Role of Nanomaterials in the Fabrication of bioNEMS/MEMS for Biomedical Applications and towards Pioneering Food Waste Utilisation
Abstract
:1. Introduction
2. Overview of Nanomaterials for bioNEMS/MEMS Applications
2.1. Classification of Nanomaterials
2.2. Nanomaterials Synthesised from Food Waste
3. Perspective on Nanotechnology as an Enabling Tool for the Design of New Functional Materials and Devices for bioNEMS/MEMS in Medical Applications
4. NEMS/MEMS Fabrication Technologies with Nanomaterials
4.1. Photolithography
4.2. Electron Beam Lithography
4.3. Scanning Probe Lithography
4.4. Soft Lithography
- Soft mould creation;
- Preparation of metal and ceramic slurries;
- Filling of the soft mould with the prepared slurries;
- Drying or curing and demoulding;
- De-binding;
- Sintering.
4.5. Nanoimprint Lithography
- Electrical NIL;
- Thermal NIL;
- UV NIL.
4.6. Bulk Micromachining
- Silicon wet bulk micromachining
- 2.
- Etching
- (a)
- Wet etching
- (b)
- Dry etching
4.7. Surface Micromachining
4.8. Combined Micromachining
4.9. Electron-Discharge Micromachining
4.10. Laser Micromachining
4.11. Electrospinning
5. Clinical Applications of Nanomaterials-Based bioNEMS/MEMS
5.1. Diagnostic Applications
Technology | Type of Nanomaterials | Biomedical Application(s) | Tested Biological Samples | Outcome(s) | Application(s) | Ref |
---|---|---|---|---|---|---|
NEMS | 1D photonic crystal | Cancers | - |
| Label-free diagnostic biosensor (diagnostic) | [112] |
Mesoporous silica nanoparticles | Cancers | - |
| Targeted drug delivery for cancer therapy (therapeutic) | [3] | |
MEMS | Titanium dioxide/tungsten trioxide (TiO2/WO3) nanocomposites | Cardiovascular diseases | - |
| Cholesterol breath analyser (diagnostic) | [118] |
Monolayer graphene | Coronavirus disease (e.g., COVID-19) | Nasopharyngeal liquids |
| Point-of-care testing (diagnostic) | [4] | |
Biofunctionalized reduced graphene oxide | Diabetes | Human blood serum |
| Electrochemical glucose biosensor (monitoring) | [113] | |
Reduced graphene oxide, gold and platinum alloy nanoparticles | Diabetes | Human sweat |
| Wearable glucose sensor (monitoring) | [119] | |
Cerium oxide-polyethylene glycol-glucose oxidase nanoparticles | Diabetes | Artificial tear |
| Contact lens biosensor (monitoring) | [120] | |
Magnetic nanoparticles | Cardiovascular diseases | - |
| Implantable catheter (therapeutic) | [118] | |
C-MEMS | Gold (Au) nanoparticles | Cholesterol-associated diseases | - |
| Cholesterol rapid detection (diagnostic) | [21] |
Interdigitated array nanoelectrode | Cardiovascular disease (myocardial infarction) | Human serum | Highly sensitive for cardiac myoglobin detection as low as 0.43 pg/mL | Immunosensor for cardiac Biomarker (diagnostic) | [121] | |
Gold particles with dendritic nanostructures (AuNs) | Diabetes | - |
| Non-enzymatic glucose sensor (monitoring) | [122] |
5.2. Monitoring Applications
5.3. Therapeutic Applications
5.4. Cell Manipulation
6. Integrating NEMS/MEMS with IoT Applications with the Help of Nanomaterials for Biomedical Applications
6.1. Nanosensor
6.2. Nanoantenna
6.3. Nanoprocessor
6.4. Nanobattery
7. Safety and Toxicity, the Biocompatibility of Nanomaterials-Based bioNEMS/MEMS
7.1. Safety
7.2. Toxicity
7.2.1. In Vitro Assessment of Nanomaterials Toxicity
Cytotoxicity Assays
- Microculture tetrazolium assay
- 2.
- Trypan blue exclusion assay
- 3.
- Clonogenic assay
- 4.
- Apoptosis assay
- 5.
- DNA laddering
- 6.
- Caspase assay
- 7.
- Comet assay
- 8.
- TUNEL assay
- 9.
- Annexin V and Propidium iodide (PI)
Oxidative Stress Assays
- 2,7-Dichlorodihydrofluorescein (DCFH) assay
- 2.
- Lipid peroxidation assay
7.2.2. In Vivo Assessment of Nanomaterials Toxicity
Biodistribution
Clearance
Serum Chemistry
Histopathology
7.3. Biocompatibility
8. Challenges and Conclusions
- Connectivity
- 2.
- Data continuity
- 3.
- Compliance
- 4.
- Coexistence
- 5.
- Cybersecurity
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kulinsky, L.; Madou, M.J. BioMEMs for drug delivery applications. In MEMS for Biomedical Applications; Bhansali, S., Vasudev, A., Eds.; Woodhead Publishing: Philadelphia, PA, USA, 2012; pp. 218–268. [Google Scholar]
- Madou, M.J. Historical note: The ascent of silicon, MEMS, and NEMS. In Solid-State Physics, Fluidics, and Analytical Techniques in Micro-and Nanotechnology; Madou, M.J., Ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 19–50. [Google Scholar]
- Lu, Y.; Palanikumar, L.; Choi, E.S.; Huskens, J.; Ryu, J.-H.; Wang, Y.; Pang, W.; Duan, X. Hypersound-enhanced intracellular delivery of drug-loaded mesoporous silica nanoparticles in a non-endosomal pathway. ACS Appl. Mater. Interfaces 2019, 11, 19734–19742. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, X.; Wu, Y.; Guo, M.; Gu, C.; Dai, C.; Kong, D.; Wang, Y.; Zhang, C.; Qu, D.; et al. Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples. Nat. Biomed. Eng. 2022, 6, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Anderson, W.D.; Wilson, S.L.M.; Holdsworth, D.W. Development of a wireless telemetry sensor device to measure load and deformation in orthopaedic applications. Sensors 2020, 20, 6772. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, S.; Morikawa, K.; Endo, T.; Hisamoto, H.; Sueyoshi, K. Size sorting of exosomes by tuning the thicknesses of the electric double layers on a micro-nanofluidic device. Micromachines 2020, 11, 458. [Google Scholar] [CrossRef] [PubMed]
