Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = Biomeme system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 1471 KB  
Review
Next-Gen Healthcare Devices: Evolution of MEMS and BioMEMS in the Era of the Internet of Bodies for Personalized Medicine
by Maria-Roxana Marinescu, Octavian Narcis Ionescu, Cristina Ionela Pachiu, Miron Adrian Dinescu, Raluca Muller and Mirela Petruța Șuchea
Micromachines 2025, 16(10), 1182; https://doi.org/10.3390/mi16101182 - 19 Oct 2025
Viewed by 839
Abstract
The rapid evolution of healthcare technology is being driven by advancements in Micro-Electro-Mechanical Systems (MEMS), BioMEMS (Biological MEMS), and the expanding concept of the Internet of Bodies (IoB). This review explores the convergence of these three domains and their transformative impact on personalized [...] Read more.
The rapid evolution of healthcare technology is being driven by advancements in Micro-Electro-Mechanical Systems (MEMS), BioMEMS (Biological MEMS), and the expanding concept of the Internet of Bodies (IoB). This review explores the convergence of these three domains and their transformative impact on personalized medicine (PM), with a focus on smart, connected biomedical devices. Starting from the historical development of MEMS for medical sensing and diagnostics, the review traces the emergence of BioMEMS as biocompatible, minimally invasive solutions for continuous monitoring and real-time intervention. The integration of such devices within the IoB ecosystem enables data-driven, remote, and predictive healthcare, offering tailored diagnostics and treatment for chronic and acute conditions alike. The paper classifies IoB-associated technologies into non-invasive, invasive, and incorporated devices, reviewing wearable systems such as smart bracelets, e-tattoos, and smart footwear, as well as internal devices including implantable and ingestible. Alongside these opportunities, significant challenges persist, particularly in device biocompatibility, data interoperability, cybersecurity, and ethical regulation. By synthesizing recent advances and critical perspectives, this review aims to provide a comprehensive understanding of the current landscape, clinical potential, and future directions of MEMS, BioMEMS, and IoB-enabled personalized healthcare. Full article
Show Figures

Figure 1

42 pages, 4490 KB  
Review
Continuous Monitoring with AI-Enhanced BioMEMS Sensors: A Focus on Sustainable Energy Harvesting and Predictive Analytics
by Mingchen Cai, Hao Sun, Tianyue Yang, Hongxin Hu, Xubing Li and Yuan Jia
Micromachines 2025, 16(8), 902; https://doi.org/10.3390/mi16080902 - 31 Jul 2025
Cited by 1 | Viewed by 1431
Abstract
Continuous monitoring of environmental and physiological parameters is essential for early diagnostics, real-time decision making, and intelligent system adaptation. Recent advancements in bio-microelectromechanical systems (BioMEMS) sensors have significantly enhanced our ability to track key metrics in real time. However, continuous monitoring demands sustainable [...] Read more.
Continuous monitoring of environmental and physiological parameters is essential for early diagnostics, real-time decision making, and intelligent system adaptation. Recent advancements in bio-microelectromechanical systems (BioMEMS) sensors have significantly enhanced our ability to track key metrics in real time. However, continuous monitoring demands sustainable energy supply solutions, especially for on-site energy replenishment in areas with limited resources. Artificial intelligence (AI), particularly large language models, offers new avenues for interpreting the vast amounts of data generated by these sensors. Despite this potential, fully integrated systems that combine self-powered BioMEMS sensing with AI-based analytics remain in the early stages of development. This review first examines the evolution of BioMEMS sensors, focusing on advances in sensing materials, micro/nano-scale architectures, and fabrication techniques that enable high sensitivity, flexibility, and biocompatibility for continuous monitoring applications. We then examine recent advances in energy harvesting technologies, such as piezoelectric nanogenerators, triboelectric nanogenerators and moisture electricity generators, which enable self-powered BioMEMS sensors to operate continuously and reducereliance on traditional batteries. Finally, we discuss the role of AI in BioMEMS sensing, particularly in predictive analytics, to analyze continuous monitoring data, identify patterns, trends, and anomalies, and transform this data into actionable insights. This comprehensive analysis aims to provide a roadmap for future continuous BioMEMS sensing, revealing the potential unlocked by combining materials science, energy harvesting, and artificial intelligence. Full article
Show Figures

