. 2015, 9, 29–35. [Google Scholar] [CrossRef]
- El-Khalawany, M.; Saudi, W.M.; Ahmed, E.; Mosbeh, A.; Sameh, A.; Rageh, M.A. The combined effect of CO2 laser, topical diclofenac 3%, and imiquimod 5% in treating high-risk basal cell carcinoma. J. Cosmet. Dermatol. 2022, 21, 2049–2055. [Google Scholar] [CrossRef] [PubMed]
- Costescu, M.; Coman, O.; Tampa, M.; Tudose, I.; Coman, L.; Georgescu, S. Axillary basal cell carcinoma–a rare form of a frequent kind of carcinoma. Rom. J. Morphol. Embryol. 2013, 54, 851–856. [Google Scholar]
- Tan, I.J.; Pathak, G.N.; Silver, F.H. Topical Treatments for Basal Cell Carcinoma and Actinic Keratosis in the United States. Cancers 2023, 15, 3927. [Google Scholar] [CrossRef] [PubMed]
- Brinkhuizen, T.; Frencken, K.J.A.; Nelemans, P.J.; Hoff, M.L.S.; Kelleners-Smeets, N.W.J.; Zur Hausen, A.; Van Der Horst, M.P.J.; Rennspiess, D.; Winnepenninckx, V.J.L.; Van Steensel, M.A.M.; et al. The effect of topical diclofenac 3% and calcitriol 3 μg/g on superficial basal cell carcinoma (sBCC) and nodular basal cell carcinoma (nBCC): A phase II, randomized controlled trial. J. Am. Acad. Dermatol. 2016, 75, 126–134. [Google Scholar] [CrossRef]
- Micali, G.; Lacarrubba, F.; Nasca, M.R.; Ferraro, S.; Schwartz, R.A. Topical pharmacotherapy for skin cancer: Part II. Clinical applications. J. Am. Acad. Dermatol. 2014, 70, 979.e1–979.e12. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Cazaña, T.; López, M.T.; Oncins, R.; Gilaberte, Y. Successful treatment of sequential therapy in digital Bowen’s disease with methyl aminolevulinate photodynamic therapy and topical diclofenac 3% in hyaluronan 2.5% gel: Adjuvant therapy with topical diclofenac and photodynamic therapy in Bowen’s disease. Dermatol. Ther. 2015, 28, 341–343. [Google Scholar] [CrossRef]
- Millán-Parrilla, F.; Rodrigo-Nicolás, B.; Molés-Poveda, P.; Armengot-Carbó, M.; Quecedo-Estébanez, E.; Gimeno-Carpio, E. Improvement of Darier disease with diclofenac sodium 3% gel. J. Am. Acad. Dermatol. 2014, 70, e89–e90. [Google Scholar] [CrossRef]
- Haber, R.N.; Dib, N.G. Management of Darier disease: A review of the literature and update. Indian J. Dermatol. Venereol. Leprol. 2021, 87, 14–21. [Google Scholar] [CrossRef]
- Campos, M.O.M.Q.D.; Figueiredo, G.A.P.D.; Evangelista, A.C.; Bauk, A.R. Darier’s disease: Treatment with topical sodium diclofenac 3% gel. Bras. Dermatol. 2023, 98, 882–884. [Google Scholar] [CrossRef]
- Santos-Alarcon, S.; Sanchis-Sanchez, C.; Mateu-Puchades, A. Diclofenac sodium 3% gel for darier’s disease treatment. Dermatol. Online J. 2016, 22, 17. [Google Scholar] [CrossRef]
- Swadi, A.A.J.; Jabur, A.H. The value of diclofenac gel 1% in the treatment of pityriasis versicolor in a sample of Iraqi patients. Int. J. Pharm. Res. 2019, 11, 25–28. [Google Scholar] [CrossRef]
- Afify, A.A.; Hana, M.R. Comparative evaluation of topical diclofenac sodium versus topical ibuprofen in the treatment of seborrheic keratosis. Dermatol. Ther. 2020, 33, e14370. [Google Scholar] [CrossRef]
- Natarelli, N.; Krenitsky, A.; Hennessy, K.; Moore, S.; Grichnik, J. Efficacy and safety of topical treatments for seborrheic keratoses: A systematic review. J. Dermatol. Treat. 2023, 34, 2133532. [Google Scholar] [CrossRef] [PubMed]