- Sant, S.; Tao, S.L.; Fisher, O.Z.; Xu, Q.; Peppas, N.A.; Khademhosseini, A. Microfabrication technologies for oral drug delivery. Adv. Drug. Deliv. Rev. 2012, 64, 496–507. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.; Kanchi, S.; Bisetty, K.; Nuthalapati, V.N. Perspective on analytical sciences and nanotechnology. In Advanced Environmental Analysis: Applications of Nanomaterials; The Royal Society of Chemistry: London, UK, 2017; Volume 1, pp. 1–34. [Google Scholar]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Barkam, S.; Saraf, S.; Seal, S. Fabricated micro-nano devices for in vivo and in vitro biomedical applications. WIREs Naomed. Nanobiotechnol. 2013, 5, 544–568. [Google Scholar] [CrossRef]
- Chauhan, N.; Saxena, K.; Tikadar, M.; Jain, U. Recent advances in the design of biosensors based on novel nanomaterials: An insight. Nanotechnol. Precis. Eng. 2021, 4, 045003. [Google Scholar] [CrossRef]
- Ansari, A.A.; Alhoshan, M.; Alsalhi, M.S.; Aldwayyan, A.S. Prospects of nanotechnology in clinical immunodiagnostics. Sensors 2010, 10, 6535–6581. [Google Scholar] [CrossRef]
- Song, J.-H.; Min, S.-H.; Kim, S.-G.; Cho, Y.; Ahn, S.-H. Multi-functionalization strategies using nanomaterials: A review and case study in sensing applications. Int. J. Precis. Eng. Manuf.-Green Technol. 2022, 9, 323–347. [Google Scholar] [CrossRef]
- Bhushan, B. Nanotribology and materials characterization of MEMS/NEMS and bioMEMS/bioNEMS materials and devices. In Springer Handbook of Nanotechnology; Bhushan, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1575–1638. [Google Scholar] [CrossRef]
- Bhushan, B. MEMS/NEMS and bioMEMS/bioNEMS: Materials, devices, and biomimetics. In Nanotribology and Nanomechanics II: Nanotribology, Biomimetics, and Industrial Applications; Bhushan, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 833–945. [Google Scholar] [CrossRef]
- Jyotsna; Stanley Abraham, L.; Hanumant Singh, R.; Panda, R.C.; Senthilvelan, T. Biomedical applications of carbon-based nanomaterials. In Nanomaterials and Their Biomedical Applications; Santra, T.S., Mohan, L., Eds.; Springer: Singapore, 2021; pp. 157–174. [Google Scholar] [CrossRef]
- Illath, K.; Wankhar, S.; Mohan, L.; Nagai, M.; Santra, T.S. Metallic nanoparticles for biomedical applications. In Nanomaterials and Their Biomedical Applications; Santra, T.S., Mohan, L., Eds.; Springer: Singapore, 2021; pp. 29–81. [Google Scholar] [CrossRef]
- Wang, H.; Xiang, Z.; Hu, C.F.; Pastorin, G.; Fang, W.; Lee, C. Microneedle array integrated with CNT nanofilters for controlled and selective drug delivery. J. Microelectromec. Syst. 2014, 23, 1036–1044. [Google Scholar] [CrossRef]
- Moore, T.L.; Pitzer, J.E.; Podila, R.; Wang, X.; Lewis, R.L.; Grimes, S.W.; Wilson, J.R.; Skjervold, E.; Brown, J.M.; Rao, A.; et al. Multifunctional polymer-coated carbon nanotubes for safe drug delivery. Part. Part. Syst. Charact. 2013, 30, 365–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, D.; Lee, J.; Seo, J.; Shin, H. Development of a sensitive electrochemical enzymatic reaction-based cholesterol biosensor using nano-sized carbon interdigitated electrodes decorated with gold nanoparticles. Sensors 2017, 17, 2128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelbasir, S.M.; McCourt, K.M.; Lee, C.M.; Vanegas, D.C. Waste-Derived Nanoparticles: Synthesis Approaches, Environmental Applications, and Sustainability Considerations. Front. Chem. 2020, 8, 782. [Google Scholar] [CrossRef]
- Aswathi, V.P.; Meera, S.; Maria, C.G.A.; Nidhin, M. Green synthesis of nanoparticles from biodegradable waste extracts and their applications: A critical review. Nanotechnol. Environ. Eng. 2022. [Google Scholar] [CrossRef]
- Schneider, F. Review of food waste prevention on an international level. Proc. Inst. Civ. Eng. Waste Resour. Manag. 2013, 166, 187–203. [Google Scholar] [CrossRef]
- Sahakian, M.; Shenoy, M.; Soma, T.; Watabe, A.; Yagasa, R.; Premakumara, D.G.J.; Liu, C.; Favis, A.M.; Saloma, C. Apprehending food waste in Asia: Policies, practices and promising trends. In Routledge Handbook of Food Waste; Routledge: London, UK, 2020; pp. 187–206. [Google Scholar]
- Food Wastage Foodprint: Full-Cost Accounting; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014.
- Food Waste Index Report 2021; United Nations Environment Programme: Nairobi, Kenya, 2021.
- Levchenko, I.; Mandhakini, M.; Prasad, K.; Bazaka, O.; Ivanova, E.P.; Jacob, M.V.; Baranov, O.; Riccardi, C.; Roman, H.E.; Xu, S.; et al. Functional nanomaterials from waste and low-value natural products: A technological approach level. Adv. Mater. Technol. 2022, 2101471. [Google Scholar] [CrossRef]
- Cai, S.; Li, W.; Xu, P.; Xia, X.; Yu, H.; Zhang, S.; Li, X. In situ construction of metal–organic framework (MOF) UiO-66 film on Parylene-patterned resonant microcantilever for trace organophosphorus molecules detection. Analyst 2019, 144, 3729–3735. [Google Scholar] [CrossRef]
- Zhang, S.; Pei, X.; Gao, H.; Chen, S.; Wang, J. Metal-organic framework-based nanomaterials for biomedical applications. Chin. Chem. Lett. 2020, 31, 1060–1070. [Google Scholar] [CrossRef]
- Elkodous, M.A.; El-Husseiny, H.M.; El-Sayyad, G.S.; Hashem, A.H.; Doghish, A.S.; Elfadil, D.; Radwan, Y.; El-Zeiny, H.M.; Bedair, H.; Ikhdair, O.A.; et al. Recent advances in waste-recycled nanomaterials for biomedical applications: Waste-to-wealth. Nanotechnol. Rev. 2021, 10, 1662–1739. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, D.; Wu, C.; Gu, S. State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chem. 2018, 20, 5031–5057. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Meng, X.-T.; Wang, H.-H.; Zhang, X.-Q.; Wei, Y.; Li, Z.-Y.; Li, D.; Zhang, A.-P.; Liu, C.-F. A feasible way to produce carbon nanofiber by electrospinning from sugarcane bagasse. Polymers 2019, 11, 1968. [Google Scholar] [CrossRef] [Green Version]
- Gaud, B.; Singh, A.; Jaybhaye, S.; Narayan, H. Synthesis of carbon nano fiber from organic waste and activation of its surface area. Int. J. Phys. Res. Appl. 2019, 2766, 2748. [Google Scholar] [CrossRef] [Green Version]