Figure 1

79 pages, 3684 KB  
Review
Advancements in Wearable and Implantable BioMEMS Devices: Transforming Healthcare Through Technology
by Vishnuram Abhinav, Prithvi Basu, Shikha Supriya Verma, Jyoti Verma, Atanu Das, Savita Kumari, Prateek Ranjan Yadav and Vibhor Kumar
Micromachines 2025, 16(5), 522; https://doi.org/10.3390/mi16050522 - 28 Apr 2025
Cited by 14 | Viewed by 11284
Abstract
Wearable and implantable BioMEMSs (biomedical microelectromechanical systems) have transformed modern healthcare by enabling continuous, personalized, and minimally invasive monitoring, diagnostics, and therapy. Wearable BioMEMSs have advanced rapidly, encompassing a diverse range of biosensors, bioelectronic systems, drug delivery platforms, and motion tracking technologies. These [...] Read more.
Wearable and implantable BioMEMSs (biomedical microelectromechanical systems) have transformed modern healthcare by enabling continuous, personalized, and minimally invasive monitoring, diagnostics, and therapy. Wearable BioMEMSs have advanced rapidly, encompassing a diverse range of biosensors, bioelectronic systems, drug delivery platforms, and motion tracking technologies. These devices enable non-invasive, real-time monitoring of biochemical, electrophysiological, and biomechanical signals, offering personalized and proactive healthcare solutions. In parallel, implantable BioMEMS have significantly enhanced long-term diagnostics, targeted drug delivery, and neurostimulation. From continuous glucose and intraocular pressure monitoring to programmable drug delivery and bioelectric implants for neuromodulation, these devices are improving precision treatment by continuous monitoring and localized therapy. This review explores the materials and technologies driving advancements in wearable and implantable BioMEMSs, focusing on their impact on chronic disease management, cardiology, respiratory care, and glaucoma treatment. We also highlight their integration with artificial intelligence (AI) and the Internet of Things (IoT), paving the way for smarter, data-driven healthcare solutions. Despite their potential, BioMEMSs face challenges such as regulatory complexities, global standardization, and societal determinants. Looking ahead, we explore emerging directions like multifunctional systems, biodegradable power sources, and next-generation point-of-care diagnostics. Collectively, these advancements position BioMEMS as pivotal enablers of future patient-centric healthcare systems. Full article
Show Figures

Figure 1

18 pages, 7507 KB  
Article
Fabrication of an Integrated, Flexible, Wireless Pressure Sensor Array for the Monitoring of Ventricular Pressure
by Natiely Hernández-Sebastián, Daniela Diaz-Alonso, Bernardino Barrientos-García, Francisco Javier Renero-Carrillo and Wilfrido Calleja-Arriaga
Micromachines 2024, 15(12), 1435; https://doi.org/10.3390/mi15121435 - 28 Nov 2024
Cited by 1 | Viewed by 2225
Abstract
This work presents the design, fabrication, and rigorous validation of a flexible, wireless, capacitive pressure sensor for the full-range continuous monitoring of ventricular pressure. The proposed system consists of an implantable set and an external readout device; both modules were designed to form [...] Read more.
This work presents the design, fabrication, and rigorous validation of a flexible, wireless, capacitive pressure sensor for the full-range continuous monitoring of ventricular pressure. The proposed system consists of an implantable set and an external readout device; both modules were designed to form an RCL resonant circuit for passive, wireless pressure sensing and signal retrieving. Using surface micromachining and flexible electronics techniques, a two-variable capacitor array and a dual-layer planar coil were integrated into a flexible ergonomic substrate, avoiding hybrid-like connections in the implantable set. The proposed arrangement (capacitor array and dual-layer coil) allows us to optimize the operation pressure range and sensing distance. The use of polyimide as both the flexible substrate and the passivation material is a key feature, ensuring a biocompatible, implantable set that is mechanically flexible and can be folded to a compact size to achieve minimally invasive implantation. An external readout device has also been developed using a discrete printed circuit board (PCB) approach to support pressure measurements. The pressure responsivity of the sensor was validated to the laboratory level using a controlled pressure chamber. The results obtained show that the capacitance value of the sensor changed from 5.68 pF to 33.26 pF as the pressure varied from 0 to 300 mmHg. Correspondingly, the resonance frequency of the implantable set shifted from 12.75 MHz to 5.27 MHz. The sensitivity of the capacitive sensor was approximately 0.58 pF/mmHg and the typical response time was 220 ms. The wireless system performance was evaluated in both air and synthetic biological tissue using a Maxwell–Wien bridge circuit. The results showed a sensing distance longer than 3.5 cm, even under moderate misalignment conditions (up to 1.5 cm). The output voltage was successfully measured, ranging from 502.54 mV to 538.29 mV, throughout the full pressure range, with a measurement error of ±2.2 mV. Full article
(This article belongs to the Special Issue Flexible Intelligent Sensors: Design, Fabrication and Applications)
Show Figures

