Vibrational and Resistance Responses for Ether-Amine Solutions of the Buckypaper-Based Chemiresistor Sensor
Abstract
1. Introduction
2. Materials and Methods
2.1. BP Production
2.2. Morphological Characterization of BPs
2.3. BP Sensor Chemiresistive Test
2.4. Multivariate Statistical Analysis
2.5. Vibrational Characterization of the BP Sensor with Analytes
3. Results
3.1. BP Morphology
3.2. Electrical Responses
3.3. Principal Component Analysis
3.4. Vibrational Effects of Interactions Between CNTs and Analyte
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNTs | carbon nanotubes |
SWCNT | single-walled carbon nanotubes |
DWCNT | double-walled carbon nanotubes |
MWCNTs | multi-walled carbon nanotubes |
BP | buckypaper |
f-MWCNTs | functionalized multi-walled carbon nanotubes |
EA | ether-amine |
f-CNTs | functionalized carbon nanotubes |
SEM | scanning electron microscopy |
SE | secondary electron |
DW | deionized water |
ACD | amorphous carbon degree |
References
- Nakhaei, F.; Irannajad, M. Reagents types in flotation of iron oxide minerals: A review. Miner. Process. Extr. Metall. Rev. 2017, 39, 89–124. [Google Scholar] [CrossRef]
- Fan, G.; Wang, L.; Cao, Y.; Li, C. Collecting Agent–Mineral Interactions in the Reverse Flotation of Iron Ore: A Brief Review. Minerals 2020, 10, 681. [Google Scholar] [CrossRef]
- Batisteli, G.M.B.; Peres, A.E.C. Residual amine in iron ore flotation. Miner. Eng. 2008, 21, 873–876. [Google Scholar] [CrossRef]
- Silva, F.M.F. Quantification of Ether-Amines in Iron Ore Flotation Tailings as a Function of Particle Size. Master’s Dissertation, Federal University of Ouro Preto, Ouro Preto, Brazil, 2009. [Google Scholar]
- Nogueira, S.C.S.; Matos, V.E.; Pereira, C.A.; Henriques, A.B.; Peres, A.E.C. Collector mixtures and their synergistic effect on quartz floatability. Int. Eng. J. 2022, 75, 371–378. [Google Scholar] [CrossRef]
- Hao, F.; Lwin, T.; Bruckard, W.J.; Woodcock, J.T. Determination of aliphatic amines in mineral flotation liquors and collectors via chloro-NBD derivatization and HPLC-UV detection. J. Chromatogr. A. 2004, 1057, 181–185. [Google Scholar]
- Araujo, D.M.; Yoshida, M.I.; Carvalho, C.F. Colorimetric Determination of Ether Amine Greases Utilized In the Flotation of Iron Ore. J. Anal. Chem. 2009, 64, 390–392. [Google Scholar] [CrossRef]
- Chiu, S.-W.; Tang, K.-T. Towards a Chemiresistive Sensor-Integrated Electronic Nose: A Review. Sensors 2013, 13, 14214–14247. [Google Scholar] [CrossRef]
- Choi, S.-H.; Lee, J.-S.; Choi, W.-J.; Seo, J.-W.; Choi, S.-J. Nanomaterials for IoT Sensing Platforms and Point-of-Care Applications in South Korea. Sensors 2022, 22, 610. [Google Scholar] [CrossRef]
- Kaur, N.; Singh, M.; Comini, E. One-Dimensional Nanostructured Oxide Chemoresistive Sensors. Langmuir 2020, 36, 6326–6344. [Google Scholar] [CrossRef]
- Mattioni, A.C.; Wurzel, P.M.; Evald, P.J.D.O. Sensores químicos e físicos: Uma revisão voltada à Engenharia biomédica e suas aplicações. Discip. Sci. 2020, 21, 1–15. [Google Scholar] [CrossRef]
- Gupta, N.; Gupta, S.M.; Sharma, S.K. Carbon nanotubes: Synthesis, properties and engineering applications. Carbon. Lett. 2019, 29, 419–447. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Léonard, F. The Physics of Carbon Nanotube Devices, 1st ed.; William Andrew Inc.: Norwich, CT, USA, 2009; pp. 272–278. [Google Scholar]
- Anzar, N.; Hasan, R.; Tyagi, M.; Yadav, N.; Narang, J. Carbon nanotube-A review on Synthesis, Properties and plethora of applications in the field of biomedical science. Sens. Int. 2020, 1, 100003. [Google Scholar] [CrossRef]