- Yusefi, M.; Shameli, K.; Ali, R.R.; Pang, S.-W.; Teow, S.-Y. Evaluating anticancer activity of plant-mediated synthesized iron oxide nanoparticles using Punica granatum fruit peel extract. J. Mol. Struct. 2020, 1204, 127539. [Google Scholar] [CrossRef]
- Joshi, P.; Joshi, H.C.; Sanghi, S.K.; Kundu, S. Immobilization of monoamine oxidase on eggshell membrane and its application in designing an amperometric biosensor for dopamine. Microchim. Acta 2010, 169, 383–388. [Google Scholar] [CrossRef]
- Tamilselvi, R.; Ramesh, M.; Lekshmi, G.S.; Bazaka, O.; Levchenko, I.; Bazaka, K.; Mandhakini, M. Graphene oxide—Based supercapacitors from agricultural wastes: A step to mass production of highly efficient electrodes for electrical transportation systems. Renew. Energy 2020, 151, 731–739. [Google Scholar] [CrossRef]
- Purkait, T.; Singh, G.; Singh, M.; Kumar, D.; Dey, R.S. Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Sci. Rep. 2017, 7, 15239. [Google Scholar] [CrossRef] [Green Version]
- Manfredi, S.; Cristobal, J. Towards more sustainable management of European food waste: Methodological approach and numerical application. Waste Manag. Res. 2016, 34, 957–968. [Google Scholar] [CrossRef]
- Auría-Soro, C.; Nesma, T.; Juanes-Velasco, P.; Landeira-Viñuela, A.; Fidalgo-Gomez, H.; Acebes-Fernandez, V.; Gongora, R.; Almendral Parra, M.J.; Manzano-Roman, R.; Fuentes, M. Interactions of nanoparticles and biosystems: Microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials 2019, 9, 1365. [Google Scholar] [CrossRef] [Green Version]
- Villanueva-Flores, F.; Castro-Lugo, A.; Ramírez, O.T.; Palomares, L.A. Understanding cellular interactions with nanomaterials: Towards a rational design of medical nanodevices. Nanotechnology 2020, 31, 132002. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, A.; Mori, A.; Kanada, K.; Sumin, C.; Ke, W. Micro/nano-printing of metal and nanoparticle thin film and its application to MEMS device. In Proceedings of JSME 2020 Conference on Leading Edge Manufacturing/Materials and Processing; American Society of Mechanical Engineers: New York, NY, USA, 2021. [Google Scholar]
- Bani-Yaseen, A.D.; Kawaguchi, T.; Jankowiak, R. Electrochemically deposited metal nanoparticles for enhancing the performance of microfluidic MEMS in biochemical analysis. Int. J. Nanomanuf. 2009, 4, 99–107. [Google Scholar] [CrossRef]
- Anik, M.I.; Mahmud, N.; Al Masud, A.; Hasan, M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. Nano Sel. 2022, 3, 792–828. [Google Scholar] [CrossRef]
- Shah, M.; Badwaik, V.D.; Dakshinamurthy, R. Biological applications of gold nanoparticles. J. Nanosci. Nanotechnol. 2014, 14, 344–362. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Fang, K.; Zhang, Z.; Jiang, X.; Zhao, Y. The hybrid fabrication process of metal/silicon composite structure for MEMS S&A Device. Micromachines 2019, 10, 469. [Google Scholar] [CrossRef] [Green Version]
- Schlicke, H.; Battista, D.; Kunze, S.; Schröter, C.J.; Eich, M.; Vossmeyer, T. Freestanding membranes of cross-linked gold nanoparticles: Novel functional materials for electrostatic actuators. ACS Appl. Mater. Interfaces 2015, 7, 15123–15128. [Google Scholar] [CrossRef]
- Bhushan, B. Micro/nanotribology of MEMS/NEMS materials and devices. In Springer Handbook of Nanotechnology; Bhushan, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 983–1021. [Google Scholar] [CrossRef]
- Liao, M.; Koide, Y. Carbon-based materials: Growth, properties, MEMS/NEMS technologies, and MEM/NEM switches. Crit. Rev. Solid State Mater. Sci. 2011, 36, 66–101. [Google Scholar] [CrossRef]
- Neuville, S. Selective carbon material engineering for improved MEMS and NEMS. Micromachines 2019, 10, 539. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.H.; Cayll, D.; Behera, D.; Cullinan, M. Towards repeatable, scalable graphene integrated micro-nano electromechanical systems (MEMS/NEMS). Micromachines 2022, 13, 27. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Zhou, C. Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 2013, 46, 2329–2339. [Google Scholar] [CrossRef]
- Chen, C.; Hone, J. Graphene nanoelectromechanical systems. Proc. IEEE 2013, 101, 1766–1779. [Google Scholar] [CrossRef]
- Rahman, S.H.A.; Soin, N.; Ibrahim, F. Design of graphene-based MEMS intracranial pressure sensor. In Proceedings of the 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Benevento, Italy, 15–18 May 2016; pp. 1–5. [Google Scholar]
- Khan, N.I.; Song, E. Detection of an IL-6 biomarker using a GFET platform developed with a facile organic solvent-free aptamer immobilization approach. Sensors 2021, 21, 1335. [Google Scholar] [CrossRef] [PubMed]
- Irani, F.S.; Shafaghi, A.H.; Tasdelen, M.C.; Delipinar, T.; Kaya, C.E.; Yapici, G.G.; Yapici, M.K. Graphene as a piezoresistive material in strain sensing applications. Micromachines 2022, 13, 119. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, Z.; Li, X.; Lin, Y.; Luo, N.; Long, M.; Zhao, N.; Xu, J.-B. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano 2017, 11, 4507–4513. [Google Scholar] [CrossRef]
- Kis, A.; Zettl, A. Nanomechanics of carbon nanotubes. Philos. Trans. R. Sci. A 2008, 366, 1591–1611. [Google Scholar] [CrossRef]
- Ajayan, P.M.; Zhou, O.Z. Applications of carbon nanotubes. In Carbon Nanotubes: Synthesis, Structure, Properties, and Applications; Dresselhaus, M.S., Dresselhaus, G., Avouris, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 391–425. [Google Scholar] [CrossRef]
- Xi, S.; Shi, T.; Liu, D.; Xu, L.; Long, H.; Lai, W.; Tang, Z. Integration of carbon nanotubes to three-dimensional C-MEMS for glucose sensors. Sens. Actuator A Phys. 2013, 198, 15–20. [Google Scholar] [CrossRef]