Figure 1

21 pages, 4249 KB  
Article
Design and Development of a Flexible Manufacturing Cell Controller Using an Open-Source Communication Protocol for Interoperability
by Evangelos Tzimas, George Papazetis, Panorios Benardos and George-Christopher Vosniakos
Machines 2024, 12(8), 519; https://doi.org/10.3390/machines12080519 - 30 Jul 2024
Cited by 2 | Viewed by 3695
Abstract
Flexible manufacturing cells provide significant advantages in low-volume mass-customization production but also induce added complexity and technical challenges in terms of integration, control, and extensibility. The variety of closed-source industrial protocols, the heterogeneous equipment, and the product’s manufacturing specifications are main points of [...] Read more.
Flexible manufacturing cells provide significant advantages in low-volume mass-customization production but also induce added complexity and technical challenges in terms of integration, control, and extensibility. The variety of closed-source industrial protocols, the heterogeneous equipment, and the product’s manufacturing specifications are main points of consideration in the development of such a system. This study aims to describe the approach, from concept to implementation, for the development of the controller for a flexible manufacturing cell consisting of heterogeneous equipment in terms of functions and communication interfaces. Emphasis is put on the considerations and challenges for effective integration, extensibility, and interoperability. Scheduling and monitoring performed by the developed controller are demonstrated for a manufacturing cell producing microfluidic devices (bioMEMS) that consists of six workstations and a robot-based handling system. Communication between the system controller and the workstations was based on open-source technologies instead of proprietary software and protocols, to support interoperability and, to a considerable extent, code reusability. Full article
(This article belongs to the Special Issue Recent Developments in Machine Design, Automation and Robotics)
Show Figures

Figure 1

73 pages, 31103 KB  
Review
Bioinspired and Multifunctional Tribological Materials for Sliding, Erosive, Machining, and Energy-Absorbing Conditions: A Review
by Rahul Kumar, Mansoureh Rezapourian, Ramin Rahmani, Himanshu S. Maurya, Nikhil Kamboj and Irina Hussainova
Biomimetics 2024, 9(4), 209; https://doi.org/10.3390/biomimetics9040209 - 30 Mar 2024
Cited by 38 | Viewed by 11700
Abstract
Friction, wear, and the consequent energy dissipation pose significant challenges in systems with moving components, spanning various domains, including nanoelectromechanical systems (NEMS/MEMS) and bio-MEMS (microrobots), hip prostheses (biomaterials), offshore wind and hydro turbines, space vehicles, solar mirrors for photovoltaics, triboelectric generators, etc. Nature-inspired [...] Read more.
Friction, wear, and the consequent energy dissipation pose significant challenges in systems with moving components, spanning various domains, including nanoelectromechanical systems (NEMS/MEMS) and bio-MEMS (microrobots), hip prostheses (biomaterials), offshore wind and hydro turbines, space vehicles, solar mirrors for photovoltaics, triboelectric generators, etc. Nature-inspired bionic surfaces offer valuable examples of effective texturing strategies, encompassing various geometric and topological approaches tailored to mitigate frictional effects and related functionalities in various scenarios. By employing biomimetic surface modifications, for example, roughness tailoring, multifunctionality of the system can be generated to efficiently reduce friction and wear, enhance load-bearing capacity, improve self-adaptiveness in different environments, improve chemical interactions, facilitate biological interactions, etc. However, the full potential of bioinspired texturing remains untapped due to the limited mechanistic understanding of functional aspects in tribological/biotribological settings. The current review extends to surface engineering and provides a comprehensive and critical assessment of bioinspired texturing that exhibits sustainable synergy between tribology and biology. The successful evolving examples from nature for surface/tribological solutions that can efficiently solve complex tribological problems in both dry and lubricated contact situations are comprehensively discussed. The review encompasses four major wear conditions: sliding, solid-particle erosion, machining or cutting, and impact (energy absorbing). Furthermore, it explores how topographies and their design parameters can provide tailored responses (multifunctionality) under specified tribological conditions. Additionally, an interdisciplinary perspective on the future potential of bioinspired materials and structures with enhanced wear resistance is presented. Full article
(This article belongs to the Special Issue Adhesion and Friction in Biological and Bioinspired Systems)
Show Figures

