Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (30,146)

Search Parameters:
Keywords = Bond

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3563 KiB  
Article
Assessment of Hydrogels for Intra-Articulate Application, Based on Sodium Hyaluronate Doped with Synthetic Polymers and Incorporated with Diclofenac Sodium
by Dorota Wójcik-Pastuszka, Maja Grabara and Witold Musiał
Int. J. Mol. Sci. 2025, 26(15), 7631; https://doi.org/10.3390/ijms26157631 - 6 Aug 2025
Abstract
The intra-articular application of drugs has gained considerable interest with regard to formulations for advanced drug delivery systems. It has been identified as a potential route for local drug delivery. A drug agent is usually incorporated into the hydrogel to prolong and control [...] Read more.
The intra-articular application of drugs has gained considerable interest with regard to formulations for advanced drug delivery systems. It has been identified as a potential route for local drug delivery. A drug agent is usually incorporated into the hydrogel to prolong and control the drug release. This study aimed to design and evaluate an intra-articular hydrogel based sodium hyaluronate, which was modified with an additional polymer to enable the sustained release of the incorporated anti-inflammatory agent, diclofenac sodium (NaDic). Viscosity studies, drug release tests and FTIR−ATR measurements, as well as DSC analysis, were carried out to evaluate the obtained formulations. The viscosity measurements were performed using a rotational viscometer. The drug release was carried out by employing the apparatus paddle over the disk. The concentration of the released drug was obtained spectrophotometrically. The results revealed that the addition of the second polymer to the matrix influenced the dynamic viscosity of the hydrogels. The highest viscosity of (25.33 ± 0.55) × 103 cP was observed when polyacrylic acid (PA) was doped in the formulation. This was due to the hydrogen bond formation between both polymers. The FTIR−ATR investigations and DSC study revealed the hydrogen bond formation between the drug and both polymers. The drug was released the slowest from hydrogel doped with PA and 17.2 ± 3.7% of NaDic was transported to the acceptor fluid within 8 h. The hydrogel based on hyaluronan sodium doped with PA and containing NaDic is a promising formulation for the prolonged and controlled intra-articulate drug delivery of anti-inflammatory agents. Full article
(This article belongs to the Special Issue New Insights into Hyaluronan in Human Medicine)
Show Figures

Figure 1

19 pages, 3032 KiB  
Review
The Microstructure and Modification of the Interfacial Transition Zone in Lightweight Aggregate Concrete: A Review
by Jian Zhou, Yiding Dong, Tong Qiu, Jiaojiao Lv, Peng Guo and Xi Liu
Buildings 2025, 15(15), 2784; https://doi.org/10.3390/buildings15152784 - 6 Aug 2025
Abstract
The interfacial transition zone (ITZ) significantly influences the mechanical properties and durability of lightweight aggregate concrete (LWAC), yet existing research on the ITZ in LWAC remains fragmented due to varied characterization techniques, inconsistent definitions of ITZ thickness and porosity, and the absence of [...] Read more.
The interfacial transition zone (ITZ) significantly influences the mechanical properties and durability of lightweight aggregate concrete (LWAC), yet existing research on the ITZ in LWAC remains fragmented due to varied characterization techniques, inconsistent definitions of ITZ thickness and porosity, and the absence of standardized performance metrics. This review focuses primarily on structural LWAC produced with artificial and natural lightweight aggregates, with intended applications in high-performance civil engineering structures. This review systematically analyzes the microstructure, composition, and physical properties of the ITZ, including porosity, microhardness, and hydration product distribution. Quantitative data from recent studies are highlighted—for instance, incorporating 3% nano-silica increased ITZ bond strength by 134.12% at 3 days and 108.54% at 28 days, while using 10% metakaolin enhanced 28-day compressive strength by 24.6% and reduced chloride diffusion by 81.9%. The review categorizes current ITZ enhancement strategies such as mineral admixtures, nanomaterials, surface coatings, and aggregate pretreatment methods, evaluating their mechanisms, effectiveness, and limitations. By identifying key trends and research gaps—particularly the lack of predictive models and standardized characterization methods—this review aims to synthesize key findings and identify knowledge gaps to support future material design in LWAC. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 3079 KiB  
Review
Progress in Caking Mechanism and Regulation Technologies of Weakly Caking Coal
by Zhaoyang Li, Shujun Zhu, Ziqu Ouyang, Zhiping Zhu and Qinggang Lyu
Energies 2025, 18(15), 4178; https://doi.org/10.3390/en18154178 - 6 Aug 2025
Abstract
Efficient and clean utilization remains a pivotal development focus within the coal industry. Nevertheless, the application of weakly caking coal results in energy loss due to the caking property, thereby leading to a waste of resources. This paper, therefore, concentrates on the caking [...] Read more.
Efficient and clean utilization remains a pivotal development focus within the coal industry. Nevertheless, the application of weakly caking coal results in energy loss due to the caking property, thereby leading to a waste of resources. This paper, therefore, concentrates on the caking property, offering insights into the relevant caking mechanism, evaluation indexes, and regulation technologies associated with it. The caking mechanism delineates the transformation process of coal into coke. During pyrolysis, the active component generates the plastic mass in which gas, liquid, and solid phases coexist. With an increase in temperature, the liquid phase is diminished gradually, causing the inert components to bond. Based on the caking mechanism, evaluation indexes such as that characteristic of char residue, the caking index, and the maximal thickness of the plastic layer are proposed. These indexes are used to distinguish the strength of the caking property. However, they frequently exhibit a poor differentiation ability and high subjectivity. Additionally, some technologies have been demonstrated to regulate the caking property. Technologies such as rapid heating treatment and hydrogenation modification increase the amount of plastic mass generated, thereby improving the caking property. Meanwhile, technologies such as mechanical breaking and pre-oxidation reduce the caking property by destroying agglomerates or consuming plastic mass. Full article
(This article belongs to the Special Issue Advanced Clean Coal Technology)
Show Figures

