Phase Equilibria of Si-C-Cu System at 700 °C and 810 °C and Implications for Composite Processing
Abstract
1. Introduction
2. Experimental Procedure
3. Results and Discussions
3.1. Isothermal Sections of Si-C-Cu at 700 °C
3.2. Isothermal Sections of Si-C-Cu at 810 °C
3.3. Comparison of 700 °C and 810 °C Isothermal Sections
3.4. Implications for SiC-Fiber-Reinforced Cu Composite Processing
4. Conclusions
- This work presents the first experimental determination of the isothermal sections of the Si-C-Cu system at 700 °C and 810 °C using powder metallurgy, which serves as a fundamental reference for further studies on this ternary system.
- In the Si-C-Cu system, the solubility of each single phase in the isothermal section at 810 °C is much larger than that of each phase in the isothermal cross-section at 700 °C.
- Different phases appear in the 810 °C and 700 °C isothermal sections. Bcc and liquid phases appear in the 810 °C isothermal section, while the ε-Cu15Si4 phase appears in the 700 °C isothermal section.
- As the temperature increases, Cu, C, and Si are more likely to react with each other, and the reaction area also increases.
- The fundamental phase equilibria data, particularly the enhanced solubility and reactivity at higher temperatures, provide critical guidance for processing SiC-fiber-reinforced Cu composites. Vacuum hot pressing at 1050 °C and 60 MPa for 90 min was identified as the optimal condition, yielding the highest bending strength (998.61 MPa). This performance is attributed to improved matrix infiltration, reduced porosity, and enhanced fiber–matrix interfacial bonding, enabled by the high-temperature diffusion and reaction kinetics predicted by the phase diagram.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moeini, A.; Hassanzadeh Chinijani, T.; Malek Khachatourian, A.; Marcus, V.L.F.; Baino, F.; Montazerian, M. A critical review of bioactive glasses and glass–ceramics in cancer therapy. Int. J. Appl. Glass Sci. 2023, 14, 69–87. [Google Scholar] [CrossRef]
- Xie, W.; Guo, Z.; Zhao, L.; Wei, Y. The copper age in cancer treatment: From copper metabolism to cuproptosis. Prog. Mater. Sci. 2023, 138, 101145. [Google Scholar] [CrossRef]
- Jayathilaka, W.A.D.M.; Chinnappan, A.; Ramakrishna, S. A review of properties influencing the conductivity of CNT/Cu composites and their applications in wearable/flexible electronics. J. Mater. Chem. C 2017, 5, 9209–9237. [Google Scholar] [CrossRef]
- Akbarpour, M.R.; Mirabad, H.M.; Alipour, S.; Kim, H.S. Enhanced tensile properties and electrical conductivity of Cu-CNT nanocomposites processed via the combination of flake powder metallurgy and high pressure torsion methods. Mater. Sci. Eng. 2020, 773, 138888. [Google Scholar] [CrossRef]
