Revisiting the Nexus Between Energy Consumption, Economic Growth, and CO2 Emissions in India and China: Insights from the Long Short-Term Memory (LSTM) Model
Abstract
1. Introduction
2. Literature Review
2.1. Economic Growth, Energy Demand, and Emissions: A Dual Challenge for Emerging Economies
2.2. Key Findings from Previous Studies
3. Methods and Models
3.1. Evaluation Metrics
3.2. Subsection Long Short-Term Memory (LSTM) Model
3.3. Data Processing and Model Design
4. Data Description and Variable Specification
5. Results and Discussion
5.1. Influence of Energy Consumption and Economic Growth on CO2 Emissions in India
5.2. Influence of Energy Consumption and Economic Growth on CO2 Emissions in China
5.3. LSTM Model Validation
6. Conclusions and Policy Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADB | Asian Development Bank |
AIIB | Asian Infrastructure Investment Bank |
ARCH | Autoregressive Conditional Heteroscedasticity |
ARDL | Autoregressive Distributed Lag |
ARIMA | Autoregressive Integrated Moving Average |
BG-LM | Breusch–Godfrey Lagrange Multiplier Test |
CC | Coal Consumption |
CCE-P | Common Correlated Effects–Pooled Estimator |
CCS | Carbon Capture and Storage |
CCUS | Carbon-Capture, Utilisation, and Storage |
CO2 | Carbon Dioxide |
CS-ARDL | Cross-Sectionally Augmented ARDL |
CS-DL | Cross-Sectionally Augmented Distributed Lag |
DOLS | Dynamic Ordinary Least Squares |
EIA | U.S. Energy Information Administration |
EG | Economic Growth |
EC | Energy Consumption |
EKC | Environmental Kuznets Curve |
FMOLS | Fully Modified Ordinary Least Squares |
GDP/RGDP | Gross Domestic Product/Real GDP |
GHG | Greenhouse Gas |
JRC | Joint Research Centre |
LSTM | Long Short-Term Memory |
MAE | Mean Absolute Error |
MINT | Emerging Market Economies: Mexico, Indonesia, Nigeria, and Turkiye |
MSE | Mean Squared Error |
MedAE | Median Absolute Error |
NDB | New Development Bank (BRICS) |
NEC | Nuclear Energy Consumption |
NG | Natural Gas Consumption |
OECD | Organisation for Economic Co-operation and Development |
PC | Petroleum Consumption |
PMG | Pooled Mean Group |
PVAR | Panel Vector Autoregression |
RC | Renewable Energy Consumption |
RMSE | Root Mean Squared Error |
SDG(s) | Sustainable Development Goal(s) |
TOPSIS | Technique for Order of Preference by Similarity to Ideal Solution |
WDI | World Development Indicators |
XAI | Explainable Artificial Intelligence |
References
- Ozturk, I.; Aslan, A.; Kalyoncu, H. Energy Consumption and Economic Growth Relationship: Evidence from Panel Data for Low and Middle Income Countries. Energy Polic. 2010, 38, 4422–4428. [Google Scholar] [CrossRef]
- Waheed, R.; Sarwar, S.; Dignah, A. The Role of Non-Oil Exports, Tourism and Renewable Energy to Achieve Sustainable Economic Growth: What We Learn from the Experience of Saudi Arabia. Struct. Change Econ. Dyn. 2020, 55, 49–58. [Google Scholar] [CrossRef]
- Gershon, O.; Ezenwa, N.E.; Osabohien, R. Implications of Oil Price Shocks on Net Oil-Importing African Countries. Heliyon 2019, 5, e02208. [Google Scholar] [CrossRef]
- Saidi, K.; Hammami, S. The Impact of CO2 Emissions and Economic Growth on Energy Consumption in 58 Countries. Energy Rep. 2015, 1, 62–70. [Google Scholar] [CrossRef]
- Beşer, M.K.; Beşer, B.H. The Relationship between Energy Consumption, CO2 Emissions and GDP per Capita: A Revisit of the Evidence from Turkey. Alphanumeric J. 2017, 5, 353–368. [Google Scholar] [CrossRef]