- Xu, H.; Wang, L.; Luo, J.; Song, Y.; Liu, J.; Zhang, S.; Cai, X. Selective recognition of 5-hydroxytryptamine and dopamine on a multi-walled carbon nanotube-chitosan hybrid film-modified microelectrode array. Sensors 2015, 15, 1008–1021. [Google Scholar] [CrossRef] [Green Version]
- Sepúlveda, A.T.; Fachin, F.; Villoria, R.G.d.; Wardle, B.L.; Viana, J.C.; Pontes, A.J.; Rocha, L.A. Nanocomposite flexible pressure sensor for biomedical applications. Procedia Eng. 2011, 25, 140–143. [Google Scholar] [CrossRef] [Green Version]
- Hanniet, Q.; Petit, E.; Calas-Etienne, S.; Etienne, P.; Aissou, K.; Gervais, C.; Charlot, B.; Salameh, C. Rational design of Si (B) Cn microstructures using direct photolithography of patternable preceramic photoresists. SSRN Electron. J. 2022, 223, 111234. [Google Scholar] [CrossRef]
- Londe, G.; Han, A.; Cho, H.J. MEMS for nanotechnology: Top-down perspective. In Functional Nanostructures: Processing, Characterization, and Applications; Seal, S., Ed.; Springer: New York, NY, USA, 2008; pp. 107–167. [Google Scholar] [CrossRef]
- Mitu, G.; Bejinaru Mihoc, A. Applications of photolithography for the manufacture of solid MEMS bodies. Transilv. Univ. Press Bras. 2019, 1, 65–68. [Google Scholar]
- Verma, G.; Mondal, K.; Gupta, A. Si-based MEMS resonant sensor: A review from microfabrication perspective. Microelectron. J. 2021, 118, 105210. [Google Scholar] [CrossRef]
- Sui, W.; Zheng, X.Q.; Lin, J.T.; Alphenaar, B.W.; Feng, P.X.L. Thermal response and TC f of GaN/AlN heterostructure multimode micro string resonators from −10 °C up to 325 °C. J. Microelectromec. Syst. 2021, 30, 521–529. [Google Scholar] [CrossRef]
- Jithin, M.A.; Ganapathi, K.L.; Ambresh, M.; Nukala, P.; Udayashankar, N.K.; Mohan, S. Development of titanium nitride thin film microheaters using laser micromachining. Vacuum 2022, 197, 110795. [Google Scholar] [CrossRef]
- Tricinci, O.; Carlotti, M.; Desii, A.; Meder, F.; Mattoli, V. Two-step MEMS microfabrication via 3D direct laser lithography. In Proceedings of the Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XIV, San Francisco, CA, USA, 6–12 March 2021; pp. 34–40. [Google Scholar]
- Udara, S.; Hadimani, H.C.; Revankar, P.K. Sensitivity and Selectivity Enhancement of MEMS/NEMS Cantilever by Coating of Polyvinylpyrrolidone. Mater. Today: Proc. 2019, 18, 1610–1619. [Google Scholar] [CrossRef]
- Chai, H.; Wang, J.; Song, Y. MEMS, NEMS, AEMS, and quantum films for the next generation of computing and information technology. In Inorganic and Organic Thin Films: Fundamentals, Fabrication and Applications; Song, Y., Ed.; Wiley-VCH: Weinheim, Germany, 2021; Volume 1, pp. 199–219. [Google Scholar]
- Randall, J.; Owen, J.H.; Fuchs, E.; Saini, R.; Santini, R.; Moheimani, S.O.R. Atomically Precise Digital E-Beam Lithography; SPIE: San Jose, CA, USA, 2020; Volume 11324. [Google Scholar]
- Kumar, D.; Singh, N.K.; Bajpai, V. Achieving nano-patterned features by micro-EDM process using vertically aligned ZnO nanorods grown on microprobe tip: A scaling approach. Microelectron. Eng. 2022, 260, 111792. [Google Scholar] [CrossRef]
- Kono, T.; Hatano, M.; Tokue, H.; Kato, H.; Fukuhara, K.; Nakasugi, T. Half-pitch 14nm direct patterning with nanoimprint lithography. In Proceedings of the Novel Patterning Technologies for Semiconductors, MEMS/NEMS, and MOEMS 2019, San Francisco, CA, USA, 1 March 2019; p. 109580H. [Google Scholar]
- Supreeti, S.; Kirchner, J.; Hofmann, M.; Mastylo, R.; Rangelow, I.; Manske, E.; Hoffmann, M.; Sinzinger, S. Integrated Soft UV-nanoimprint Lithography in a Nanopositioning and Nanomeasuring Machine for Accurate Positioning of Stamp to Substrate; SPIE: San Jose, CA, USA, 2019; Volume 10958. [Google Scholar]
- Jiang, Y.; Dodds, K.; Dunare, C.; Lomax, P.; Cheung, R. Thermal scanning probe lithography using Parylene C as thermal resist. Micro Nano Lett. 2022, 17, 96–99. [Google Scholar] [CrossRef]
- Howell, S.T.; Grushina, A.; Holzner, F.; Brugger, J. Thermal scanning probe lithography—A review. Microsyst. Nanoeng. 2020, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Wu, L.; Gao, J.; Feng, C.; Yu, B.; Qian, L. An improved scanning probe-based lithography: Site-controlled formation of self-assembled film as an etch mask. Microelectron. Eng. 2021, 244–246, 111560. [Google Scholar] [CrossRef]
- Yang, Z. Advanced MEMS/NEMS Fabrication and Sensors; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Zhu, J.; Liu, X.; Shi, Q.; He, T.; Sun, Z.; Guo, X.; Liu, W.; Sulaiman, O.B.; Dong, B.; Lee, C. Development trends and perspectives of future sensors and MEMS/NEMS. Micromachines 2020, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Hassanin, H.; Essa, K.; Elshaer, A.; Imbaby, M.; El-Mongy, H.H.; El-Sayed, T.A. Micro-fabrication of ceramics: Additive manufacturing and conventional technologies. J. Adv. Ceram. 2021, 10, 1–27. [Google Scholar] [CrossRef]
- Mizui, K.; Hanabata, M.; Takei, S. Gas Permeable Mold for Defect Reduction in Nanoimprint Lithography; SPIE: San Jose, CA, USA, 2019; Volume 10958. [Google Scholar]
- Cherala, A.; Im, S.-H.; Meissl, M.; Simpson, L.; Thompson, E.; Choi, J.; Hiura, M.; Iino, S. Addressing Nanoimprint Lithography Mix and Match Overlay Using Drop Pattern Compensation. In Proceedings of the Novel Patterning Technologies for Semiconductors, MEMS/NEMS and MOEMS 2020, San Jose, CA, USA, 23–27 February 2020; pp. 39–48. [Google Scholar]
- Hamdana, G.; Puranto, P.; Langfahl-Klabes, J.; Li, Z.; Pohlenz, F.; Xu, M.; Granz, T.; Bertke, M.; Wasisto, H.S.; Brand, U.; et al. Nanoindentation of crystalline silicon pillars fabricated by soft UV nanoimprint lithography and cryogenic deep reactive ion etching. Sens. Actuator A Phys. 2018, 283, 65–78. [Google Scholar] [CrossRef]