- Sundberg, G.; Paul, P.; Sung, C.; Vasilos, T. Identification and characterization of diffusion barriers for Cu/SiC systems. J. Mater. Sci. 2005, 40, 3383–3393. [Google Scholar] [CrossRef]
- Shu, K.-M.; Tu, G.C. The microstructure and the thermal expansion characteristics of Cu/SiCp composites. Mater. Sci. Eng. A 2003, 349, 236–247. [Google Scholar] [CrossRef]
- Pelleg, J.; Ruhr, M.; Ganor, M. Control of the reaction at the fibre-matrix interface in a Cu/SiC metal matrix composite by modifying the matrix with 2.5 wt.% Fe. Mater. Sci. Eng. A 1996, 212, 139–148. [Google Scholar] [CrossRef]
- Yih, P.; Chung, D.D.L. Silicon carbide whisker copper-matrix composites fabricated by hot pressing copper coated whiskers. J. Mater. Sci. 1996, 31, 399–406. [Google Scholar] [CrossRef]
- Krauß, G.; Kübler, J.; Trentini, E. Preparation and properties of pressureless infiltrated SiC and AlN particulate reinforced metal ceramic composites based on bronze and iron alloys. Mater. Sci. Eng. A 2002, 337, 315–322. [Google Scholar] [CrossRef]
- Fabritsiev, S.A.; Zinkle, S.J.; Singh, B.N. Evaluation of copper alloys for fusion reactor divertor and first wall components. J. Nucl. Mater. 1996, 233–237, 127–137. [Google Scholar] [CrossRef]
- Brendel, A.; Popescu, C.; Leyens, C.; Woltersdorf, J.; Pippel, E.; Bolt, H. SiC-fibre reinforced copper as heat sink material for fusion applications. J. Nucl. Mater. 2004, 329–333, 804–808. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; Huang, X.; Liu, S.; Wang, P.; Du, Y. Effects of Cu content and Sintering temperature on microstructure and mechanical properties of SiCp/Al-Cu-Mg composites through experimental study, CALPHAD-type simulation and machine learning. J. Mater. Res. Technol. 2024, 33, 2216–2225. [Google Scholar] [CrossRef]
- Liu, K.; Huang, X.; Yang, W.; Wang, P. Study of the thermal stability of the Al4SiC4 phase via experiments and thermodynamic assessment. J. Alloys Compd. 2024, 976, 172967. [Google Scholar] [CrossRef]
- López, G.A.; Mittemeijer, E.J. The solubility of C in solid Cu. Scr. Mater. 2004, 51, 1–5. [Google Scholar] [CrossRef]
- Oden, L.L.; Gokcen, N.A. Cu-C and Al-Cu-C phase diagrams and thermodynamic properties of c in the alloys from 1550 °C to 2300 °C. Metall. Trans. B 1992, 23, 453–458. [Google Scholar] [CrossRef]
- Predel, B. C-Cu (Carbon-Copper). In B-Ba–C-Zr; Springer Nature: Berlin/Heidelberg, Germany, 1992; p. 1. [Google Scholar] [CrossRef]
- Franke, P.; Neuschütz, D. (Eds.) C–Cu. In Binary Systems. Part 2: Elements and Binary Systems from B–C to Cr–Zr: Phase Diagrams, Phase Transition Data, Integral and Partial Quantities of Alloys; Springer Nature: Berlin/Heidelberg, Germany, 2004; pp. 1–2. [Google Scholar]
- Chen, L.; Zhang, Z.; Huang, Y.; Cui, J.; Deng, Z.; Zou, H.; Chang, K. Thermodynamic description of the Fe–Cu–C system. Calphad 2019, 64, 225–235. [Google Scholar] [CrossRef]