- Kuriqi, A.; Pinheiro, A.N.; Sordo-Ward, A.; Garrote, L. Flow Regime Aspects in Determining Environmental Flows and Maximising Energy Production at Run-of-River Hydropower Plants. Appl. Energy 2019, 256, 113980. [Google Scholar] [CrossRef]
- Akram, R.; Ibrahim, R.L.; Wang, Z.; Adebayo, T.S.; Irfan, M. Neutralizing the Surging Emissions amidst Natural Resource Dependence, Eco-Innovation, and Green Energy in G7 Countries: Insights for Global Environmental Sustainability. J. Environ. Manag. 2022, 344, 118560. [Google Scholar] [CrossRef]
- (IPCC), Intergovernmental Panel on Climate Change. Preventing Food Losses and Waste to Achieve Food Security and Sustainability; Burleigh Dodds Science Publishing: Cambridge, UK, 2020. [Google Scholar]
- Ahmad, N.; Du, L.; Lu, J.; Wang, J.; Li, H.-Z.; Hashmi, M.Z. Modelling the CO2 Emissions and Economic Growth in Croatia: Is There Any Environmental Kuznets Curve? Energy 2017, 123, 164–172. [Google Scholar] [CrossRef]
- Ozturk, I.; Acaravci, A. The Long-Run and Causal Analysis of Energy, Growth, Openness and Financial Development on Carbon Emissions in Turkey. Energy Econ. 2013, 36, 262–267. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Awosusi, A.A.; Adeshola, I. Determinants of CO2 Emissions in Emerging Markets: An Empirical Evidence from MINT Economies. Int. J. Renew. Energy Dev. 2020, 9, 411–422. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E.; Menyah, K.; Wolde-Rufael, Y. On the Causal Dynamics between Emissions, Nuclear Energy, Renewable Energy, and Economic Growth. Ecol. Econ. 2010, 69, 2255–2260. [Google Scholar] [CrossRef]
- González-Álvarez, M.A.; Montañés, A. CO2 Emissions, Energy Consumption, and Economic Growth: Determining the Stability of the 3E Relationship. Econ. Model. 2023, 121, 106195. [Google Scholar] [CrossRef]
- Bilgili, F.; Nathaniel, S.P.; Kuşkaya, S.; Kassouri, Y. Environmental Pollution and Energy Research and Development: An Environmental Kuznets Curve Model through Quantile Simulation Approach. Environ. Sci. Pollut. Res. 2021, 28, 53712–53727. [Google Scholar] [CrossRef]
- Jóźwik, B.; Tiwari, A.K.; Gavryshkiv, A.V.; Galewska, K.; Taş, B. Energy–Growth Nexus in European Union Countries During the Green Transition. Sustainability 2024, 16, 10990. [Google Scholar] [CrossRef]
- Bilgili, F.; Koçak, E.; Bulut, Ü. The Dynamic Impact of Renewable Energy Consumption on CO2 Emissions_ A Revisited Environmental Kuznets Curve Approach. Renew. Sustain. Energy Rev. 2015, 54, 1–8. [Google Scholar] [CrossRef]
- Alam, M.B.; Hossain, M.S. Investigating the Connections between China’s Economic Growth, Use of Renewable Energy, and Research and Development Concerning CO2 Emissions: An ARDL Bound Test Approach. Technol. Forecast. Soc. Change 2024, 201, 123220. [Google Scholar] [CrossRef]
- Chang, K.; Liu, L.; Luo, D.; Xing, K. The Impact of Green Technology Innovation on Carbon Dioxide Emissions: The Role of Local Environmental Regulations. J. Environ. Manag. 2023, 340, 117990. [Google Scholar] [CrossRef] [PubMed]
- (IEA), International Energy Agency. CO2 Emissions in 2023 A New Record High, but Is There Light at the End of the Tunnel? 2024. Available online: https://iea.blob.core.windows.net/assets/33e2badc-b839-4c18-84ce-f6387b3c008f/CO2Emissionsin2023.pdf (accessed on 18 May 2025).