Figure 1

26 pages, 7199 KiB  
Article
Investigation of Fresh, Mechanical, and Durability Properties of Rubberized Fibre-Reinforced Concrete Containing Macro-Synthetic Fibres and Tyre Waste Rubber
by Nusrat Jahan Mim, Mizan Ahmed, Xihong Zhang, Faiz Shaikh, Ahmed Hamoda, Vipulkumar Ishvarbhai Patel and Aref A. Abadel
Buildings 2025, 15(15), 2778; https://doi.org/10.3390/buildings15152778 - 6 Aug 2025
Abstract
The growing disposal of used tyres and plastic waste in landfills poses a significant environmental challenge. This study investigates the potential of utilizing used tyre rubber and macro-synthetic fibres (MSFs) made from recycled plastics in fibre-reinforced rubberized concrete (RuFRC). Various percentages of tyre [...] Read more.
The growing disposal of used tyres and plastic waste in landfills poses a significant environmental challenge. This study investigates the potential of utilizing used tyre rubber and macro-synthetic fibres (MSFs) made from recycled plastics in fibre-reinforced rubberized concrete (RuFRC). Various percentages of tyre rubber shreds were used to replace coarse aggregates, calculated as 10%, 20%, and 30% of the volume of fine aggregates; fibre dosages (0%, 0.25%, 0.5%, 0.75%, and 1% by volume) were incorporated into the mix, and a series of physical, mechanical, and durability properties were evaluated. The results show that, as the fibre and rubber content increased, the slump of RuFRC decreased, with the lowest value obtained for concrete with 1% fibre and 30% rubber. The density of RuFRC decreases as the rubber percentage increases due to air voids and increased porosity caused by the rubber. The strength properties of RuFRC were found to decline with the increase in the rubber content, with mixes containing 30% rubber exhibiting reductions of about 60% in compressive strength, 27% in tensile strength, and 13% in flexural strength compared to the control specimen. Durability testing revealed that an increased rubber content led to higher water absorption, water penetration, and chloride ion permeability, with 30% rubber showing the highest values. However, lower rubber content (10%) and higher fibre dosages improved the durability characteristics, with water absorption reduced by up to 5% and shrinkage strains lowered by about 7%, indicating better compaction and bonding. These results indicate that RuFRC with moderate rubber and higher fibre content offers a promising balance between sustainability and performance. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 1442 KiB  
Article
Enzyme Modifications of Red Deer Fat to Adjust Physicochemical Properties for Advanced Applications
by Tereza Novotná, Jana Pavlačková, Robert Gál, Ladislav Šiška, Miroslav Fišera and Pavel Mokrejš
Molecules 2025, 30(15), 3293; https://doi.org/10.3390/molecules30153293 - 6 Aug 2025
Abstract
Red deer fat makes up approximately 7–10% of the animal’s weight and is not currently used. Regarding sustainability in the food industry, it is desirable to look for opportunities for its processing and use, not only in the food industry. The aim of [...] Read more.
Red deer fat makes up approximately 7–10% of the animal’s weight and is not currently used. Regarding sustainability in the food industry, it is desirable to look for opportunities for its processing and use, not only in the food industry. The aim of this study is the enzymatic modification of red deer fat, leading to modification of its physicochemical properties, and the study of changes in phase transitions of modified fat, its structure, color, and texture. Hydrolysis was performed using sn-1,3-specific lipase at different water concentrations (10–30%) and reaction times (2–6 h). The results showed that there was a significant decrease in melting and crystallization temperatures with an increasing degree of hydrolysis, which was confirmed by differential scanning calorimetry. FTIR spectra revealed a decrease in the intensity of the ester bonds, indicating cleavage of triacylglycerols. Texture analysis of the modified fats confirmed a decrease in hardness of up to 50% and an increase in spreadability. The color parameter values remained within an acceptable range. The results show that enzymatic modification is an effective tool for targeted modification of red deer fat properties, and this expands the possibilities of its application in cosmetic matrices and food applications as functional lipids. Full article
Show Figures