Graphical abstract

17 pages, 425 KB  
Article
Strengthening Privacy and Data Security in Biomedical Microelectromechanical Systems by IoT Communication Security and Protection in Smart Healthcare
by Francisco J. Jaime, Antonio Muñoz, Francisco Rodríguez-Gómez and Antonio Jerez-Calero
Sensors 2023, 23(21), 8944; https://doi.org/10.3390/s23218944 - 3 Nov 2023
Cited by 94 | Viewed by 7988
Abstract
Biomedical Microelectromechanical Systems (BioMEMS) serve as a crucial catalyst in enhancing IoT communication security and safeguarding smart healthcare systems. Situated at the nexus of advanced technology and healthcare, BioMEMS are instrumental in pioneering personalized diagnostics, monitoring, and therapeutic applications. Nonetheless, this integration brings [...] Read more.
Biomedical Microelectromechanical Systems (BioMEMS) serve as a crucial catalyst in enhancing IoT communication security and safeguarding smart healthcare systems. Situated at the nexus of advanced technology and healthcare, BioMEMS are instrumental in pioneering personalized diagnostics, monitoring, and therapeutic applications. Nonetheless, this integration brings forth a complex array of security and privacy challenges intrinsic to IoT communications within smart healthcare ecosystems, demanding comprehensive scrutiny. In this manuscript, we embark on an extensive analysis of the intricate security terrain associated with IoT communications in the realm of BioMEMS, addressing a spectrum of vulnerabilities that spans cyber threats, data manipulation, and interception of communications. The integration of real-world case studies serves to illuminate the direct repercussions of security breaches within smart healthcare systems, highlighting the imperative to safeguard both patient safety and the integrity of medical data. We delve into a suite of security solutions, encompassing rigorous authentication processes, data encryption, designs resistant to attacks, and continuous monitoring mechanisms, all tailored to fortify BioMEMS in the face of ever-evolving threats within smart healthcare environments. Furthermore, the paper underscores the vital role of ethical and regulatory considerations, emphasizing the need to uphold patient autonomy, ensure the confidentiality of data, and maintain equitable access to healthcare in the context of IoT communication security. Looking forward, we explore the impending landscape of BioMEMS security as it intertwines with emerging technologies such as AI-driven diagnostics, quantum computing, and genomic integration, anticipating potential challenges and strategizing for the future. In doing so, this paper highlights the paramount importance of adopting an integrated approach that seamlessly blends technological innovation, ethical foresight, and collaborative ingenuity, thereby steering BioMEMS towards a secure and resilient future within smart healthcare systems, in the ambit of IoT communication security and protection. Full article
(This article belongs to the Special Issue IoT Cybersecurity)
Show Figures

Figure 1

17 pages, 2766 KB  
Article
The Effect of Skeletal Muscle-Specific Creatine Treatment on ALS NMJ Integrity and Function
by Agnes Badu-Mensah, Xiufang Guo, Roxana Mendez, Hemant Parsaud and James J. Hickman
Int. J. Mol. Sci. 2023, 24(17), 13519; https://doi.org/10.3390/ijms241713519 - 31 Aug 2023
Cited by 2 | Viewed by 4201
Abstract
Although skeletal muscle (hSKM) has been proven to be actively involved in Amyotrophic Lateral Sclerosis (ALS) neuromuscular junction (NMJ) dysfunction, it is rarely considered as a pharmacological target in preclinical drug discovery. This project investigated how improving ALS hSKM viability and function effects [...] Read more.
Although skeletal muscle (hSKM) has been proven to be actively involved in Amyotrophic Lateral Sclerosis (ALS) neuromuscular junction (NMJ) dysfunction, it is rarely considered as a pharmacological target in preclinical drug discovery. This project investigated how improving ALS hSKM viability and function effects NMJ integrity. Phenotypic ALS NMJ human-on-a-chip models developed from patient-derived induced pluripotent stem cells (iPSCs) were used to study the effect of hSKM-specific creatine treatment on clinically relevant functional ALS NMJ parameters, such as NMJ numbers, fidelity, stability, and fatigue index. Results indicated comparatively enhanced NMJ numbers, fidelity, and stability, as well as reduced fatigue index, across all hSKM-specific creatine-treated systems. Immunocytochemical analysis of the NMJs also revealed improved post-synaptic nicotinic Acetylcholine receptor (AChR) clustering and cluster size in systems supplemented with creatine relative to the un-dosed control. This work strongly suggests hSKM as a therapeutic target in ALS drug discovery. It also demonstrates the need to consider all tissues involved in multi-systemic diseases, such as ALS, in drug discovery efforts. Finally, this work further establishes the BioMEMs NMJ platform as an effective means of performing mutation-specific drug screening, which is a step towards personalized medicine for rare diseases. Full article
Show Figures