- Vidyarthi, H. Energy Consumption and Growth in South Asia: Evidence from a Panel Error Correction Model. Int. J. Energy Sect. Manag. 2015, 9, 295–310. [Google Scholar] [CrossRef]
- Yu, X.; Tan, C. China’s Process-Related Greenhouse Gas Emission Dataset 1990–2020. Sci. Data 2023, 10, 55. [Google Scholar] [CrossRef] [PubMed]
- Aryal, J.P.; Sapkota, T.B.; Khurana, R.; Khatri-Chhetri, A.; Rahut, D.B.; Jat, M.L. Climate Change and Agriculture in South Asia: Adaptation Options in Smallholder Production Systems. Environ. Dev. Sustain. 2020, 22, 5045–5075. [Google Scholar] [CrossRef]
- Marcotullio, P.J.; Sarzynski, A.; Albrecht, J.; Schulz, N. The Geography of Urban Greenhouse Gas Emissions in Asia: A Regional Analysis. Glob. Environ. Change 2012, 22, 944–958. [Google Scholar] [CrossRef]
- Kraft, J.; Kraft, A. On the Relationship Between Energy and GNP. J. Energy Dev. 1978, 3, 401–403. [Google Scholar]
- Lu, F.; Ma, F.; Hu, S. Does Energy Consumption Play a Key Role? Re-Evaluating the Energy Consumption-Economic Growth Nexus from GDP Growth Rates Forecasting. Energy Econ. 2024, 129, 107268. [Google Scholar] [CrossRef]
- Saidi, K.; Rahman, M.M.; Amamri, M. The Causal Nexus between Economic Growth and Energy Consumption: New Evidence from Global Panel of 53 Countries. Sustain. Cities Soc. 2017, 33, 45–56. [Google Scholar] [CrossRef]
- Namahoro, J.P.; Wu, Q.; Su, H. Wind Energy, Industrial-Economic Development and CO2 Emissions Nexus: Do Droughts Matter? Energy 2023, 278, 127869. [Google Scholar] [CrossRef]
- Ozgur, O.; Yilanci, V.; Kongkuah, M. Nuclear Energy Consumption and CO2 Emissions in India: Evidence from Fourier ARDL Bounds Test Approach. Nucl. Eng. Technol. 2022, 54, 1657–1663. [Google Scholar] [CrossRef]
- Altinoz, B.; Apergis, N.; Aslan, A. Energy Consumption, Carbon Dioxide Emissions and Economic Growth: Fresh Evidence From Panel Quantile Regressions. Energy Res. Lett. 2020, 1, 1–5. [Google Scholar] [CrossRef]
- Muhammad, B. Energy Consumption, CO2 Emissions and Economic Growth in Developed, Emerging and Middle East and North Africa Countries. Energy 2019, 179, 232–245. [Google Scholar] [CrossRef]
- Gershon, O.; Asafo, J.K.; Nyarko-Asomani, A.; Koranteng, E.F. Investigating the Nexus of Energy Consumption, Economic Growth and Carbon Emissions in Selected African Countries. Energy Strat. Rev. 2024, 51, 101269. [Google Scholar] [CrossRef]
- Rehman, E.; Rehman, S. Modeling the Nexus between Carbon Emissions, Urbanization, Population Growth, Energy Consumption, and Economic Development in Asia: Evidence from Grey Relational Analysis. Energy Rep. 2022, 8, 5430–5442. [Google Scholar] [CrossRef]
- Khochiani, R.; Nademi, Y. Energy Consumption, CO2 Emissions, and Economic Growth in the United States, China, and India: A Wavelet Coherence Approach. Energy Environ. 2019, 31, 886–902. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Q.; Li, R. Revisiting the Relationship between Geopolitical Risk and Ecological Footprint: A Comprehensive Analysis Based on Dual Machine Learning. J. Environ. Manag. 2025, 374, 124125. [Google Scholar] [CrossRef]
- Radmehr, R.; Henneberry, S.R.; Shayanmehr, S. Renewable Energy Consumption, CO2 Emissions, and Economic Growth Nexus: A Simultaneity Spatial Modeling Analysis of EU Countries. Struct. Change Econ. Dyn. 2021, 57, 13–27. [Google Scholar] [CrossRef]
- Rahman, Z.U.; Chen, Y.; Ullah, A. Assessment of the Causal Links between Energy, Technologies, and Economic Growth in China: An Application of Wavelet Coherence and Hybrid Quantile Causality Approaches. Appl. Energy 2025, 377, 124469. [Google Scholar] [CrossRef]