Graphical abstract

12 pages, 2764 KiB  
Article
AlxCoCrFeNi High-Entropy Alloys Enable Simultaneous Electrical and Mechanical Robustness at Thermoelectric Interfaces
by Xiaoxia Zou, Wangjie Zhou, Xinxin Li, Yuzeng Gao, Jingyi Yu, Linglu Zeng, Guangteng Yang, Li Liu, Wei Ren and Yan Sun
Materials 2025, 18(15), 3688; https://doi.org/10.3390/ma18153688 - 6 Aug 2025
Abstract
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric [...] Read more.
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric materials. The HEA/p-SKD interface exhibited excellent chemical bonding with a stable and controllable reaction layer, forming a dense, defect-free (Fe,Ni,Co,Cr)Sb phase (thickness of ~2.5 μm) at the skutterudites side. The interfacial resistivity achieved a low value of 0.26 μΩ·cm2 and remained at 7.15 μΩ·cm2 after aging at 773 K for 16 days. Moreover, the interface demonstrated remarkable mechanical stability, with an initial shear strength of 88 MPa. After long-term aging for 16 days at 773 K, the shear strength retained 74 MPa (only 16% degradation), ranking among the highest reported for thermoelectric materials/metal joints. Remarkably, the joint maintained a shear strength of 29 MPa even after 100 continuous thermal cycles (623–773 K), highlighting its outstanding thermo-mechanical stability. These results validate the AlxCoCrFeNi high-entropy alloys as an ideal interfacial material for thermoelectric generators, enabling simultaneous optimization of electrical and mechanical performance in harsh environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

24 pages, 2863 KiB  
Article
An Integrated Bond Graph Methodology for Building Performance Simulation
by Abdelatif Merabtine
Energies 2025, 18(15), 4168; https://doi.org/10.3390/en18154168 - 6 Aug 2025
Abstract
Building performance simulation is crucial for the design and optimization of sustainable buildings. However, the increasing complexity of building systems necessitates advanced modeling techniques capable of handling multi-domain interactions. This paper presents a novel application of the bond graph (BG) methodology to simulate [...] Read more.
Building performance simulation is crucial for the design and optimization of sustainable buildings. However, the increasing complexity of building systems necessitates advanced modeling techniques capable of handling multi-domain interactions. This paper presents a novel application of the bond graph (BG) methodology to simulate and analyze the thermal behavior of an integrated trigeneration system within an experimental test cell. Unlike conventional simulation approaches, the BG framework enables unified modeling of thermal and hydraulic subsystems, offering a physically consistent and energy-based representation of system dynamics. The study investigates the system’s performance under both dynamic and steady-state conditions across two distinct climatic periods. Validation against experimental data reveals strong agreement between measured and simulated temperatures in heating and cooling scenarios, with minimal deviations. This confirms the method’s reliability and its capacity to capture transient thermal behaviors. The results also demonstrate the BG model’s effectiveness in supporting predictive control strategies, optimizing energy efficiency, and maintaining thermal comfort. By integrating hydraulic circuits and thermal exchange processes within a single modeling framework, this work highlights the potential of bond graphs as a robust and scalable tool for advanced building performance simulation. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