- Alshahrani, A.; Alharbi, A.; Alnasser, S.; Almihdar, M.; AlOtaibi, B. Enhanced heavy metals removal by a novel carbon nanotubes buckypaper membrane containing a mixture of two biopolymers: Chitosan and i-carrageenan. Sep. Purif. Technol. 2021, 276, 119300. [Google Scholar] [CrossRef]
- Fan, M.; Li, S.; Wu, L.; Li, L.; Qu, M.; Nie, J.; Zhang, R.; Tang, P.; Bin, Y. Natural rubber toughened carbon nanotube buckypaper and its multifunctionality in electromagnetic interference shielding, thermal conductivity, Joule heating and triboelectric nanogenerators. Chem. Eng. J. 2022, 433, 133499. [Google Scholar] [CrossRef]
- Ferreira, L.; Pinheiro, P.; Neto, N.B.; Reis, M. Buckypaper-Based Nanostructured Sensor for Port Wine Analysis. Sensors 2022, 22, 9732. [Google Scholar] [CrossRef]
- Pinheiro, P.F.P.; Ferreira, L.M.P.; Rodrigues, F.A.S.; Oliveira, J.C.S.; Rodriguez, A.F.R.; Souza, M.E.S.; Reis, M.A.L. Thermoelectric effect of buckypaper/copper assembly. J. Nanotchnol. 2019, 2019, 8385091. [Google Scholar] [CrossRef]
- Yakhno, T.; Pakhomov, A.; Sanin, A.; Kazakov, V.; Ginoyan, R.; Yakhno, V. Drop drying on the sensor. One more way for comparative analysis of liquid media. Sensors 2020, 20, 5266. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Paleontological Statistics Software Package for Education and Data Analysis, Palaeontol. Electron. Available online: http://palaeo-electronica.org/2001_1/past/issue1_01.htm (accessed on 27 August 2023).
- Kherif, F.; Latypova, A. Principal component analysis. In Machine Learning; Mechelli, A., Vieira, S., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 209–225. [Google Scholar]
- Gajjar, S.; Kulahci, M.; Palazoglu, A. Real-time fault detection and diagnosis using sparse principal component analysis. J. Process Control. 2018, 67, 112–128. [Google Scholar] [CrossRef]
- Vetelino, J.; Reghu, A. Introduction to Sensors, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 1–25. [Google Scholar]
- Jolliffe, I.T. Choosing a subset of principal components or variables. In Principal Component Analysis, 2nd ed.; Jolliffe, I.T., Ed.; Springer: New York, NY, USA, 2002; pp. 111–149. [Google Scholar]
- Rebelo, S.L.H.; Guedes, A.; Szefczyk, M.E.; Pereira, A.M.; Araújo, J.P.; Freire, C. Progress in the Raman spectra analysis of covalently functionalized multiwalled carbon nanotubes: Unraveling disorder in graphitic materials. Phys. Chem. Chem. Phys. 2016, 18, 12784–12796. [Google Scholar] [CrossRef]
- Reis, M.; Neto, N.M.B.; Sousa, M.E.; Araújo, P.T. Raman spectroscopy fingerprint of stainless steel-MWCNTs nanocomposite processed by ball-milling. AIP Adv. 2018, 8, 015323. [Google Scholar] [CrossRef]
- Santos, L.J.S.; Quaresma, L.J.B.; Oliveira, D.S.C.; Pinheiro Filho, P.P.R.; Alves, K.C.; Ferreira, L.M.P.; Pinheiro, P.F.P.; Reis, M.A.L. 3D-printed metal-free thermal sensor based on PLA coated with PLA/CNTs nanocomposite ink. Sens. Actuators A Phys. 2025, 384, 116279. [Google Scholar] [CrossRef]
- Botti, S.; Rufoloni, A.; Rindzevicius, T.; Schmidt, M.S. Surface-enhanced raman spectroscopy characterization of pristine and functionalized carbon nanotubes and graphene. In Raman Spectroscopy, 1st ed.; Nascimento, G.M., Ed.; Intech Open: London, UK, 2018; pp. 203–219. [Google Scholar]