- Agboola, M.O.; Bekun, F.V.; Joshua, U. Pathway to Environmental Sustainability: Nexus between Economic Growth, Energy Consumption, CO2 Emission, Oil Rent and Total Natural Resources Rent in Saudi Arabia. Resour. Polic. 2021, 74, 102380. [Google Scholar] [CrossRef]
- Eldowma, I.A.; Zhang, G.; Su, B. The Nexus between Electricity Consumption, Carbon Dioxide Emissions, and Economic Growth in Sudan (1971–2019). Energy Polic. 2023, 176, 113510. [Google Scholar] [CrossRef]
- Jun, W.; Mughal, N.; Zhao, J.; Shabbir, M.S.; Niedbała, G.; Jain, V.; Anwar, A. Does Globalization Matter for Environmental Degradation? Nexus among Energy Consumption, Economic Growth, and Carbon Dioxide Emission. Energy Polic. 2021, 153, 112230. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rana, R.H.; Barua, S. The Drivers of Economic Growth in South Asia: Evidence from a Dynamic System GMM Approach. J. Econ. Stud. 2019, 46, 564–577. [Google Scholar] [CrossRef]
- Rahman, M.M.; Velayutham, E. Renewable and Non-Renewable Energy Consumption-Economic Growth Nexus: New Evidence from South Asia. Renew. Energ. 2020, 147, 399–408. [Google Scholar] [CrossRef]
- Khan, M.K.; Khan, M.I.; Rehan, M. The Relationship between Energy Consumption, Economic Growth and Carbon Dioxide Emissions in Pakistan. Financ. Innov. 2020, 6, 1. [Google Scholar] [CrossRef]
- Pradhan, K.C.; Mishra, B.; Mohapatra, S.M. Investigating the Relationship between Economic Growth, Energy Consumption, and Carbon Dioxide (CO2) Emissions: A Comparative Analysis of South Asian Nations and G-7 Countries. Clean. Technol. Environ. Polic. 2024, 26, 3349–3367. [Google Scholar] [CrossRef]
- Salari, M.; Javid, R.J.; Noghanibehambari, H. The Nexus between CO2 Emissions, Energy Consumption, and Economic Growth in the U.S. Econ. Anal. Polic. 2021, 69, 182–194. [Google Scholar] [CrossRef]
- Afjal, M. The Tapestry of Green Economics: Mapping the Nexus of CO2 Emissions, Economic Growth, and Renewable Energy. SSRN Electron. J. 2023, 42, 1364–1390. [Google Scholar] [CrossRef]
- Liu, P.; Rahman, Z.U.; Jóźwik, B.; Doğan, M. Determining the Environmental Effect of Chinese FDI on the Belt and Road Countries CO2 Emissions: An EKC-Based Assessment in the Context of Pollution Haven and Halo Hypotheses. Environ. Sci. Eur. 2024, 36, 48. [Google Scholar] [CrossRef]
- Shah, S.B.; Sopin, J.; Techato, K.-A.; Mudbhari, B.K. A Systematic Review on Nexus Between Green Finance and Climate Change: Evidence from China and India. Int. J. Energy Econ. Polic. 2023, 13, 599–613. [Google Scholar] [CrossRef]
- Ray, S.; Lama, A.; Mishra, P.; Biswas, T.; Das, S.S.; Gurung, B. An Arima-Lstm Model for Predicting Volatile Agricultural Price Series with Random Forest Technique. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Nourmohammad, E.; Rashidi, Y. Ground Data Analysis for PM2.5 Prediction Using Predictive Modeling Techniques. J. Air Pollut. Health 2025, 10, 61–82. [Google Scholar] [CrossRef]
- Waqas, M.; Jan, S.N.; Ullah, B.; Khan, A.U.; Khan, B.N. Prediction of Particulate Matter PM2.5 Level in the Air of Islamabad, Pakistan by Using Machine Learning and Deep Learning Approaches. J. Air Pollut. Health 2025, 10, 37–60. [Google Scholar] [CrossRef]
- Noynoo, L.; Tekasakul, P.; Limna, T.; Choksuchat, C.; Jetwanna, K.W.-N.; Tsai, C.-J.; Le, T.-C.; Suwattiga, P.; Morris, J.; Dejchanchaiwong, R. Hybrid Machine Learning to Enhance PM2.5 Forecasting Performance by the WRF-Chem Model. Atmos. Pollut. Res. 2025, 16, 102558. [Google Scholar] [CrossRef]