- Shao, J.; Chen, X.; Li, X.; Tian, H.; Wang, C.; Lu, B. Nanoimprint lithography for the manufacturing of flexible electronics. Sci. China Technol. Sci. 2019, 62, 175–198. [Google Scholar] [CrossRef]
- Huff, M. Recent advances in reactive ion etching and applications of high-aspect-ratio microfabrication. Micromachines 2021, 12, 991. [Google Scholar] [CrossRef] [PubMed]
- Tahmasebipour, M.; Vafaie, A. A novel single axis capacitive MEMS accelerometer with double-sided suspension beams fabricated using μWEDM. Sens. Actuator A Phys. 2020, 309, 112003. [Google Scholar] [CrossRef]
- Ashok, A.; Gangele, A.; Pal, P.; Pandey, A.K. An analysis of stepped trapezoidal-shaped microcantilever beams for MEMS-based devices. J. Micromec. Microeng. 2018, 28, 075009. [Google Scholar] [CrossRef]
- Xu, J.; Bertke, M.; Li, X.; Mu, H.; Zhou, H.; Yu, F.; Hamdana, G.; Schmidt, A.; Bremers, H.; Peiner, E. Fabrication of ZnO nanorods and Chitosan@ZnO nanorods on MEMS piezoresistive self-actuating silicon microcantilever for humidity sensing. Sens. Actuator B Chem. 2018, 273, 276–287. [Google Scholar] [CrossRef]
- Fraga, M.; Pessoa, R. Progresses in synthesis and application of SiC films: From CVD to ALD and from MEMS to NEMS. Micromachines 2020, 11, 799. [Google Scholar] [CrossRef] [PubMed]
- Swarnalatha, V.; Purohit, S.; Pal, P.; Sharma, R.K. Enhanced etching characteristics of Si{100} in NaOH-based two-component solution. Micro Nano Syst. Lett. 2022, 10, 10. [Google Scholar] [CrossRef]
- Pal, P.; Swarnalatha, V.; Rao, A.V.N.; Pandey, A.K.; Tanaka, H.; Sato, K. High speed silicon wet anisotropic etching for applications in bulk micromachining: A review. Micro Nano Syst. Lett. 2021, 9, 4. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.; Joung, Y.-H.; Choi, J.; Koo, C. Bonding strength of a glass microfluidic device fabricated by femtosecond laser micromachining and direct welding. Micromachines 2018, 9, 639. [Google Scholar] [CrossRef] [Green Version]
- Kanwal, A.; Ilic, B.R.; Ray, C.H.; Siebein, K.; Liddle, J.A. Chromium oxide—A novel sacrificial layer material for MEMS/NEMS and micro/nanofluidic device fabrication. Micro Nano Eng. 2022, 16, 100145. [Google Scholar] [CrossRef]
- Gong, X.; Zhao, R.; Yu, X. A 3-D-silicon nanowire FET biosensor based on a novel hybrid process. J. Microelectromec. Syst. 2018, 27, 164–170. [Google Scholar] [CrossRef]
- Racka-Szmidt, K.; Stonio, B.; Żelazko, J.; Filipiak, M.; Sochacki, M. A review: Inductively coupled plasma reactive ion etching of silicon carbide. Materials 2022, 15, 123. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Rinaldi, M. Aluminum nitride combined overtone resonators for the 5G high frequency bands. J. Microelectromec. Syst. 2020, 29, 148–159. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, Y.; Shen, Q.; Zhang, H.; Guo, X. Key processes of silicon-on-glass MEMS fabrication technology for gyroscope application. Sensors 2018, 18, 1240. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, B.B.; Masanta, M.; Sarkar, B.R.; Bhattacharyya, B. Investigation of electro-discharge micro-machining of titanium super alloy. Int. J. Adv. Manuf. Technol. 2008, 41, 1094. [Google Scholar] [CrossRef]
- Shiu, P.-P.; Knopf, G.K.; Ostojic, M. Fabrication of metallic micromolds by laser and electro-discharge micromachining. Microsyst. Technol. 2009, 16, 477. [Google Scholar] [CrossRef]
- Liu, K.; Wu, H.; Huang, R.; Tan, N.Y.J. Ultra-precision machining of micro-step pillar array using a straight-edge milling tool. Nanomanuf. Metrol. 2020, 3, 260–268. [Google Scholar] [CrossRef]
- Vafaie, A.; Tahmasebipour, M.; Tahmasebipour, Y. A novel capacitive micro-accelerometer made of steel using micro wire electrical discharge machining method. J. Micromec. Microeng. 2019, 29, 125018. [Google Scholar] [CrossRef]
- Karazi, S.; Moradi, M.; Benyounis, K. Statistical and numerical approaches for modelling and optimising laser micromachining process-Review. Refer. Modul. Mater. Sci. Eng. 2019. [Google Scholar] [CrossRef]
- Li, X.-X.; He, J.-H. Nanoscale adhesion and attachment oscillation under the geometric potential. Part 1: The formation mechanism of nanofiber membrane in the electrospinning. Results Phys. 2019, 12, 1405–1410. [Google Scholar] [CrossRef]
- George, D.; Garcia, A.; Pham, Q.; Perez, M.R.; Deng, J.; Nguyen, M.T.; Zhou, T.; Martinez-Chapa, S.O.; Won, Y.; Liu, C.; et al. Fabrication of patterned graphitized carbon wires using low voltage near-field electrospinning, pyrolysis, electrodeposition, and chemical vapor deposition. Microsyst. Nanoeng. 2020, 6, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Gao, C.; Gritsenko, D.; Zhou, R.; Xu, J. Soft lithography based on photolithography and two-photon polymerization. Microfluid. Nanofluidics 2018, 22, 97. [Google Scholar] [CrossRef]
- Alfaifi, A.; Alhomoudi, I.A.; Nabki, F.; El-Gamal, M.N. In-plane high-sensitivity capacitive accelerometer in a 3-D CMOS-compatible surface micromachining process. J. Microelectromec. Syst. 2019, 28, 14–24. [Google Scholar] [CrossRef]
- Afandi, Y.; Parish, G.; Keating, A. Surface micromachining multilayer porous silicon for spectral filtering applications. Mater. Sci. Semicond. Process. 2022, 138, 106314. [Google Scholar] [CrossRef]
- Puoza, J.C.; Hua, X.; Liu, Q.; Kang, Z.; Zhang, P. Manufacturing of micro-textures on metals by nanosecond laser micromachining. Adv. Mater. Process. Technol. 2018, 4, 86–99. [Google Scholar] [CrossRef]
- Havlíček, K.; Svobodová, L.; Bakalova, T.; Lederer, T. Influence of electrospinning methods on characteristics of polyvinyl butyral and polyurethane nanofibres essential for biological applications. Mater. Des. 2020, 194, 108898. [Google Scholar] [CrossRef]