16 pages, 9914 KiB  
Article
Phase Equilibria of Si-C-Cu System at 700 °C and 810 °C and Implications for Composite Processing
by Kun Liu, Zhenxiang Wu, Dong Luo, Xiaozhong Huang, Wei Yang and Peisheng Wang
Materials 2025, 18(15), 3689; https://doi.org/10.3390/ma18153689 - 6 Aug 2025
Abstract
The phase equilibria of the Si-C-Cu ternary system at 700 °C and 810 °C were experimentally investigated for the first time. Fifteen key alloys were prepared via powder metallurgy and analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe microanalysis [...] Read more.
The phase equilibria of the Si-C-Cu ternary system at 700 °C and 810 °C were experimentally investigated for the first time. Fifteen key alloys were prepared via powder metallurgy and analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). Isothermal sections were constructed based on the identified equilibrium phases. At 700 °C, eight single-phase regions and six three-phase regions—(C)+(Cu)+hcp, (C)+hcp+γ-Cu33Si7, (C)+γ-Cu33Si7+SiC, γ-Cu33Si7+SiC+ε-Cu15Si4, SiC+ε-Cu15Si4+η-Cu3Si(ht), and SiC+(Si)+η-Cu3Si(ht)—were determined. At 810 °C, nine single-phase regions and seven three-phase regions were identified. The solubility of C and Si/Cu in the various phases was quantified and found to be significantly higher at 810 °C compared to 700 °C. Key differences include the presence of the bcc (β) and liquid phases at 810 °C. The results demonstrate that higher temperatures promote increased mutual solubility and reaction tendencies among Cu, C, and Si. Motivated by these findings, the influence of vacuum hot pressing parameters on SiC-fiber-reinforced Cu composites (SiCf/Cu) was investigated. The optimal processing condition (1050 °C, 60 MPa, 90 min) yielded a high bending strength of 998.61 MPa, attributed to enhanced diffusion and interfacial bonding facilitated by the high-temperature phase equilibria. This work provides essential fundamental data for understanding interactions and guiding processing in SiC-reinforced Cu composites. Full article
Show Figures