- Sun, Y. Research on Financial Trend Prediction Technology Using LSTM. In Proceedings of the 2024 International Conference on Economic Data Analytics and Artificial Intelligence, Guangzhou China, 8–10 November 2024; pp. 58–63. [Google Scholar] [CrossRef]
- Peng, N.; Wen, M.; Xiang, J.; Peng, Y. Research on Financial Time Series Prediction Algorithm Based on Deep Learning. In Proceedings of the 2024 International Conference on Economic Data Analytics and Artificial Intelligence, Guangzhou China, 8–10 November 2024; pp. 76–81. [Google Scholar] [CrossRef]
- Jiang, W.; Tang, W.; Li, J.; Wei, X. Climate Risk and Renewable Energy Market Volatility: Machine Learning Approach. Res. Int. Bus. Financ. 2025, 76, 102871. [Google Scholar] [CrossRef]
- Lu, W.; Liu, Q.; Wang, J. Effect of Electricity Policy Uncertainty and Carbon Emission Prices on Electricity Demand in China Based on Mixed-Frequency Data Models. Util. Polic. 2024, 91, 101825. [Google Scholar] [CrossRef]
- Liu, X.; Yang, L.; Du, J.; Zhang, H.; Hu, J.; Chen, A.; Lv, W. Carbon and Air Pollutant Emissions Forecast of China’s Cement Industry from 2021 to 2035. Resour. Conserv. Recycl. 2024, 204, 107498. [Google Scholar] [CrossRef]
- Amin, S.B.; Ferdaus, S.S.; Porna, A.K. Causal Relationship among Energy Use, CO2 Emissions and Economic Growth in Bangladesh: An Empirical Study. World J. Soc. Sci. 2012, 2, 273–290. [Google Scholar]
- Bibi, F.; Jamil, M. Testing Environment Kuznets Curve (EKC) Hypothesis in Different Regions. Environ. Sci. Pollut. R. 2021, 28, 13581–13594. [Google Scholar] [CrossRef]
- Bölük, G.; Mert, M. Fossil & Renewable Energy Consumption, GHGs (Greenhouse Gases) and Economic Growth: Evidence from a Panel of EU (European Union) Countries. Energy 2014, 74, 439–446. [Google Scholar] [CrossRef]
- Shayanmehr, S.; Henneberry, S.R.; Sabouni, M.S.; Foroushani, N.S. Climate Change and Sustainability of Crop Yield in Dry Regions Food Insecurity. Sustainability 2020, 12, 9890. [Google Scholar] [CrossRef]
- Shayanmehr, S.; Rastegari Henneberry, S.; Sabouhi Sabouni, M.; Shahnoushi Foroushani, N. Drought, Climate Change, and Dryland Wheat Yield Response: An Econometric Approach. Int. J. Environ. Res. Public Health 2020, 17, 5264. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E. Renewable Energy Consumption and Economic Growth: Evidence from a Panel of OECD Countries. Energy Polic. 2010, 38, 656–660. [Google Scholar] [CrossRef]
- Jóźwik, B.; Sarıgül, S.S.; Topcu, B.A.; Çetin, M.; Doğan, M. Trade Openness, Economic Growth, Capital, and Financial Globalization: Unveiling Their Impact on Renewable Energy Consumption. Energies 2025, 18, 1244. [Google Scholar] [CrossRef]
- Lee, J.W. Long-Run Dynamics of Renewable Energy Consumption on Carbon Emissions and Economic Growth in the European Union. Int. J. Sustain. Dev. World Ecol. 2019, 26, 69–78. [Google Scholar] [CrossRef]
- Elhassan, T. Green Technology Innovation, Green Financing, and Economic Growth in G7 Countries: Implications for Environmental Sustainability. Economics 2025, 13, 69–91. [Google Scholar] [CrossRef]
- Zhao, X.; Zeng, B.; Zhao, X.; Zeng, S.; Jiang, S. Impact of Green Finance on Green Energy Efficiency: A Pathway to Sustainable Development in China. J. Clean. Prod. 2024, 450, 141943. [Google Scholar] [CrossRef]
- Dash, A.K.; Panda, S.P.; Sahu, P.K.; Jóźwik, B. Do Green Innovation and Governance Limit CO2 Emissions: Evidence from Twelve Polluting Countries with Panel Data Decision Tree Model. Discov. Sustain. 2024, 5, 198. [Google Scholar] [CrossRef]