- Marks, S.; Varma, R.; Cantrell, W.; Chen, S.; Gold, M.; Muellenhoff, M.; Elewski, B. Diclofenac sodium 3% gel as a potential treatment for disseminated superficial actinic porokeratosis. J. Eur. Acad. Dermatol. Venereol. 2009, 23, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, S.; Takashima, Y.; Hotta, M.; Ito, E.; Moriuchi, R. Inflammatory disseminated superficial porokeratosis successfully controlled with a combination of topical diclofenac gel and systemic etretinate. J. Eur. Acad. Dermatol. Venereol. 2018, 32, e201–e202. [Google Scholar] [CrossRef]
- Vlachou, C.; Kanelleas, A.; Martin-Clavijo, A.; Berth-Jones, J. Treatment of disseminated superficial actinic porokeratosis with topical diclofenac gel: A case series. J. Eur. Acad. Dermatol. Venereol. 2008, 22, 1343–1345. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.L.D.S.; Tiussi, L.D.; Nascimento, M.S.; Corrêa, A.C.D.S.; Yasojima, E.Y.; Pires, C.A.A. Diclofenac topical gel in excisional wounds maintain heal quality and reduce phlogistic signals1. Acta Cir. Bras. 2014, 29, 328–333. [Google Scholar] [CrossRef]
- Li Pomi, F.; d’Aloja, A.; Valguarnera, D.; Vaccaro, M.; Borgia, F. Exploring Anti-Aging Effects of Topical Treatments for Actinic Keratosis. Medicina 2025, 61, 207. [Google Scholar] [CrossRef]
- Constantin, M.M.; Bucur, S.; Mutu, C.C.; Poenaru, E.; Olteanu, R.; Ionescu, R.A.; Nicolescu, A.C.; Furtunescu, F.; Constantin, T. The Impact of Smoking on Psoriasis Patients with Biological Therapies in a Bucharest Hospital. J. Pers. Med. 2021, 11, 752. [Google Scholar] [CrossRef]
- Yaseliani, M.; Ijadi Maghsoodi, A.; Hassannayebi, E.; Aickelin, U. Diagnostic clinical decision support based on deep learning and knowledge-based systems for psoriasis: From diagnosis to treatment options. Comput. Ind. Eng. 2024, 187, 109754. [Google Scholar] [CrossRef]
- Bhawan, J.; Gonzalez-Serva, A.; Nehal, K.; Labadie, R.; Lufrano, L.; Thorne, E.G.; Gilchrest, B.A. Effects of tretinoin on photodamaged skin. A histologic study. Arch. Dermatol. 1991, 127, 666–672. [Google Scholar] [CrossRef]
- Gilchrest, B.A. Treatment of photodamage with topical tretinoin: An overview. J. Am. Acad. Dermatol. 1997, 36, S27–S36. [Google Scholar] [CrossRef] [PubMed]
- Bungau, A.F.; Tit, D.M.; Bungau, S.G.; Vesa, C.M.; Radu, A.F.; Marin, R.C.; Endres, L.M.; Moleriu, L.C. Exploring the Metabolic and Endocrine Preconditioning Associated with Thyroid Disorders: Risk Assessment and Association with Acne Severity. Int. J. Mol. Sci. 2024, 25, 721. [Google Scholar] [CrossRef] [PubMed]
- Bosman, B.; Matthiesen, T.; Hess, V.; Friderichs, E. Quantitative Method for Measuring Antipsoriatic Activity of Drugs by the Mouse Tail Test. Ski. Pharmacol. 1992, 5, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Campione, E.; Paternò, E.; Candi, E.; Falconi, M.; Constanza, G.; Diluvio, L.; Terrinoni, A.; Bianchi, L.; Orlandi, A. The relevance of piroxicam for the prevention and treatment of nonmelanoma skin cancer and its precursors. Drug Des. Dev. Ther. 2015, 9, 5843–5850. [Google Scholar] [CrossRef]
- Fecker, L.F.; Stockfleth, E.; Braun, F.K.; Rodust, P.M.; Schwarz, C.; Köhler, A.; Leverkus, M.; Eberle, J. Enhanced Death Ligand-Induced Apoptosis in Cutaneous SCC Cells by Treatment with Diclofenac/Hyaluronic Acid Correlates with Downregulation of c-FLIP. J. Investig. Dermatol. 2010, 130, 2098–2109. [Google Scholar] [CrossRef]
- Chirasani, S.R.; Leukel, P.; Gottfried, E.; Hochrein, J.; Stadler, K.; Neumann, B.; Oefner, P.J.; Gronwald, W.; Bogdahn, U.; Hau, P.; et al. Diclofenac inhibits lactate formation and efficiently counteracts local immune suppression in a murine glioma model. Int. J. Cancer 2013, 132, 843–853. [Google Scholar] [CrossRef]