- Brito, P.R.O.; Loayza, C.R.L.; Sousa, M.E.S.; Braga, E.M.; Angélica, R.S.; da Paz, S.P.A.; Reis, M.A. Cast Aluminum Surface Reinforced with Carbon Nanotube via Solubilization Treatment. Met. Mater. Int. 2022, 28, 802–810. [Google Scholar] [CrossRef]
- Beysac, O.; Lazzeri, M. Application of Raman spectroscopy to the study of graphitic carbons in the Earth Sciences. In Raman Spectroscopy Applied to Earth Sciences and Cultural Heritage; Dubessy, J., Caumon, M.-C., Rull, F., Eds.; European Mineralogical Union Notes in Mineralogy: London, UK, 2012; Volume 12, pp. 415–454. [Google Scholar]
- Malfait, B.; Moréac, A.J.; Jani, A.; Lefort, R.; Huber, P.; Frõba, M.; Morineau, D. Structure of water at hydrophilic and hydrophobic interfaces: Raman spectroscopy of water confined in periodic mesoporous (organo) silicas. J. Phys. Chem. C 2022, 126, 3520–3531. [Google Scholar] [CrossRef]
- Pezzotti, G. Raman spectroscopy in cell biology and microbiology. J. Raman Spectrosc. 2021, 52, 2348–2443. [Google Scholar] [CrossRef]
- Lima, R.M.F.; Brandão, P.R.G.; Peres, A.E.C. The infrared spectra of amine collectors used in the flotation of iron ores. Miner. Eng. 2005, 18, 267–273. [Google Scholar] [CrossRef]
- Sezer, N.; Koç, M. Oxidative acid treatment of carbon nanotubes. Surf. Interfaces 2019, 14, 1–8. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.R.M.; Khalina, A.; Abdullah, N.; Sabaruddin, F.A.; Kamarudin, S.H.; Ahmad, S.; Mahat, A.M.; Lee, C.L.; Aisyah, H.A.; et al. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers 2021, 13, 1047. [Google Scholar] [CrossRef]
- Pinheiro, P.F.P.; Ferreira, L.M.P.; Rodrigues, F.A.S.; Oliveira, J.C.S. Thermoresistive and thermoelectric properties of coplanar cellulose-MWCNTs buckypaper. J. Mater. Sci. Mater. Electron. 2022, 33, 17802–17813. [Google Scholar] [CrossRef]
- Schroeder, V.; Savagatrup, S.; Maggie, E.; Sibo, L.; Swager, T.M. Carbon nanotube chemical sensors. Chem. Rev. 2019, 119, 599–663. [Google Scholar] [CrossRef]
- Sustainable Development Goals-United Nations. Available online: https://sdgs.un.org/goals (accessed on 14 July 2025).
- Philip, B.; Abraham, J.K.; Chandrasekhar, A.; Varadan, V.K. Carbon nanotube/PMMA composite thin films for gas-sensing applications. Smart Mater. Struct. 2003, 12, 935. [Google Scholar] [CrossRef]
- Fu, D.; Lim, H.; Shi, Y.; Dong, X.; Mhaisalkar, S.G.; Chen, Y.; Moochhala, S.; Li, L.-J. Differentiation of Gas Molecules Using Flexible and All-Carbon Nanotube Devices. J. Phys. Chem. C 2008, 112, 650–653. [Google Scholar] [CrossRef]
- Guo, S.-Y.; Hou, P.-X.; Zhang, F.; Liu, C.; Cheng, H.-M. Gas Sensors Based on Single-Wall Carbon Nanotubes. Molecules 2022, 27, 5381. [Google Scholar] [CrossRef] [PubMed]
- Giordano, C.; Filatrella, G.; Sarno, M.; Di Bartolomeo, A. Multi-walled carbon nanotube films for the measurement of the alcoholic concentration. Micro Nano Lett. 2019, 14, 304–308. [Google Scholar] [CrossRef]
- Mugo, S.M.; Lu, W.; Mundle, T.; Berg, D. Thin film composite conductive polymers chemiresistive sensor and sample holder for methanol detection in adulterated beverages. IEEE Sens. J. 2019, 20, 656–663. [Google Scholar] [CrossRef]
- Nii, H.; Sumiyama, Y.; Nakagawa, H.; Kunishige, A. Influence of diameter on the Raman spectra of multi-walled carbon nanotubes. Appl. Phys. Express 2008, 1, 064005. [Google Scholar] [CrossRef]
- Araújo, P.T.; Neto, N.M.B.; Sousa, M.E.; Angélica, R.S. Multiwall carbon nanotubes filled with Al4C3: Spectroscopic signatures for electron-phonon coupling due to doping process. Carbon. 2017, 124, 348–356. [Google Scholar] [CrossRef]