- Sethi, V.K.; Vyas, S. An Innovative Approach for Carbon Capture & Sequestration on a Thermal Power Plant through Conversion to Multi-Purpose Fuels—A Feasibility Study in Indian Context. Energy Procedia 2017, 114, 1288–1296. [Google Scholar] [CrossRef]
- Singh, U.; Rao, A.B.; Chandel, M.K. Economic Implications of CO2 Capture from the Existing as Well as Proposed Coal-Fired Power Plants in India under Various Policy Scenarios. Energy Procedia 2017, 114, 7638–7650. [Google Scholar] [CrossRef]
- Gupta, A.; Paul, A. Carbon Capture and Sequestration Potential in India: A Comprehensive Review. Energy Procedia 2019, 160, 848–855. [Google Scholar] [CrossRef]
- Ahluwalia, M.S.; Patel, U. How India can reach net zero: A strategy for 2025–35. Oxf. Rev. Econ. Polic. 2024, 40, 350–365. [Google Scholar] [CrossRef]
- Onakpojeruo, C.; Seraj, M.; Ozdeser, H. The Impacts of Gross Domestic Product and Non-Renewable Energy on CO2 Emissions in India. SN Bus. Econ. 2024, 5, 3. [Google Scholar] [CrossRef]
- R, P.; Muthusamy, R.; Nallathambi, G. Carbon Neutrality Approach, Standards, Regulations, Policies & Circular Economy. In Proceedings of the 2023 IEEE International Transportation Electrification Conference (ITEC-India), Chennai, India, 12–15 December 2023; pp. 1–8. [Google Scholar] [CrossRef]
- Iychettira, K.K. Rethinking Institutions for India’s Transitioning Electricity Sector. In The Crisis of Climate Change: Weather Report; Taylor and Francis: New York, NY, USA, 2021; pp. 130–137. ISBN 978-100045605-9, 978-103205263-2. [Google Scholar]
- Lata, M.P.; Vinay; Anirudh, S. Sustainable Energy Policies of India to Address Air Pollution and Climate Change. In Energy: Crises, Challenges and Solutions; Wiley: Hoboken, NJ, USA, 2021; pp. 169–181. ISBN 978-111974150-3. [Google Scholar]
- Rahman, M.M.; Sultana, N. Impacts of Institutional Quality, Economic Growth, and Exports on Renewable Energy: Emerging Countries Perspective. Renew. Energy 2022, 189, 938–951. [Google Scholar] [CrossRef]
- Wu, R.; Liu, F.; Tong, D.; Zheng, Y.; Lei, Y.; Hong, C.; Li, M.; Liu, J.; Zheng, B.; Bo, Y.; et al. Air Quality and Health Benefits of China’s Emission Control Policies on Coal-Fired Power Plants during 2005–2020. Environ. Res. Lett. 2019, 14, 094016. [Google Scholar] [CrossRef]
- Chen, Q.; Rennings, K. Low Carbon Scenarios Vs. Clean Coal Scenarios in China: How to Close the Carbon Gap? Appl. Mech. Mater. 2014, 556–562, 841–848. [Google Scholar] [CrossRef]
- Andrews-Speed, P. The Palgrave Handbook of Managing Fossil Fuels and Energy Transitions; Wood, G., Baker, K., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 109–137. [Google Scholar] [CrossRef]
- Yang, R.; Wang, W. Potential of China’s National Policies on Reducing Carbon Emissions from Coal-Fired Power Plants in the Period of the 14th Five-Year Plan. Heliyon 2023, 9, e19868. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.; Gu, B.; Zhu, K.; Huang, C. Feasibility Analysis of Achieving Net-Zero Emissions in China’s Power Sector before 2050 Based on Ideal Available Pathways. Environ. Impact Assess. Rev. 2023, 98, 106948. [Google Scholar] [CrossRef]
- Luo, X.; Dong, L.; Dou, Y.; Liang, H.; Ren, J.; Fang, K. Regional Disparity Analysis of Chinese Freight Transport CO2 Emissions from 1990 to 2007: Driving Forces and Policy Challenges. J. Transp. Geogr. 2016, 56, 1–14. [Google Scholar] [CrossRef]