- Gröbner, J.; Lukas, H.L.; Aldinger, F. Thermodynamic calculation of the ternary system Al-Si-C. Calphad 1996, 20, 247–254. [Google Scholar] [CrossRef]
- Olesinski, R.W.; Abbaschian, G.J. The Cu−Si (Copper-Silicon) system. Bull. Alloy Phase Diagr. 1986, 7, 170–178. [Google Scholar] [CrossRef]
- Yan, X.; Chang, Y.A. A thermodynamic analysis of the Cu–Si system. J. Alloys Compd. 2000, 308, 221–229. [Google Scholar] [CrossRef]
- Hallstedt, B.; Gröbner, J.; Hampl, M.; Schmid-Fetzer, R. Calorimetric measurements and assessment of the binary Cu–Si and ternary Al–Cu–Si phase diagrams. Calphad 2016, 53, 25–38. [Google Scholar] [CrossRef]
- Soldi, L.; Laplace, A.; Roskosz, M.; Gossé, S. Phase diagram and thermodynamic model for the Cu-Si and the Cu-Fe-Si systems. J. Alloys Compd. 2019, 803, 61–70. [Google Scholar] [CrossRef]
- Tang, R.Z.; Tian, R.Z. Binary Alloy Phase Diagrams and Crystal Structure of Intermediate Phase; Central South University Press: Changsha, China, 2009. [Google Scholar]
Phase Name | Crystallographic Information | |||||
---|---|---|---|---|---|---|
Prototype | Pearson Symbol | Space Group | Lattice Parameters (nm) | Database | Ref. | |
(Cu), fcc, α | Cu | cF4 | Fm-3m | a = 0.36149; | FCC_A1 | [22,23] |
hcp, κ | Mg | hP2 | P63/mmc | a = 0.25622; c = 0.41823; | HCP_A3 | [22,23] |
bcc, β | W | cI2 | Im-3m | a = 0.2854; | BCC_A2 | [22,23] |
δ-Cu33Si7 | - | hP * | P63/mmc | a = 0.4036; c = 0.4943; | CU33SI7_DELTA | [22,23] |
γ-Cu33Si7, Cu56Si11 | β-Mn | cP20 | P4132 | a = 0.6198; | CU33SI7_GAMA | [22,23] |
ε-Cu15Si4 | Cu15Si4 | cI76 | I-43d | a = 0.9718; | CU15SI4_ EPSILON | [22,23] |
η-Cu3Si (ht), Cu19Si6 | - | hR * | R-3m | a = 0.247; | CU3SI_HT | [22,23] |
η′-Cu3Si (it) | η′-Cu3Si | hR9 | R-3 | a = 0.472; | CU3SI_MT | [22,23] |
η′′-Cu3Si (lt) | - | oC * | ? | a = 7.676; b = 0.7; c = 2.194; | CU3SI_LT | [22,23] |
(Si) | C | cF8 | Fd-3m | a = 0.54306; | DIAMOND_A4 | [22,23] |
SiC | ZnSc | cF8 | F-43m | a = 0.43596; | SIC | [24] |
(C) | C | hP4 | P63/mmc | a = 0.2461; c = 0.6704; | GRAPHITE | [24] |
Sample No. | Nominal Composition (at.%) | Heat Treatment (°C) | Equilibrium Phase Composition (at.%) | Equilibrium Phase Constituent | ||||
---|---|---|---|---|---|---|---|---|
Si | Cu | C | Si | Cu | C | |||
1 | 25 | 15 | 65 | 1400-2 h/700-30 days | 12.98 | 82.46 | 4.56 | γ-Cu33Si7 |
53.72 | 0.68 | 45.59 | SiC | |||||
4.35 | 4.18 | 91.47 | (C) | |||||
2 | 5 | 10 | 85 | 1400-2 h/700-30 days | 52.47 | 0.66 | 46.87 | SiC |
12.14 | 82.27 | 5.59 | γ-Cu33Si7 | |||||
0.20 | 0.248 | 99.55 | (C) | |||||
3 | 9.5 | 85.5 | 5 | 1310-3 h/700-30 days | 8.753 | 90.03 | 1.214 | (Cu) |
4 | 10.5 | 84.6 | 5 | 1020-3 h/700-30 days | 9.85 | 88.88 | 1.26 | (Cu) |
5 | 11.4 | 83.6 | 5 | 1020-3 h/700-30 days | 11.05 | 87.81 | 1.13 | (Cu) |