Figure 1

35 pages, 11056 KB  
Review
Recent Advances in Magnetic Polymer Composites for BioMEMS: A Review
by Zhengwei Liao, Oualid Zoumhani and Clementine M. Boutry
Materials 2023, 16(10), 3802; https://doi.org/10.3390/ma16103802 - 17 May 2023
Cited by 30 | Viewed by 9397
Abstract
The objective of this review is to investigate the potential of functionalized magnetic polymer composites for use in electromagnetic micro-electro-mechanical systems (MEMS) for biomedical applications. The properties that make magnetic polymer composites particularly interesting for application in the biomedical field are their biocompatibility, [...] Read more.
The objective of this review is to investigate the potential of functionalized magnetic polymer composites for use in electromagnetic micro-electro-mechanical systems (MEMS) for biomedical applications. The properties that make magnetic polymer composites particularly interesting for application in the biomedical field are their biocompatibility, their adjustable mechanical, chemical, and magnetic properties, as well as their manufacturing versatility, e.g., by 3D printing or by integration in cleanroom microfabrication processes, which makes them accessible for large-scale production to reach the general public. The review first examines recent advancements in magnetic polymer composites that possess unique features such as self-healing capabilities, shape-memory, and biodegradability. This analysis includes an exploration of the materials and fabrication processes involved in the production of these composites, as well as their potential applications. Subsequently, the review focuses on electromagnetic MEMS for biomedical applications (bioMEMS), including microactuators, micropumps, miniaturized drug delivery systems, microvalves, micromixers, and sensors. The analysis encompasses an examination of the materials and manufacturing processes involved and the specific fields of application for each of these biomedical MEMS devices. Finally, the review discusses missed opportunities and possible synergies in the development of next-generation composite materials and bioMEMS sensors and actuators based on magnetic polymer composites. Full article
Show Figures

Figure 1

3 pages, 205 KB  
Editorial
Recent Advancements in Biological Microelectromechanical Systems (BioMEMS) and Biomimetic Coatings
by Song-Jeng Huang, Ming-Tzer Lin, Chao-Ching Chiang, Kavya Arun Dwivedi and Aqeel Abbas
Coatings 2022, 12(12), 1800; https://doi.org/10.3390/coatings12121800 - 23 Nov 2022
Cited by 5 | Viewed by 2760
Abstract
Biomimetic micro- and nanotechnology have substantially grown in recent years, contributing to significant progress in the pharmaceutical and biomedical domains [...] Full article
40 pages, 2560 KB  
Review
Role of Nanomaterials in the Fabrication of bioNEMS/MEMS for Biomedical Applications and towards Pioneering Food Waste Utilisation
by Nuraina Anisa Dahlan, Aung Thiha, Fatimah Ibrahim, Lazar Milić, Shalini Muniandy, Nurul Fauzani Jamaluddin, Bojan Petrović, Sanja Kojić and Goran M. Stojanović
Nanomaterials 2022, 12(22), 4025; https://doi.org/10.3390/nano12224025 - 16 Nov 2022
Cited by 31 | Viewed by 7642
Abstract
bioNEMS/MEMS has emerged as an innovative technology for the miniaturisation of biomedical devices with high precision and rapid processing since its first R&D breakthrough in the 1980s. To date, several organic including food waste derived nanomaterials and inorganic nanomaterials (e.g., carbon nanotubes, graphene, [...] Read more.
bioNEMS/MEMS has emerged as an innovative technology for the miniaturisation of biomedical devices with high precision and rapid processing since its first R&D breakthrough in the 1980s. To date, several organic including food waste derived nanomaterials and inorganic nanomaterials (e.g., carbon nanotubes, graphene, silica, gold, and magnetic nanoparticles) have steered the development of high-throughput and sensitive bioNEMS/MEMS-based biosensors, actuator systems, drug delivery systems and implantable/wearable sensors with desirable biomedical properties. Turning food waste into valuable nanomaterials is potential groundbreaking research in this growing field of bioMEMS/NEMS. This review aspires to communicate recent progress in organic and inorganic nanomaterials based bioNEMS/MEMS for biomedical applications, comprehensively discussing nanomaterials criteria and their prospects as ideal tools for biomedical devices. We discuss clinical applications for diagnostic, monitoring, and therapeutic applications as well as the technological potential for cell manipulation (i.e., sorting, separation, and patterning technology). In addition, current in vitro and in vivo assessments of promising nanomaterials-based biomedical devices will be discussed in this review. Finally, this review also looked at the most recent state-of-the-art knowledge on Internet of Things (IoT) applications such as nanosensors, nanoantennas, nanoprocessors, and nanobattery. Full article
(This article belongs to the Special Issue Nanocomposites for Bio-MEMS/NEMS Applications)
Show Figures