- Tong, D.; Zhang, Q.; Liu, F.; Geng, G.; Zheng, Y.; Xue, T.; Hong, C.; Wu, R.; Qin, Y.; Zhao, H.; et al. Current Emissions and Future Mitigation Pathways of Coal-Fired Power Plants in China from 2010 to 2030. Environ. Sci. Technol. 2018, 52, 12905–12914. [Google Scholar] [CrossRef]
- Afolabi, S.O.; Malachi, I.O.; Olawumi, A.O.; Oladapo, B.I. Data Process of Net-Zero Revolution for Transforming Earth and Beyond Sustainably. Sustainability 2025, 17, 5367. [Google Scholar] [CrossRef]
- Hu, W.; Xu, C.; Duan, Y.; Zhao, W. Discussion on the Impact of Artificial Intelligence to China’s Economy:—From the Perspective of Theoretical Mechanism, Industrial Structure and so on. In Proceedings of the 2022 2nd Asia Conference on Information Engineering (ACIE), Haikou, China, 15–17 January 2022; pp. 107–110. [Google Scholar] [CrossRef]
Study | Sample | Method | Key Finding |
---|---|---|---|
Radmehr et al. [35] | EU, 1995–2014 | P-SSE | EG ↔ CO2; REN → CO2 (–) |
Alam & Hossain [17] | CHN, 1990–2019 | ARDL/ARCH-LM/BG-LM | REN → CO2 (–) |
Rahman et al. [36] | CHN, 1985–2021 | Wavelet Coherence Analysis | EC from fossil fuels ↑ CO2; |
Agboola et al. [37] | SAU, 1971–2016 | MWT (T-Y) | EC → CO2; 1% ΔGDP ≈ 1% ΔCO2 |
Namahoro et al. [27] | 41 WIND, 1997–2018 | CS-DL/CS-ARDL/CCE-P | WIND ↑ EG; WIND → CO2 (–) |
Ozgur et al. [28] | IND, 1970–2016 | Fourier ARDL | NUC ↑ clean EG |
Rehman & Rehman [32] | CHN+4, 2001–2014 | GRA/TOPSIS | EC major driver of CO2 |
Eldowma et al. [38] | SDN, 1971–2019 | ARDL | CO2 → EG → Electricity ↑ |
Wen et al. [39] | SA, 1985–2018 | FMOLS | NRE → Pollution ↑ |
Rahman et al. [40,41] | NICs, 1979–2017 | CI/DOLS/FMOLS/PMG | EC & EXP ↑ ENV deg. |
Gershon et al. [31] | 17 AFR, 2000–2017 | Static Panel | EC → CO2 (–); EC → EG (+) |
Khan et al. [42] | PAK, 1965–2015 | ARDL | EC & EG → CO2 (+) |
Chen et al. [34] | 6 TE, 1970–2021 | EC → CO2 (+); EC → EG (+) | |
Pradhan et al. [43] | G7+SA, 1996–2021 | Sim-Reg/Panel ARDL | EC → EG; CO2 → EG |
Salari et al. [44] | USA, 1997–2016 | Static & Dyn panel | REN → CO2 (–); NRE → CO2 (+) |
Afjal [45] | 37 OECD, 1995–2020 | PVAR | GDP ↛ CO2 (neutral) |
Liu et al. [46] | 46 BRI countries, 2005–2018 | Driscoll–Kraay Est. | REN → CO2 (–); EKC supported |
Shah et al. [47] | 49 green bond countries, 2007–2019 | Simultaneous Equation Model | fossil-fuel-driven EG ↑ GHG emissions; |
Variable | Symbol | Unit | Expected Sign | Source |
---|---|---|---|---|
CO2 Emissions | CO2 | Metric tons per capita | - | WDI |
Coal Consumption | CC | Quadrillion BTUs | Positive | EIA |
Natural Gas Consumption | NG | Quadrillion BTUs | Positive | EIA |
Petroleum Consumption | PC | Quadrillion BTUs | Positive | EIA |
Renewable Energy Consumption | RC | Quadrillion BTUs | Negative | EIA |
Nuclear Energy Consumption | NEC | Quadrillion BTUs | Negative | EIA |
Real GDP | RGDP | Constant 2015 USD | Positive/Negative | WDI |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | |
---|---|---|---|---|---|---|---|
Lag 1 | |||||||
MSE_train | 0.0240 | 0.011 | 0.006 | 0.005 | 0.003 | 0.003 | 0.002 |
MAE_Train | 0.1420 | 0.095 | 0.062 | 0.061 | 0.044 | 0.044 | 0.039 |
MedAE_train | 0.1358 | 0.083 | 0.053 | 0.047 | 0.034 | 0.040 | 0.031 |
MSE_test | 0.0590 | 0.013 | 0.012 | 0.009 | 0.011 | 0.013 | 0.014 |
MAE_Test | 0.2330 | 0.105 | 0.016 | 0.090 | 0.084 | 0.084 | 0.082 |
MedAE_test | 0.2460 | 0.099 | 0.102 | 0.092 | 0.057 | 0.055 | 0.051 |
Lag 2 | |||||||
MSE_train | 0.010 | 0.005 | 0.003 | 0.002 | 0.001 | 0.001 | 0.001 |
MAE_Train | 0.100 | 0.061 | 0.041 | 0.037 | 0.025 | 0.028 | 0.025 |
MedAE_train | 0.098 | 0.061 | 0.030 | 0.032 | 0.016 | 0.025 | 0.021 |
MSE_test | 0.008 | 0.009 | 0.008 | 0.007 | 0.016 | 0.017 | 0.011 |