Figure 1

23 pages, 331 KiB  
Article
Revisiting the Nexus Between Energy Consumption, Economic Growth, and CO2 Emissions in India and China: Insights from the Long Short-Term Memory (LSTM) Model
by Bartosz Jóźwik, Siba Prasada Panda, Aruna Kumar Dash, Pritish Kumar Sahu and Robert Szwed
Energies 2025, 18(15), 4167; https://doi.org/10.3390/en18154167 - 6 Aug 2025
Abstract
Understanding how energy use and economic activity shape carbon emissions is pivotal for achieving global climate targets. This study quantifies the dynamic nexus between disaggregated energy consumption, economic growth, and CO2 emissions in India and China—two economies that together account for more [...] Read more.
Understanding how energy use and economic activity shape carbon emissions is pivotal for achieving global climate targets. This study quantifies the dynamic nexus between disaggregated energy consumption, economic growth, and CO2 emissions in India and China—two economies that together account for more than one-third of global emissions. Using annual data from 1990 to 2021, we implement Long Short-Term Memory (LSTM) neural networks, which outperform traditional linear models in capturing nonlinearities and lagged effects. The dataset is split into training (1990–2013) and testing (2014–2021) intervals to ensure rigorous out-of-sample validation. Results reveal stark national differences. For India, coal, natural gas consumption, and economic growth are the strongest positive drivers of emissions, whereas renewable energy exerts a significant mitigating effect, and nuclear energy is negligible. In China, emissions are dominated by coal and petroleum use and by economic growth, while renewable and nuclear sources show weak, inconsistent impacts. We recommend retrofitting India’s coal- and gas-plants with carbon capture and storage, doubling clean-tech subsidies, and tripling annual solar-plus-storage auctions to displace fossil baseload. For China, priorities include ultra-supercritical upgrades with carbon capture, utilisation, and storage, green-bond-financed solar–wind buildouts, grid-scale storage deployments, and hydrogen-electric freight corridors. These data-driven pathways simultaneously cut flagship emitters, decouple GDP from carbon, provide replicable models for global net-zero research, and advance climate-resilient economic growth worldwide. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
12 pages, 12870 KiB  
Article
Direct Glass-to-Metal Welding by Femtosecond Laser Pulse Bursts: I, Conditions for Successful Welding with a Gap
by Qingfeng Li, Gabor Matthäus, David Sohr and Stefan Nolte
Nanomaterials 2025, 15(15), 1202; https://doi.org/10.3390/nano15151202 - 6 Aug 2025
Abstract
We report on the welding of optical borosilicate glass to an unpolished copper substrate (surface Ra of 0.27 µm and Rz of 1.89 µm) using bursts of femtosecond laser pulses. The present paper puts forth the hypothesis that glass–metal welding with a gap [...] Read more.
We report on the welding of optical borosilicate glass to an unpolished copper substrate (surface Ra of 0.27 µm and Rz of 1.89 µm) using bursts of femtosecond laser pulses. The present paper puts forth the hypothesis that glass–metal welding with a gap is contingent upon the ejection of molten jets of glass. We have ascertained the impact of pulse energy and focal position on weldability. This finding serves to substantiate our initial hypothesis and provides a framework for understanding the conditions under which this hypothesis is applicable. Under optimal conditions, but without the assistance of any clamping system, our welded samples maintained a breaking resistance of up to 10.9 MPa. Full article
(This article belongs to the Special Issue Ultrafast Laser Micro-Nano Welding: From Principles to Applications)
Show Figures

Figure 1

16 pages, 3291 KiB  
Article
A Discrete Element Model for Characterizing Soil-Cotton Seeding Equipment Interactions Using the JKR and Bonding Contact Models
by Xuyang Ran, Long Wang, Jianfei Xing, Lu Shi, Dewei Wang, Wensong Guo and Xufeng Wang
Agriculture 2025, 15(15), 1693; https://doi.org/10.3390/agriculture15151693 - 5 Aug 2025
Abstract
Due to the increasing demand for agricultural water, the water availability for winter and spring irrigation of cotton fields has decreased. Consequently, dry seeding followed by irrigation (DSSI) has become a widespread cotton cultivation technique in Xinjiang. This study focused on the interaction [...] Read more.
Due to the increasing demand for agricultural water, the water availability for winter and spring irrigation of cotton fields has decreased. Consequently, dry seeding followed by irrigation (DSSI) has become a widespread cotton cultivation technique in Xinjiang. This study focused on the interaction between soil particles and cotton seeding equipment under DSSI in Xinjiang. The discrete element method (DEM) simulation framework was employed to compare the performance of the Johnson-Kendall-Roberts (JKR) model and Bonding model in simulating contact between soil particles. The models’ ability to simulate the angle of repose was investigated, and shear tests were conducted. The simulation results showed that both models had comparable repose angles, with relative errors of 0.59% for the JKR model and 0.36% for the contact model. However, the contact model demonstrated superior predictive accuracy in simulating direct shear test results, predicting an internal friction angle of 35.8°, with a relative error of 5.8% compared to experimental measurements. In contrast, the JKR model exhibited a larger error. The Bonding model provides a more accurate description of soil particle contact. Subsoiler penetration tests showed that the maximum penetration force was 467.2 N, closely matching the simulation result of 485.3 N, which validates the reliability of the model parameters. The proposed soil simulation framework and calibrated parameters accurately represented soil mechanical properties, providing a robust basis for discrete element modeling and structural optimization of soil-tool interactions in cotton field tillage machinery. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