Figure 1

16 pages, 3820 KB  
Article
Magneto-Mechanically Triggered Thick Films for Drug Delivery Micropumps
by Georgiana Dolete, Cristina Chircov, Ludmila Motelica, Denisa Ficai, Ovidiu-Cristian Oprea, Marin Gheorghe, Anton Ficai and Ecaterina Andronescu
Nanomaterials 2022, 12(20), 3598; https://doi.org/10.3390/nano12203598 - 13 Oct 2022
Cited by 8 | Viewed by 2527
Abstract
Given the demanding use of controlled drug delivery systems, our attention was focused on developing a magnetic film that can be triggered in the presence of a magnetic field for both drug delivery and the actuating mechanism in micropump biomedical microelectromechanical systems (BioMEMS). [...] Read more.
Given the demanding use of controlled drug delivery systems, our attention was focused on developing a magnetic film that can be triggered in the presence of a magnetic field for both drug delivery and the actuating mechanism in micropump biomedical microelectromechanical systems (BioMEMS). Magnetic alginate films were fabricated in three steps: the co-precipitation of iron salts in an alkaline environment to obtain magnetite nanoparticles (Fe3O4), the mixing of the obtained nanoparticles with a sodium alginate solution containing glycerol as a plasticizer and folic acid as an active substance, and finally the casting of the final solution in a Petri dish followed by cross-linking with calcium chloride solution. Magnetite nanoparticles were incorporated in the alginate matrix because of the well-established biocompatibility of both materials, a property that would make the film convenient for implantable BioMEMS devices. The obtained film was analyzed in terms of its magnetic, structural, and morphological properties. To demonstrate the hypothesis that the magnetic field can be used to trigger drug release from the films, we studied the release profile in an aqueous medium (pH = 8) using a NdFeB magnet as a triggering factor. Full article
Show Figures

Figure 1

12 pages, 1207 KB  
Article
A Portable Diagnostic Assay, Genetic Diversity, and Isolation of Seoul Virus from Rattus norvegicus Collected in Gangwon Province, Republic of Korea
by Kyungmin Park, Seung-Ho Lee, Jongwoo Kim, Jingyeong Lee, Geum-Young Lee, Seungchan Cho, Juyoung Noh, Jeewan Choi, Juwon Park, Dong-Hyun Song, Se Hun Gu, Hyeongseok Yun, Jung-Eun Kim, Daesang Lee, Il-Ung Hwang, Won-Keun Kim and Jin-Won Song
Pathogens 2022, 11(9), 1047; https://doi.org/10.3390/pathogens11091047 - 14 Sep 2022
Cited by 6 | Viewed by 3632
Abstract
Seoul virus (SEOV), an etiological agent for hemorrhagic fever with renal syndrome, poses a significant public health threat worldwide. This study evaluated the feasibility of a mobile Biomeme platform for facilitating rapid decision making of SEOV infection. A total of 27 Rattus norvegicus [...] Read more.
Seoul virus (SEOV), an etiological agent for hemorrhagic fever with renal syndrome, poses a significant public health threat worldwide. This study evaluated the feasibility of a mobile Biomeme platform for facilitating rapid decision making of SEOV infection. A total of 27 Rattus norvegicus were collected from Seoul Metropolitan City and Gangwon Province in Republic of Korea (ROK), during 2016–2020. The serological and molecular prevalence of SEOV was 5/27 (18.5%) and 2/27 (7.4%), respectively. SEOV RNA was detected in multiple tissues of rodents using the Biomeme device, with differences in Ct values ranging from 0.6 to 2.1 cycles compared to a laboratory benchtop system. Using amplicon-based next-generation sequencing, whole-genome sequences of SEOV were acquired from lung tissues of Rn18-1 and Rn19-5 collected in Gangwon Province. Phylogenetic analysis showed a phylogeographical diversity of rat-borne orthohantavirus collected in Gangwon Province. We report a novel isolate of SEOV Rn19-5 from Gangwon Province. Our findings demonstrated that the Biomeme system can be applied for the molecular diagnosis of SEOV comparably to the laboratory-based platform. Whole-genome sequencing of SEOV revealed the phylogeographical diversity of orthohantavirus in the ROK. This study provides important insights into the field-deployable diagnostic assays and genetic diversity of orthohantaviruses for the rapid response to hantaviral outbreaks in the ROK. Full article
(This article belongs to the Special Issue Molecular Diagnostic and Epidemiology of Viral Infections)
Show Figures