- Gottfried, E.; Lang, S.A.; Renner, K.; Bosserhoff, A.; Gronwald, W.; Rehli, M.; Einhell, S.; Gedig, I.; Singer, K.; Seilbeck, A.; et al. New Aspects of an Old Drug–Diclofenac Targets MYC and Glucose Metabolism in Tumor Cells. Rafael MS, editor. PLoS ONE 2013, 8, e66987. [Google Scholar] [CrossRef]
- Huang, K.H.; Kuo, K.L.; Chen, S.C.; Weng, T.I.; Chuang, Y.T.; Tsai, Y.C.; Pu, Y.S.; Chiang, C.K.; Liu, S.H. Down-Regulation of Glucose-Regulated Protein (GRP) 78 Potentiates Cytotoxic Effect of Celecoxib in Human Urothelial Carcinoma Cells. Ahmad A, editor. PLoS ONE 2012, 7, e33615. [Google Scholar]
- Yarishkin, O.V.; Hwang, E.M.; Kim, D.; Yoo, J.C.; Kang, S.S.; Kim, D.R.; Shin, J.H.J.; Chung, H.J.; Jeong, H.S.; Kang, D.; et al. Diclofenac, a Non-steroidal Anti-inflammatory Drug, Inhibits L-type Ca Channels in Neonatal Rat Ventricular Cardiomyocytes. Korean J. Physiol. Pharmacol. 2009, 13, 437–442. [Google Scholar] [CrossRef]
- Villalonga, N.; David, M.; Bielańska, J.; González, T.; Parra, D.; Soler, C.; Comes, N.; Valenzuela, C.; Felipe, A. Immunomodulatory effects of diclofenac in leukocytes through the targeting of Kv1.3 voltage-dependent potassium channels. Biochem. Pharmacol. 2010, 80, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Peretz, A.; Degani, N.; Nachman, R.; Uziyel, Y.; Gibor, G.; Shabat, D.; Attali, B. Meclofenamic Acid and Diclofenac, Novel Templates of KCNQ2/Q3 Potassium Channel Openers, Depress Cortical Neuron Activity and Exhibit Anticonvulsant Properties. Mol. Pharmacol. 2005, 67, 1053–1066. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.Y.; Fei, X.W.; Li, Z.M.; Zhang, Z.H.; Mei, Y.A. Diclofenac, a nonsteroidal anti-inflammatory drug, activates the transient outward K+ current in rat cerebellar granule cells. Neuropharmacology 2005, 48, 918–926. [Google Scholar] [CrossRef] [PubMed]
- Brueggemann, L.I.; Mackie, A.R.; Martin, J.L.; Cribbs, L.L.; Byron, K.L. Diclofenac Distinguishes among Homomeric and Heteromeric Potassium Channels Composed of KCNQ4 and KCNQ5 Subunits. Mol. Pharmacol. 2011, 79, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Alves, D.P.; Tatsuo, M.A.F.; Leite, R.; Duarte, I.D.G. Diclofenac-induced peripheral antinociception is associated with ATP-sensitive K+ channels activation. Life Sci. 2004, 74, 2577–2591. [Google Scholar] [CrossRef]
- Liu, L.Y.; Hu, C.L.; Ma, L.J.; Zhang, Z.H.; Mei, Y.A. ET-1 inhibits B-16 murine melanoma cell migration by decreasing K+ currents. Cell Motil. Cytoskelet. 2004, 58, 127–136. [Google Scholar] [CrossRef]
- Dorofeeva, N.A.; Barygin, O.I.; Staruschenko, A.; Bolshakov, K.V.; Magazanik, L.G. Mechanisms of non-steroid anti-inflammatory drugs action on ASICs expressed in hippocampal interneurons. J. Neurochem. 2008, 106, 429–441. [Google Scholar] [CrossRef]
- Macianskiene, R.; Gwanyanya, A.; Sipido, K.R.; Vereecke, J.; Mubagwa, K. Induction of a novel cation current in cardiac ventricular myocytes by flufenamic acid and related drugs. Br. J. Pharmacol. 2010, 161, 416–429. [Google Scholar] [CrossRef]
- Grigore, A.; Coman, O.A.; Păunescu, H.; Costescu, M.; Fulga, I. Latest Insights into the In Vivo Studies in Murine Regarding the Role of TRP Channels in Wound Healing—A Review. Int. J. Mol. Sci. 2024, 25, 6753. [Google Scholar] [CrossRef]
- Lang, P.A.; Kempe, D.S.; Myssina, S.; Tanneur, V.; Birka, C.; Laufer, S.; Lang, F.; Wieder, T.; Huber, S.M. PGE2 in the regulation of programmed erythrocyte death. Cell Death Differ. 2005, 12, 415–428. [Google Scholar] [CrossRef]