9 pages, 497 KiB  
Article
Ultra-Weak Photon Emission from Crown Ethers Exposed to Fenton’s Reagent Fe2+-H2O2
by Michał Nowak, Krzysztof Sasak, Anna Wlodarczyk, Izabela Grabska-Kobylecka, Agata Sarniak and Dariusz Nowak
Molecules 2025, 30(15), 3282; https://doi.org/10.3390/molecules30153282 - 5 Aug 2025
Abstract
We hypothesized that compounds containing ether linkages within their backbone structures, when exposed to hydroxyl radicals (•OH), can generate ultra-weak photon emission (UPE) as a result of the formation of triplet excited carbonyl species (3R=O*). To evaluate this hypothesis, we investigated [...] Read more.
We hypothesized that compounds containing ether linkages within their backbone structures, when exposed to hydroxyl radicals (•OH), can generate ultra-weak photon emission (UPE) as a result of the formation of triplet excited carbonyl species (3R=O*). To evaluate this hypothesis, we investigated the UPE of four compounds, each at a final concentration of 185.2 µmol/L: EGTA (ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid), a potent chelator of divalent cations, and three crown ethers—12-crown-4, 15-crown-5, and 18-crown-6—containing two, four, five, and six ether bonds, respectively. •OH was generated using a modified Fenton reagent—92.6 µmol/L Fe2+ and 2.6 mmol/L H2O2. The highest UPE was recorded for the Fe2+–EGTA–H2O2 (2863 ± 158 RLU; relative light units), followed by 18-crown-6, 15-crown-5, and 12-crown-4 (1161 ± 78, 615± 86, and 579 ± 109 RLU, respectively; p < 0.05), corresponding to the number of ether groups present. Controls lacking either H2O2 or Fe2+ exhibited no significant light emission compared to the buffer medium. These findings support the hypothesis that ether bonds, when oxidatively attacked by •OH, undergo chemical transformations resulting in the formation of 3R=O* species, the decay of which is associated with UPE. In crown ethers exposed to Fe2+-H2O2, the intensity of UPE was correlated with the number of ether bonds in their structure. Full article
(This article belongs to the Special Issue Molecular Insights into Bioluminescence and Chemiluminescence)
Show Figures

Figure 1

17 pages, 6401 KiB  
Article
Vibrational and Resistance Responses for Ether-Amine Solutions of the Buckypaper-Based Chemiresistor Sensor
by Débora Ely Medeiros Ferreira, Paula Fabíola Pantoja Pinheiro, Luiza Marilac Pantoja Ferreira, Leandro José Sena Santos, Rosa Elvira Correa Pabón and Marcos Allan Leite Reis
Nanomaterials 2025, 15(15), 1197; https://doi.org/10.3390/nano15151197 - 5 Aug 2025
Abstract
The development of miniaturized sensors has become relevant for the detection of chemical/biological substances, since they use and detect low concentrations, such as flocculants based on amines for the mining industry. In this study, buckypaper (BP) films based on carboxylic acid functionalized multi-walled [...] Read more.
The development of miniaturized sensors has become relevant for the detection of chemical/biological substances, since they use and detect low concentrations, such as flocculants based on amines for the mining industry. In this study, buckypaper (BP) films based on carboxylic acid functionalized multi-walled carbon nanotubes (f-MWCNTs) were produced through vacuum filtration on cellulose filter paper to carry out sensory function in samples containing ether-amine (volumes: 1%, 5%, 10% and 100%). The morphological characterization of the BPs by scanning electron microscopy showed f-MWCNT aggregates randomly distributed on the cellulose fibers. Vibrational analysis by Raman spectroscopy indicated bands and sub-bands referring to f-MWCNTs and vibrational modes corresponding to chemical bonds present in the ether-amine (EA). The electrical responses of the BP to the variation in analyte concentration showed that the sensor differentiates deionized water from ether-amine, as well as the various concentrations present in the different analytes, exhibiting response time of 3.62 ± 0.99 min for the analyte containing 5 vol.% EA and recovery time of 21.16 ± 2.35 min for the analyte containing 10 vol.% EA, revealing its potential as a real-time response chemiresistive sensor. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