- Wan Yahya, W.N.; Ibrahim, F.; Thiha, A.; Jamaluddin, N.F.; Madou, M. Fabrication of a 3D carbon electrode for potential dielectrophoresis-based hepatic cell patterning application using carbon micro-electrical-mechanical system (CMEMS). J. Micromec. Microeng. 2022, 32, 055005. [Google Scholar] [CrossRef]
- Marvi, F.; Jafari, K. An ultra-sensitive 1D photonic crystal bioNEMS platform for label free detection of biomolecules. IEEE Sens. J. 2021, 21, 22927–22933. [Google Scholar] [CrossRef]
- Hemanth, S.; Halder, A.; Caviglia, C.; Chi, Q.; Keller, S.S. 3D carbon microelectrodes with bio-functionalized graphene for electrochemical biosensing. Biosensors 2018, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Forouzanfar, S.; Pala, N.; Wang, C. In-situ integration of 3D C-MEMS microelectrodes with bipolar exfoliated graphene for label-free electrochemical cancer biomarkers aptasensor. Micromachines 2022, 13, 104. [Google Scholar] [CrossRef] [PubMed]
- Forouzanfar, S.; Alam, F.; Pala, N.; Wang, C. Highly sensitive label-free electrochemical aptasensors based on photoresist derived carbon for cancer biomarker detection. Biosens. Bioelectron. 2020, 170, 112598. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Grover, A. Myocilin-associated glaucoma: A historical perspective and recent research progress. Mol. Vis. 2021, 27, 480–493. [Google Scholar] [PubMed]
- Liu, Z.; Wang, G.; Ye, C.; Sun, H.; Pei, W.; Wei, C.; Dai, W.; Dou, Z.; Sun, Q.; Lin, C.-T.; et al. An ultrasensitive contact lens sensor based on self-assembly graphene for continuous intraocular pressure monitoring. Adv. Funct. Mater. 2021, 31, 2010991. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Zhang, P.; Ren, C.; Xu, X.; Sun, B.; Yang, Z. A flexible implantable polyimide catheter device for targeted treatment of cardiovascular diseases by aggregating magnetic nanoparticles. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 911–917. [Google Scholar] [CrossRef]
- Xuan, X.; Yoon, H.S.; Park, J.Y. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens. Bioelectron. 2018, 109, 75–82. [Google Scholar] [CrossRef]
- Kim, S.; Jeon, H.-J.; Park, S.; Lee, D.Y.; Chung, E. Tear glucose measurement by reflectance spectrum of a nanoparticle embedded contact lens. Sci. Rep. 2020, 10, 8254. [Google Scholar] [CrossRef]
- Sharma, D.; Lee, J.; Shin, H. An electrochemical immunosensor based on a 3D carbon system consisting of a suspended mesh and substrate-bound interdigitated array nanoelectrodes for sensitive cardiac biomarker detection. Biosens. Bioelectron. 2018, 107, 10–16. [Google Scholar] [CrossRef]
- Sharma, D.; Lee, J.; Shin, H. Gold nanostructure decorated 3D porous carbon architectures as a non-enzymatic glucose sensor. In Proceedings of the 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Korea, 27–31 January 2019; pp. 580–583. [Google Scholar]
- Mahboob Alam, T.; Iqbal, M.A.; Ali, Y.; Wahab, A.; Ijaz, S.; Imtiaz Baig, T.; Hussain, A.; Malik, M.A.; Raza, M.M.; Ibrar, S.; et al. A model for early prediction of diabetes. Inform. Med. Unlocked 2019, 16, 100204. [Google Scholar] [CrossRef]
- Khor, S.M.; Choi, J.; Won, P.; Ko, S.H. Challenges and strategies in developing an enzymatic wearable sweat glucose biosensor as a practical point-of-care monitoring tool for type II Diabetes. Nanomaterials 2022, 12, 221. [Google Scholar] [CrossRef]
- Martín, A.; Kim, J.; Kurniawan, J.F.; Sempionatto, J.R.; Moreto, J.R.; Tang, G.; Campbell, A.S.; Shin, A.; Lee, M.Y.; Liu, X.; et al. Epidermal microfluidic electrochemical detection system: Enhanced sweat sampling and metabolite detection. ACS Sens. 2017, 2, 1860–1868. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, K.P.; Kariya, A.D.; Botchu, R.; Jain, V.K.; Vaishya, R. Significant capabilities of SMART sensor technology and their applications for Industry 4.0 in trauma and orthopaedics. Sens. Int. 2022, 3, 100163. [Google Scholar] [CrossRef]
- Farra, R.; Sheppard, N.F.; McCabe, L.; Neer, R.M.; Anderson, J.M.; Santini, J.T.; Cima, M.J.; Langer, R. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl. Med. 2012, 4, 122ra121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delcassian, D.; Patel, A.K.; Cortinas, A.B.; Langer, R. Drug delivery across length scales. J. Drug Target. 2019, 27, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, J.; Li, S.; Liu, Z.; Zheng, Z.; Zhang, Y. Development and evaluation of multifunctional poly(lactic-co-glycolic acid) nanoparticles embedded in carboxymethyl β-glucan porous microcapsules as a novel drug delivery system for gefitinib. Pharmaceutics 2019, 11, 469. [Google Scholar] [CrossRef] [Green Version]
- Chae, M.-S.; Yoo, Y.K.; Kim, J.; Kim, T.G.; Hwang, K.S. Graphene-based enzyme-modified field-effect transistor biosensor for monitoring drug effects in Alzheimer’s disease treatment. Sens. Actuator B Chem. 2018, 272, 448–458. [Google Scholar] [CrossRef]
- Bruno, G.; Di Trani, N.; Hood, R.L.; Zabre, E.; Filgueira, C.S.; Canavese, G.; Jain, P.; Smith, Z.; Demarchi, D.; Hosali, S.; et al. Unexpected behaviors in molecular transport through size-controlled nanochannels down to the ultra-nanoscale. Nat. Commun. 2018, 9, 1682. [Google Scholar] [CrossRef] [Green Version]
- Di Trani, N.; Jain, P.; Chua, C.Y.X.; Ho, J.S.; Bruno, G.; Susnjar, A.; Pons-Faudoa, F.P.; Sizovs, A.; Hood, R.L.; Smith, Z.W.; et al. Nanofluidic microsystem for sustained intraocular delivery of therapeutics. Nanomed. Nanotechnol. Biol. Med. 2019, 16, 1–9. [Google Scholar] [CrossRef]
- NanoMedical Systems. Nanotechnology Transforming Drug Delivery. Available online: https://nanomedsys.com (accessed on 18 August 2022).