- Yang, Y.C.; Kuo, C.C. An Inactivation Stabilizer of the Na+ Channel Acts as an Opportunistic Pore Blocker Modulated by External Na+. J. Gen. Physiol. 2005, 125, 465–481. [Google Scholar] [CrossRef] [PubMed]
- McCormack, K.; Brune, K. Dissociation between the antinociceptive and anti-inflammatory effects of the nonsteroidal anti-inflammatory drugs: A survey of their analgesic efficacy. Drugs 1991, 41, 533–547. [Google Scholar] [CrossRef] [PubMed]
Group | Percentual Orthokeratosis Degree | Mean Epidermal Thickness | Relative Drug Efficacy |
---|---|---|---|
Untreated mice | 13.27 ± 1.4 | 26.33 ± 2.34 | |
Negative control with vehicle | 15.19 ± 1.04 | 31.2 ± 4.7 | 0 |
Diclofenac 4% | 71.3 ± 2.85 | 29.34 ± 5.69 | 66.16 |
Diclofenac 8% | 71.27 ± 3.84 | 27.08 ± 1.87 | 66.12 |
Group | Untreated Mice | Negative Control with Vehicle | Diclofenac 4% | Diclofenac 8% |
---|---|---|---|---|
Untreated mice | NS (0.055) | SS (0.006) | SS (0.011) | |
Negative control with vehicle | NS (0.055) | SS (0.006) | SS (0.011) | |
Diclofenac 4% | SS (0.006) | SS (0.006) | NS (0.221) | |
Diclofenac 8% | SS (0.011) | SS (0.011) | NS (0.221) |
Group | Untreated Mice | Negative Control with Vehicle | Diclofenac 4% | Diclofenac 8% |
---|---|---|---|---|
Untreated mice | SS (0.0109) | NS (0.068) | NS (0.831) | |
Negative control with vehicle | SS (0.0109) | NS (1) | NS (0.201) | |
Diclofenac 4% | NS (0.068) | NS (1) | NS (0.142) | |
Diclofenac 8% | NS (0.831) | NS (0.201) | NS (0.142) |
Study | Design | Topical Diclofenac Formulation | Method | Results |
---|---|---|---|---|
Mazella 2018 [102] | RCT | diclofenac 3% gel | 30 patients -15 patients with diclofenac -15 patients with 5 FU Confocal imaging evaluation Biopsy in 5 patients of each group | -reduction in scaling, upper nucleated cells, and inflammatory cells, in field cancerization, especially in diclofenac treatment group -reduction in AK inflammatory cells in 5-FU treatment group |
Schmitz 2018 [103] | retrospective analysis | diclofenac 3% gel | 24 patients treated with diclofenac twice daily for 3 months AKASI (Actinic keratosis area and severity index) evaluation | 20 patients showed an improvement in AKASI 2 patients showed a stable AKASI 2 patients a worsening of AKASI. |
Faghihi 2016 [104] | RCT, double-blind | diclofenac 3% gel | 70 patients diclofenac cream group colchicine gel group 6-week treatment twice daily topical treatment | -Mean lesion size reduction in the diclofenac group (p < 0.001) and in the colchicine group (p < 0.001) at 30 days and 60 days post-treatment compared to pretreatment -No significant difference between the groups at 30 days and 60 days post-treatment |
Singer 2019 [105] | RCT | diclofenac 3% gel | 28 patients -AK biopsy prior, after 12 weeks of twice daily treatment and at 4 weeks after treatment cessation -Control biopsy of untreated skin | -Gene expression of glucose transporter-1 (GLUT-1) was significantly enhanced in AK lesions (p < 0.05) compared to control -No significant differences in gene expression for lactate dehydrogenase A(LDHA) and LDHB, compared to control -Neither COX-1 nor COX-2 mRNA expression was altered in AK compared to control -Significantly decreased glucose levels (p < 0.05) and increased lactate levels (p < 0.01) compared to control -The ratio between COX-1 and COX-2 was significantly decreased in AK lesions |