21 pages, 1946 KiB  
Article
Three-Dimensional Modelling for Interfacial Behavior of a Thin Penny-Shaped Piezo-Thermo-Diffusive Actuator
by Hui Zhang, Lan Zhang and Hua-Yang Dang
Modelling 2025, 6(3), 78; https://doi.org/10.3390/modelling6030078 - 5 Aug 2025
Abstract
This paper presents a theoretical model of a thin, penny-shaped piezoelectric actuator bonded to an isotropic thermo-elastic substrate under coupled electrical-thermal-diffusive loading. The problem is assumed to be axisymmetric, and the peeling stress of the film is neglected in accordance with membrane theory, [...] Read more.
This paper presents a theoretical model of a thin, penny-shaped piezoelectric actuator bonded to an isotropic thermo-elastic substrate under coupled electrical-thermal-diffusive loading. The problem is assumed to be axisymmetric, and the peeling stress of the film is neglected in accordance with membrane theory, yielding a simplified equilibrium equation for the piezoelectric film. By employing potential theory and the Hankel transform technique, the surface strain of the substrate is analytically derived. Under the assumption of perfect bonding, a governing integral equation is established in terms of interfacial shear stress. The solution to this integral equation is obtained numerically using orthotropic Chebyshev polynomials. The derived results include the interfacial shear stress, stress intensity factors, as well as the radial and hoop stresses within the system. Finite element analysis is conducted to validate the theoretical predictions. Furthermore, parametric studies elucidate the influence of material mismatch and actuator geometry on the mechanical response. The findings demonstrate that, the performance of the piezoelectric actuator can be optimized through judicious control of the applied electrical-thermal-diffusive loads and careful selection of material and geometric parameters. This work provides valuable insights for the design and optimization of piezoelectric actuator structures in practical engineering applications. Full article
Show Figures

Figure 1

12 pages, 2338 KiB  
Article
Singlet Oxygen-Mediated Micropollutant Degradation Using an FePc-Modified CNT Filter via Peroxymonosulfate Activation
by Chenxin Xie, Yifan Ren and Yanbiao Liu
Catalysts 2025, 15(8), 747; https://doi.org/10.3390/catal15080747 - 5 Aug 2025
Abstract
Herein, we rationally designed a molecular catalytic filter for effective micropollutants decontamination via peroxymonosulfate (PMS) activation. Specifically, iron phthalocanine (FePc) molecules with defined Fe–N4 coordination were immobilized onto carbon nanotubes (CNTs), forming a hybrid catalyst that integrated molecular precision with heterogeneous catalytic [...] Read more.
Herein, we rationally designed a molecular catalytic filter for effective micropollutants decontamination via peroxymonosulfate (PMS) activation. Specifically, iron phthalocanine (FePc) molecules with defined Fe–N4 coordination were immobilized onto carbon nanotubes (CNTs), forming a hybrid catalyst that integrated molecular precision with heterogeneous catalytic properties. The resulting CNT-FePc filter achieved a 98.4% removal efficiency for bisphenol A (10 ppm) in a single-pass operation system, significantly outperforming the CNT/PMS system without FePc (41.6%). Additionally, the CNT-FePc/PMS system demonstrated remarkable resistance to performance inhibition by common water matrix components. Unlike typical radical-dominated PMS activation processes, mechanistic investigations confirmed that the CNT-FePc/PMS system selectively promoted singlet oxygen (1O2) generation as the primary oxidative pathway. Density functional theory (DFT) calculations revealed that PMS exhibited stronger adsorption on FePc (−3.05 eV) compared to CNT (−2.86 eV), and that FePc effectively facilitated O–O bond elongation in PMS, thereby facilitating 1O2 generation. Additionally, seed germination assays indicated a significant reduction in the biotoxicity of the treated effluents. Overall, this work presents a catalyst design strategy that merges molecular-level coordination chemistry with practical flow-through configuration, enabling rapid, selective, and environmentally benign micropollutant removal. Full article
(This article belongs to the Collection Advanced Catalysts for Wastewater Remediation Technologies)
Show Figures

Graphical abstract

Back to TopTop