- Panwala, F.C.; Kumar, R. Asymmetric sifter-shaped microchannel network in biological MEMS for size- and mass-based mammalian cell sorting and separation using hydrodynamic technique. J. Supercomput. 2020, 76, 3814–3846. [Google Scholar] [CrossRef]
- Kumar, M.; Yadav, S.; Kumar, A.; Sharma, N.N.; Akhtar, J.; Singh, K. MEMS impedance flow cytometry designs for effective manipulation of micro entities in health care applications. Biosens. Bioelectron. 2019, 142, 111526. [Google Scholar] [CrossRef]
- Catarino, S.O.; Rodrigues, R.O.; Pinho, D.; Miranda, J.M.; Minas, G.; Lima, R. Blood cells separation and sorting techniques of passive microfluidic devices: From fabrication to applications. Micromachines 2019, 10, 593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Deng, J.; Du, C.; Zhang, W.; Jiang, X. Microfluidics-based approaches for separation and analysis of circulating tumor cells. TrAC-Trends Anal. Chem. 2019, 117, 84–100. [Google Scholar] [CrossRef]
- Nieuwenhuis, J.H.; Jachimowicz, A.; Svasek, P.; Vellekoop, M.J. Optimization of microfluidic particle sorters based on dielectrophoresis. IEEE Sens. J. 2005, 5, 810–816. [Google Scholar] [CrossRef]
- Khan, T.; Civas, M.; Cetinkaya, O.; Abbasi, N.A.; Akan, O.B. Nanosensor networks for smart health care. In Nanosensors for Smart Cities; Han, B., Tomer, V.K., Nguyen, T.A., Farmani, A., Kumar Singh, P., Eds.; Elsevier: Cambridge, MA, USA, 2020; pp. 387–403. [Google Scholar] [CrossRef]
- Bhattacharjee, I.; Maiti, D.K. Nanotools and nanodevices in geothermal energy. In Nano Tools and Devices for Enhanced Renewable Energy; Devasahayam, S., Hussain, C.M., Eds.; Elsevier: Cambridge, MA, USA, 2021; pp. 507–518. [Google Scholar] [CrossRef]
- John, S.A.; Chattree, A.; Ramteke, P.W.; Shanthy, P.; Nguyen, T.A.; Rajendran, S. Nanosensors for plant health monitoring. In Nanosensors for Smart Agriculture; Denizli, A., Nguyen, T.A., Rajendran, S., Yasin, G., Nadda, A.K., Eds.; Elsevier: Cambridge, MA, USA, 2022; pp. 449–461. [Google Scholar] [CrossRef]
- Singh, P.; Yadava, R.D.S. Nanosensors for health care. In Nanosensors for Smart Cities; Han, B., Tomer, V.K., Nguyen, T.A., Farmani, A., Kumar Singh, P., Eds.; Elsevier: Cambridge, MA, USA, 2020; pp. 433–450. [Google Scholar] [CrossRef]
- Tang, X.; Zhu, Y.; Guan, W.; Zhou, W.; Wei, P. Advances in nanosensors for cardiovascular disease detection. Life Sci. 2022, 305, 120733. [Google Scholar] [CrossRef]
- Yin, R.; Xu, Z.; Mei, M.; Chen, Z.; Wang, K.; Liu, Y.; Tang, T.; Priydarshi, M.K.; Meng, X.; Zhao, S.; et al. Soft transparent graphene contact lens electrodes for conformal full-cornea recording of electroretinogram. Nat. Commun. 2018, 9, 2334. [Google Scholar] [CrossRef] [Green Version]
- Javaid, M.; Haleem, A.; Singh, R.P.; Rab, S.; Suman, R. Exploring the potential of nanosensors: A brief overview. Sens. Int. 2021, 2, 100130. [Google Scholar] [CrossRef]
- Kaisti, M.; Panula, T.; Leppänen, J.; Punkkinen, R.; Jafari Tadi, M.; Vasankari, T.; Jaakkola, S.; Kiviniemi, T.; Airaksinen, J.; Kostiainen, P.; et al. Clinical assessment of a non-invasive wearable MEMS pressure sensor array for monitoring of arterial pulse waveform, heart rate and detection of atrial fibrillation. NPJ Digit. Med. 2019, 2, 39. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-H.; Lee, D.; Choi, M.H.; Son, J.-H.; Seo, M. Highly sensitive and selective detection of steroid hormones using terahertz molecule-specific sensors. Anal. Chem. 2019, 91, 6844–6849. [Google Scholar] [CrossRef]
- Lee, M.A.; Wang, S.; Jin, X.; Bakh, N.A.; Nguyen, F.T.; Dong, J.; Silmore, K.S.; Gong, X.; Pham, C.; Jones, K.K.; et al. Implantable nanosensors for human steroid hormone sensing in vivo using a self-templating corona phase molecular recognition. Adv. Healthc. Mater. 2020, 9, 2000429. [Google Scholar] [CrossRef]
- Ahmadi, H.; Moradi, H.; Pastras, C.J.; Abolpour Moshizi, S.; Wu, S.; Asadnia, M. Development of ultrasensitive biomimetic auditory hair cells based on piezoresistive hydrogel nanocomposites. ACS Appl. Mater. Interfaces 2021, 13, 44904–44915. [Google Scholar] [CrossRef]
- Cho, S.; Chang, T.; Yu, T.; Lee, C.H. Smart electronic textiles for wearable sensing and display. Biosensors 2022, 12, 222. [Google Scholar] [CrossRef] [PubMed]
- Borandeh, S.; Alimardani, V.; Abolmaali, S.S.; Seppälä, J. Graphene family nanomaterials in ocular applications: Physicochemical properties and toxicity. Chem. Res. Toxicol. 2021, 34, 1386–1402. [Google Scholar] [CrossRef] [PubMed]
- Duarte, F.; Torres, J.P.N.; Baptista, A.; Marques Lameirinhas, R.A. Optical nanoantennas for photovoltaic applications. Nanomaterials 2021, 11, 422. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.S.U.; Rahman, M.A.; Hossain, M.A.; Mobashsher, A.T. Design of an ITO based CNT coated transparent nano patch antenna assisted by characteristic mode analysis. In Proceedings of the 2019 5th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 26–28 September 2019; pp. 134–138. [Google Scholar]
- Razzari, L. Resonant nanoantennas for enhancing the interaction of terahertz radiation with nanomaterials. In Proceedings of the 2018 International Applied Computational Electromagnetics Society Symposium (ACES), Denver, CO, USA, 25–29 March 2018; pp. 1–2. [Google Scholar]
- Sangeeta, T.R.; Deny, J. A study on optical interconnects to improve on-chip wireless communication using plasmonic nanoantennas and seeking dielectric nanoantenna as an alternative. In Proceedings of the 2022 IEEE International Conference on Nanoelectronics, Nanophotonics, Nanomaterials, Nanobioscience & Nanotechnology (5NANO), Kottayam, India, 28–29 April 2022; pp. 1–5. [Google Scholar]
- Sarycheva, A.; Polemi, A.; Liu, Y.; Dandekar, K.; Anasori, B.; Gogotsi, Y. 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 2018, 4, eaau0920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vergütz, A.; Prates, N.G.; Henrique Schwengber, B.; Santos, A.; Nogueira, M. An architecture for the performance management of smart healthcare applications. Sensors 2020, 20, 5566. [Google Scholar] [CrossRef] [PubMed]
- Ergul, O.; Isiklar, G.; Cetin, I.C.; Algun, M. Design and analysis of nanoantenna arrays for imaging and sensing applications at optical frequencies. Adv. Electromagn. 2019, 8, 18–27. [Google Scholar] [CrossRef]
- Ranga, R.; Kalra, Y.; Kishor, K. Petal shaped nanoantenna for solar energy harvesting. J. Opt. 2020, 22, 035001. [Google Scholar] [CrossRef]
- Costa, K.; Dmitriev, V.; Souza, J.; Silvano, G. Analysis of nanodipoles in optical nanocircuits fed by gaussian beam. Int. J. Antennas Propag. 2014, 2014, 429425. [Google Scholar] [CrossRef]
- Xin, H.; Namgung, B.; Lee, L.P. Nanoplasmonic optical antennas for life sciences and medicine. Nat. Rev. Mater. 2018, 3, 228–243. [Google Scholar] [CrossRef]