Husein-El Ahmed 2019 [106] | RCT | diclofenac 3% gel | 30 patients with AC Imiquimod 5% group (applied once daily, 3 days/week, for 4 weeks) Ingenol mebutate 150 µg/g gel group (one tube on each of 3 consecutive days) Diclofenac group (applied twice daily for 6 weeks) | Complete clearance -IMI group: 5 of 10 patients -IMB group: 4 of 10 patients -Diclofenac group: 2 of 10 patients -Clearance in IMI group was statistically similar to in IMB group (p = 0.22), but significantly greater than in diclofenac group (p = 0.03). Persistence of both leucoplasia and keratotic plaques was significantly more common in diclofenac group compared to IMI group (p < 0.05) or IMB group (p = 0.05) |
Study | Design | Topical Diclofenac Formulation | Method | Results |
---|---|---|---|---|
Brinkhuizen 2016 [125] | RCT | Diclofenac 3% gel | 64 patients with nBCC 64 patients with sBCC Diclofenac group Calcitriol group Diclofenac combined with calcitriol group Control group—no treatment Topical treatment was applied twice daily under occlusion for 8 weeks | -sBCC with diclofenac showed a significant decrease in Ki-67 (p < 0.001) and Bcl-2 (p = 0.001), and after combination therapy for Ki-67 (p = 0.012) -Complete histologic tumor regression was seen in 64.3% (p = 0.0003) of sBCC (diclofenac) and 43.8% (p = 0.007) of sBCC (combination therapy) compared with 0.0% of controls -No significant changes in nodular BCC |
Study | Design | Indication | Topical Diclofenac Formulation | Method | Results |
---|---|---|---|---|---|
Afify 2020 [133] | RCT | Seborrheic keratosis | Diclofenac 1% gel | 30 patients Diclofenac group Ibuprofen group Topical treatment was applied twice daily for two months | -Surface area of the lesions differed statistically significantly before and after treatment with topical diclofenac (p = 0.001) -no statistically significant difference with topical ibuprofen gel (p = 0.057). |
Swadi 2019 [132] | RCT | Pityriasis versicolor | Diclofenac 1% gel | 40 patients Group 1 (n = 20) diclofenac gel 1%, Group 2 (n = 20): clotrimazole cream, Topical treatment was applied twice daily for one month. | Complete response after the treatment: 20% for diclofenac and 65% for clotrimazole (p = 0.008) Complete response 4 weeks after the treatment: 50% diclofenac versus 90% clotrimazole (p = 0.019) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Österreichische Pharmazeutische Gesellschaft. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nițescu, D.A.-M.; Păunescu, H.; Costescu, M.; Nițescu, B.; Coman, L.; Fulga, I.; Coman, O.A. Novel Research Regarding Topical Use of Diclofenac in Dermatology—Non-Clinical and Clinical Data. Sci. Pharm. 2025, 93, 34. https://doi.org/10.3390/scipharm93030034
Nițescu DA-M, Păunescu H, Costescu M, Nițescu B, Coman L, Fulga I, Coman OA. Novel Research Regarding Topical Use of Diclofenac in Dermatology—Non-Clinical and Clinical Data. Scientia Pharmaceutica. 2025; 93(3):34. https://doi.org/10.3390/scipharm93030034
Chicago/Turabian StyleNițescu, Diana Ana-Maria, Horia Păunescu, Mihnea Costescu, Bogdan Nițescu, Laurențiu Coman, Ion Fulga, and Oana Andreia Coman. 2025. "Novel Research Regarding Topical Use of Diclofenac in Dermatology—Non-Clinical and Clinical Data" Scientia Pharmaceutica 93, no. 3: 34. https://doi.org/10.3390/scipharm93030034
APA StyleNițescu, D. A.-M., Păunescu, H., Costescu, M., Nițescu, B., Coman, L., Fulga, I., & Coman, O. A. (2025). Novel Research Regarding Topical Use of Diclofenac in Dermatology—Non-Clinical and Clinical Data. Scientia Pharmaceutica, 93(3), 34. https://doi.org/10.3390/scipharm93030034