MAE_Test | 0.098 | 0.069 | 0.068 | 0.069 | 0.087 | 0.089 | 0.077 |
MedAE_test | 0.094 | 0.049 | 0.048 | 0.052 | 0.051 | 0.050 | 0.043 |
Lag 3 | |||||||
MSE_train | 0.008 | 0.003 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
MAE_Train | 0.080 | 0.050 | 0.032 | 0.026 | 0.018 | 0.024 | 0.019 |
MedAE_train | 0.084 | 0.044 | 0.025 | 0.024 | 0.013 | 0.023 | 0.016 |
MSE_test | 0.007 | 0.013 | 0.008 | 0.006 | 0.011 | 0.015 | 0.008 |
MAE_Test | 0.057 | 0.090 | 0.063 | 0.065 | 0.077 | 0.090 | 0.065 |
MedAE_test | 0.029 | 0.064 | 0.048 | 0.043 | 0.045 | 0.044 | 0.041 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | |
---|---|---|---|---|---|---|---|
Lag 1 | |||||||
MSE_train | 0.031 | 0.014 | 0.010 | 0.010 | 0.009 | 0.009 | 0.008 |
MAE_Train | 0.160 | 0.100 | 0.092 | 0.086 | 0.085 | 0.083 | 0.080 |
MedAE_train | 0.180 | 0.100 | 0.100 | 0.097 | 0.096 | 0.092 | 0.091 |
MSE_test | 0.037 | 0.010 | 0.004 | 0.003 | 0.023 | 0.056 | 0.045 |
MAE_Test | 0.193 | 0.096 | 0.049 | 0.049 | 0.140 | 0.220 | 0.200 |
MedAE_test | 0.196 | 0.100 | 0.045 | 0.044 | 0.130 | 0.200 | 0.190 |
Lag 2 | |||||||
MSE_train | 0.0152 | 0.0077 | 0.0075 | 0.0058 | 0.0061 | 0.0061 | 0.0047 |
MAE_Train | 0.106 | 0.076 | 0.079 | 0.068 | 0.071 | 0.071 | 0.062 |
MedAE_train | 0.11 | 0.075 | 0.089 | 0.071 | 0.082 | 0.077 | 0.068 |
MSE_test | 0.004 | 0.002 | 0.009 | 0.007 | 0.027 | 0.048 | 0.03 |
MAE_Test | 0.0603 | 0.03862 | 0.0893 | 0.0828 | 0.162 | 0.213 | 0.171 |
MedAE_test | 0.0625 | 0.0492 | 0.0864 | 0.0804 | 0.15 | 0.195 | 0.1619 |
Lag 3 | |||||||
MSE_train | 0.011 | 0.006 | 0.006 | 0.004 | 0.005 | 0.005 | 0.004 |
MAE_Train | 0.920 | 0.070 | 0.074 | 0.057 | 0.063 | 0.066 | 0.053 |
MedAE_train | 0.080 | 0.081 | 0.087 | 0.071 | 0.071 | 0.074 | 0.062 |
MSE_test | 0.001 | 0.002 | 0.011 | 0.067 | 0.023 | 0.044 | 0.018 |
MAE_Test | 0.031 | 0.034 | 0.100 | 0.078 | 0.150 | 0.200 | 0.130 |
MedAE_test | 0.027 | 0.020 | 0.100 | 0.077 | 0.150 | 0.190 | 0.130 |
Data Normalization | MinMaxScaler |
---|---|
Activation function | Tanh |
Optimizers | Adam |
Loss Function | MSE |
Input dimension | (1, timesteps∗features) |
Output dimension | 1 (forecast) |
Hidden layers | (32, 16, 8) |
Dropouts | 0.1 |
Learning rate | 0.001 |
Batch size | 32 |
Training epochs | 1000 |
Activation function | Tanh |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jóźwik, B.; Panda, S.P.; Dash, A.K.; Sahu, P.K.; Szwed, R. Revisiting the Nexus Between Energy Consumption, Economic Growth, and CO2 Emissions in India and China: Insights from the Long Short-Term Memory (LSTM) Model. Energies 2025, 18, 4167. https://doi.org/10.3390/en18154167
Jóźwik B, Panda SP, Dash AK, Sahu PK, Szwed R. Revisiting the Nexus Between Energy Consumption, Economic Growth, and CO2 Emissions in India and China: Insights from the Long Short-Term Memory (LSTM) Model. Energies. 2025; 18(15):4167. https://doi.org/10.3390/en18154167
Chicago/Turabian StyleJóźwik, Bartosz, Siba Prasada Panda, Aruna Kumar Dash, Pritish Kumar Sahu, and Robert Szwed. 2025. "Revisiting the Nexus Between Energy Consumption, Economic Growth, and CO2 Emissions in India and China: Insights from the Long Short-Term Memory (LSTM) Model" Energies 18, no. 15: 4167. https://doi.org/10.3390/en18154167
APA StyleJóźwik, B., Panda, S. P., Dash, A. K., Sahu, P. K., & Szwed, R. (2025). Revisiting the Nexus Between Energy Consumption, Economic Growth, and CO2 Emissions in India and China: Insights from the Long Short-Term Memory (LSTM) Model. Energies, 18(15), 4167. https://doi.org/10.3390/en18154167