Figure 1

23 pages, 2859 KB  
Review
Biosensor-Integrated Drug Delivery Systems as New Materials for Biomedical Applications
by Iwona Cicha, Ronny Priefer, Patrícia Severino, Eliana B. Souto and Sona Jain
Biomolecules 2022, 12(9), 1198; https://doi.org/10.3390/biom12091198 - 29 Aug 2022
Cited by 64 | Viewed by 8804
Abstract
Biosensor-integrated drug delivery systems are innovative devices in the health area, enabling continuous monitoring and drug administration. The use of smart polymer, bioMEMS, and electrochemical sensors have been extensively studied for these systems, especially for chronic diseases such as diabetes mellitus, cancer and [...] Read more.
Biosensor-integrated drug delivery systems are innovative devices in the health area, enabling continuous monitoring and drug administration. The use of smart polymer, bioMEMS, and electrochemical sensors have been extensively studied for these systems, especially for chronic diseases such as diabetes mellitus, cancer and cardiovascular diseases as well as advances in regenerative medicine. Basically, the technology involves sensors designed for the continuous analysis of biological molecules followed by drug release in response to specific signals. The advantages include high sensitivity and fast drug release. In this work, the main advances of biosensor-integrated drug delivery systems as new biomedical materials to improve the patients’ quality of life with chronic diseases are discussed. Full article
(This article belongs to the Special Issue Novel Materials for Biomedical Applications)
Show Figures

Graphical abstract

31 pages, 7784 KB  
Review
Microelectromechanical Systems (MEMS) for Biomedical Applications
by Cristina Chircov and Alexandru Mihai Grumezescu
Micromachines 2022, 13(2), 164; https://doi.org/10.3390/mi13020164 - 22 Jan 2022
Cited by 164 | Viewed by 21274
Abstract
The significant advancements within the electronics miniaturization field have shifted the scientific interest towards a new class of precision devices, namely microelectromechanical systems (MEMS). Specifically, MEMS refers to microscaled precision devices generally produced through micromachining techniques that combine mechanical and electrical components for [...] Read more.
The significant advancements within the electronics miniaturization field have shifted the scientific interest towards a new class of precision devices, namely microelectromechanical systems (MEMS). Specifically, MEMS refers to microscaled precision devices generally produced through micromachining techniques that combine mechanical and electrical components for fulfilling tasks normally carried out by macroscopic systems. Although their presence is found throughout all the aspects of daily life, recent years have witnessed countless research works involving the application of MEMS within the biomedical field, especially in drug synthesis and delivery, microsurgery, microtherapy, diagnostics and prevention, artificial organs, genome synthesis and sequencing, and cell manipulation and characterization. Their tremendous potential resides in the advantages offered by their reduced size, including ease of integration, lightweight, low power consumption, high resonance frequency, the possibility of integration with electrical or electronic circuits, reduced fabrication costs due to high mass production, and high accuracy, sensitivity, and throughput. In this context, this paper aims to provide an overview of MEMS technology by describing the main materials and fabrication techniques for manufacturing purposes and their most common biomedical applications, which have evolved in the past years. Full article
(This article belongs to the Special Issue Microfluidic System for Biochemical Application)
Show Figures

Figure 1

Back to TopTop