- Jório, A.; Saito, R. Raman spectroscopy for carbon nanotube applications. J. Appl. Phys. 2021, 129, 021102. [Google Scholar] [CrossRef]
- Hata, T. Infrared and Raman Spectra of Amine-SO2 Molecular Complexes and the Force Constants for the Characteristic Vibrations. Doctoral Thesis, Tohoku University, Tohoku, Japan, 1972. [Google Scholar]
- Puranik, P.G.; Ramiah, K.V. Raman and infra-red spectra of amines. Proc. Indian. Acad. Sci. 1961, 54, 146–154. [Google Scholar] [CrossRef]
- Wan, F.; Du, L.; Chen, W.; Wang, P.W.; Wang, J.; Shi, H.Y. A novel method to directly analyze dissolved acetic acid in transformer oil without extraction using Raman spectroscopy. Energies 2017, 10, 967. [Google Scholar] [CrossRef]
- Gouvêa, J.J.T.; Chipakwe, V.; Filho, L.S.L.; Chelgani, S.C. Biodegradable ether amines for reverse cationic flotation separation of ultrafine quartz from magnetite. Sci. Rep. 2023, 13, 20550. [Google Scholar] [CrossRef]
- Budemberg, G. Synthesis of Collectors for Iron Ore Flotation. Master’s Dissertation, University of São Paulo, Lorena, Brazil, 2016. [Google Scholar]
- Shobin, L.R.; Manivannan, S. Carbon nanotubes on paper: Flexible and disposable chemiresistors. Sens. Actuators B Chem. 2015, 220, 1178–1185. [Google Scholar] [CrossRef]
- Costa, M.M. Surface Manipulation of Electrochemical Sensor for Detection of Biogenic Amines and Neurotransmitters Using Nanoparticles, Carbon Nanotubes and Nanocomposites. Doctoral Thesis, Federal University of Alagoas, Maceio, Brazil, 2022. [Google Scholar]
Analyte | Response Time (min) | Recovery Time (min) | Response (%) |
---|---|---|---|
DW | 7.76 ± 4.60 | >16.58 ± 15.99 | 52.99 ± 2.64 |
EA100 | 43.57 | - | 723,974.00 |
EA1 | 11.49 ± 4.97 | 9.19 ± 7.89 | 446.25 ± 150.14 |
EA5 | 3.62 ± 0.99 | 8.52 ± 3.60 | 39,699.14 ± 9154.10 |
EA10 | 14.86 ± 1.32 | 21.16 ± 2.35 | 174,241.57 ± 130,005.32 |
Reference | Variation (cm−1) | ||||||
---|---|---|---|---|---|---|---|
Sub-Band | F-CNTs (Position) | BP | BP + DW | BP + EA1 | BP + EA5 | BP + EA 10 | BP + EA100 |
Gouter | 1575 | −1 | −4 | +1 | −4 | −1 | −1 |
Ginner | 1590 | +8 | −3 | −1 | −3 | +5 | +13 |
G′inner | 2633 | −16 | +2 | - | −5 | - | −13 |
G′outer | 2669 | −21 | −21 | −27 | −27 | −26 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, D.E.M.; Pinheiro, P.F.P.; Ferreira, L.M.P.; Santos, L.J.S.; Pabón, R.E.C.; Reis, M.A.L. Vibrational and Resistance Responses for Ether-Amine Solutions of the Buckypaper-Based Chemiresistor Sensor. Nanomaterials 2025, 15, 1197. https://doi.org/10.3390/nano15151197
Ferreira DEM, Pinheiro PFP, Ferreira LMP, Santos LJS, Pabón REC, Reis MAL. Vibrational and Resistance Responses for Ether-Amine Solutions of the Buckypaper-Based Chemiresistor Sensor. Nanomaterials. 2025; 15(15):1197. https://doi.org/10.3390/nano15151197
Chicago/Turabian StyleFerreira, Débora Ely Medeiros, Paula Fabíola Pantoja Pinheiro, Luiza Marilac Pantoja Ferreira, Leandro José Sena Santos, Rosa Elvira Correa Pabón, and Marcos Allan Leite Reis. 2025. "Vibrational and Resistance Responses for Ether-Amine Solutions of the Buckypaper-Based Chemiresistor Sensor" Nanomaterials 15, no. 15: 1197. https://doi.org/10.3390/nano15151197
APA StyleFerreira, D. E. M., Pinheiro, P. F. P., Ferreira, L. M. P., Santos, L. J. S., Pabón, R. E. C., & Reis, M. A. L. (2025). Vibrational and Resistance Responses for Ether-Amine Solutions of the Buckypaper-Based Chemiresistor Sensor. Nanomaterials, 15(15), 1197. https://doi.org/10.3390/nano15151197