6 | 12.4 | 82.7 | 5 | 1050-3 h/700-30 days | 11.73 | 86.90 | 1.37 | hcp |
1.26 | 0.65 | 98.09 | (C) | |||||
7 | 14.3 | 80.8 | 5 | 900-3 h/700-30 days | 13.38 | 85.56 | 1.06 | hcp |
8 | 26.6 | 68.4 | 5 | 800-3 h/700-30 days | 95.46 | 0.852 | 3.688 | Si |
20.83 | 76.44 | 2.73 | η-Cu3Si (ht) | |||||
9 | 5.0 | 75.0 | 20.0 | 900-3 h/810-30 days | 6.0 | 88.9 | 5.1 | (Cu) |
0.1 | 0.4 | 99.5 | (C) | |||||
10 | 11.1 | 68.9 | 20.0 | 810-3 h/810-30 days | 0.8 | 0.8 | 98.4 | (C) |
11.7 | 79.6 | 8.7 | hcp | |||||
11 | 13.3 | 66.7 | 20.0 | 810-3 h/810-30 days | 0.1 | 0.4 | 99.5 | (C) |
15.9 | 84.1 | 0.0 | bcc | |||||
12 | 21.9 | 58.1 | 20.0 | 810-3 h/810-30 days | 1.1 | 0.4 | 98.6 | (C) |
22.5 | 65.2 | 12.3 | η-Cu3Si (ht) | |||||
13 | 50.0 | 30.0 | 20.0 | 1400-3 h/810-30 days | 50.0 | 0.4 | 49.6 | SiC |
99.4 | 0.6 | 0.0 | (Si) | |||||
26.1 | 68.9 | 5.0 | η-Cu3Si (ht) | |||||
14 | 65.0 | 10.0 | 25.0 | 1400-3 h/810-30 days | 48.4 | 0.4 | 51.2 | SiC |
22.5 | 65.2 | 12.3 | η-Cu3Si (ht) | |||||
99.6 | 0.4 | 0.0 | (Si) | |||||
15 | 1.0 | 19.0 | 80.0 | 1400-3 h/810-30 days | 4.7 | 95.3 | 0.0 | (Cu) |
0.0 | 0.2 | 99.7 | (C) |
Sample No. | Temperature/°C | Pressure/MPa | Holding Time/min | Sample Thickness/mm | Sample Width/mm | Load/N | Bending Strength/MPa |
---|---|---|---|---|---|---|---|
Cu-1 | 950 | 40 | 60 | 1.48 | 10.10 | 91.94 | 187 |
Cu-2 | 1000 | 40 | 90 | 1.18 | 10.12 | 125.3 | 400.15 |
Cu-3 | 1050 | 40 | 120 | 1.16 | 10.11 | 205.83 | 680.87 |
Cu-4 | 950 | 50 | 90 | 1.47 | 10.11 | 118.38 | 243.84 |
Cu-5 | 1000 | 50 | 120 | 1.10 | 10.13 | 194.23 | 713.06 |
Cu-6 | 1050 | 50 | 60 | 0.98 | 10.11 | 183.73 | 758.83 |
Cu-7 | 950 | 60 | 120 | 1.09 | 10.18 | 188.90 | 702.83 |
Cu-8 | 1000 | 60 | 60 | 1.01 | 10.19 | 174.85 | 756.92 |
Cu-9 | 1050 | 60 | 90 | 0.87 | 10.10 | 155.80 | 917.08 |
Cu-9 | 1050 | 60 | 90 | 0.89 | 10.21 | 179.47 | 998.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Wu, Z.; Luo, D.; Huang, X.; Yang, W.; Wang, P. Phase Equilibria of Si-C-Cu System at 700 °C and 810 °C and Implications for Composite Processing. Materials 2025, 18, 3689. https://doi.org/10.3390/ma18153689
Liu K, Wu Z, Luo D, Huang X, Yang W, Wang P. Phase Equilibria of Si-C-Cu System at 700 °C and 810 °C and Implications for Composite Processing. Materials. 2025; 18(15):3689. https://doi.org/10.3390/ma18153689
Chicago/Turabian StyleLiu, Kun, Zhenxiang Wu, Dong Luo, Xiaozhong Huang, Wei Yang, and Peisheng Wang. 2025. "Phase Equilibria of Si-C-Cu System at 700 °C and 810 °C and Implications for Composite Processing" Materials 18, no. 15: 3689. https://doi.org/10.3390/ma18153689
APA StyleLiu, K., Wu, Z., Luo, D., Huang, X., Yang, W., & Wang, P. (2025). Phase Equilibria of Si-C-Cu System at 700 °C and 810 °C and Implications for Composite Processing. Materials, 18(15), 3689. https://doi.org/10.3390/ma18153689