- Sindhu, B.; Adepu, V.; Sahatiya, P.; Nandi, S. An MXene based flexible patch antenna for pressure and level sensing applications. FlatChem 2022, 33, 100367. [Google Scholar] [CrossRef]
- Dash, S.; Patnaik, A. Sub-wavelength graphene planar nanoantenna for THz application. Mater. Today Proc. 2019, 18, 1336–1341. [Google Scholar] [CrossRef]
- Dash, S.; Patnaik, A. Impact of silicon-based substrates on graphene THz antenna. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 126, 114479. [Google Scholar] [CrossRef]
- Sergiyenko, A.; Molchanov, O.; Orlova, M. Nano-processor for the small tasks. In Proceedings of the 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 16–18 April 2019; pp. 674–677. [Google Scholar]
- Yan, H.; Choe, H.S.; Nam, S.; Hu, Y.; Das, S.; Klemic, J.F.; Ellenbogen, J.C.; Lieber, C.M. Programmable nanowire circuits for nanoprocessors. Nature 2011, 470, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Ali, O.; Ishak, M.K.; Bhatti, M.K.L. Emerging IoT domains, current standings and open research challenges: A review. PeerJ Comput. Sci. 2021, 7, e659. [Google Scholar] [CrossRef] [PubMed]
- Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M.D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y.; et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wong, H.P. Integrating Graphene into Future Generations of Interconnect Wires. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 5.5.1–5.5.4. [Google Scholar]
- Aziz, T.; Wei, S.; Sun, Y.; Ma, L.-P.; Pei, S.; Dong, S.; Ren, W.; Liu, Q.; Cheng, H.-M.; Sun, D.-M. High-performance flexible resistive random access memory devices based on graphene oxidized with a perpendicular oxidation gradient. Nanoscale 2021, 13, 2448–2455. [Google Scholar] [CrossRef]
- Gilardi, C.; Pedrinazzi, P.; Patel, K.A.; Anzi, L.; Luo, B.; Booth, T.J.; Bøggild, P.; Sordan, R. Graphene–Si CMOS oscillators. Nanoscale 2019, 11, 3619–3625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasin, G.; Muhammad, N.; Nguyen, T.A.; Nguyen-Tri, P. Nanobattery: An introduction. In Nanobatteries and Nanogenerators; Song, H., Venkatachalam, R., Nguyen, T.A., Wu, H.B., Nguyen-Tri, P., Eds.; Elsevier: Cambridge, MA, USA, 2021; pp. 3–9. [Google Scholar] [CrossRef]
- AbdelHamid, A.A.; Mendoza-Garcia, A.; Ying, J.Y. Advances in and prospects of nanomaterials’ morphological control for lithium rechargeable batteries. Nano Energy 2022, 93, 106860. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Y.; Liu, X.; Lv, C.; Li, Y.; Wei, D.; Liu, Z. Carbon-nanomaterial-based flexible batteries for wearable electronics. Adv. Mater. 2019, 31, 1800716. [Google Scholar] [CrossRef]
- Kim, S.D.; Sarkar, A.; Ahn, J.-H. Graphene-based nanomaterials for flexible and stretchable batteries. Small 2021, 17, 2006262. [Google Scholar] [CrossRef]
- Du, Y.-T.; Kan, X.; Yang, F.; Gan, L.-Y.; Schwingenschlögl, U. MXene/graphene heterostructures as high-performance electrodes for Li-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 32867–32873. [Google Scholar] [CrossRef] [PubMed]
- Yuanzheng, L.; Zhicheng, Y.; Lianghao, M.; Buyin, L.; Shufa, L. A freestanding nitrogen-doped MXene/graphene cathode for high-performance Li–S batteries. Nanoscale Adv. 2022, 4, 2189–2195. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.; Iranpour, B.; Cheng, E.; Madden, J.D.W. Washable and stretchable Zn–MnO2 rechargeable cell. Adv. Energy Mater. 2022, 12, 2103148. [Google Scholar] [CrossRef]
- Managing Nanomaterials in the Workplace. Available online: https://osha.europa.eu/en/emerging-risks/nanomaterials (accessed on 6 August 2022).
- Valic, M.S.; Halim, M.; Schimmer, P.; Zheng, G. Guidelines for the experimental design of pharmacokinetic studies with nanomaterials in preclinical animal models. J. Control. Release 2020, 323, 83–101. [Google Scholar] [CrossRef] [PubMed]
- Harshitha, C.; Bhattacharyya, S. A brief review on nanotechnology as a challenging field in pharmaceuticals and their regulatory approval. J. Crit. Rev. 2020, 7, 963–968. [Google Scholar] [CrossRef]
- Nielsen, M.B.; Baun, A.; Mackevica, A.; Thit, A.; Odnevall Wallinder, I.; Gallego, J.A.; Westergaard Clausen, L.P.; Rissler, J.; Skjolding, L.; Castro Nilsson, A.; et al. Nanomaterials in the European chemicals legislation—Methodological challenges for registration and environmental safety assessment. Environ. Sci. Nano 2021, 8, 731–747. [Google Scholar] [CrossRef]
- Rasmussen, K.; Rauscher, H.; Kearns, P.; González, M.; Riego Sintes, J. Developing OECD test guidelines for regulatory testing of nanomaterials to ensure mutual acceptance of test data. Regul. Toxicol. Pharmacol. 2019, 104, 74–83. [Google Scholar] [CrossRef]
- Beaucham, C.; Hodson, L. General Safe Practices for Working with Engineered Nanomaterials in Research Laboratories; Publication No. 2012-147; Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health (NIOSH): Washington, DC, USA, 2012.
- Daima, H.K.; Kothari, S.L.; Kumar, B.S. Nanotoxicology: Toxicity Evaluation of Nanomedicine Applications; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Kumari, P.; Seth, R.; Meena, A. Consequences of nanomaterials on human health and ecosystem. In Nanotoxicology; Daima, H.K., Kothari, S.L., Bhargava, S.K., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 157–200. [Google Scholar]
- Khan, A.U.; Khan, M.; Cho, M.H.; Khan, M.M. Selected nanotechnologies and nanostructures for drug delivery, nanomedicine and cure. Bioprocess Biosyst. Eng. 2020, 43, 1339–1357. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Dilnawaz, F.; Sahoo, S.K. Challenges of moving theranostic nanomedicine into the clinic. Nanomedicine 2020, 15, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Dugershaw, B.B.; Aengenheister, L.; Hansen, S.S.K.; Hougaard, K.S.; Buerki-Thurnherr, T. Recent insights on indirect mechanisms in developmental toxicity of nanomaterials. Part. Fibre Toxicol. 2020, 17, 31. [Google Scholar] [CrossRef]
- Foulkes, R.; Man, E.; Thind, J.; Yeung, S.; Joy, A.; Hoskins, C. The regulation of nanomaterials and nanomedicines for clinical application: Current and future perspectives. Biomater. Sci. 2020, 8, 4653–4664. [Google Scholar] [CrossRef] [PubMed]
- Fadeel, B.; Farcal, L.; Hardy, B.; Vázquez-Campos, S.; Hristozov, D.; Marcomini, A.; Lynch, I.; Valsami-Jones, E.; Alenius, H.; Savolainen, K. Advanced tools for the safety assessment of nanomaterials. Nat. Nanotechnol. 2018, 13, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Biological Evaluation of Medical Devices—Part 22: Guidance on Nanomaterials (ISO/TR 10993-22: 2017); International Organization for Standardization: Geneva, Switzerland, 2017.
- Bernard, M.; Jubeli, E.; Pungente, M.D.; Yagoubi, N. Biocompatibility of polymer-based biomaterials and medical devices—Regulations, in vitro screening and risk-management. Biomater. Sci. 2018, 6, 2025–2053. [Google Scholar] [CrossRef]
- Badhirappan, G.P.; Nallasivam, V.; Varadarajan, M.; Leobeemrao, V.P.; Bose, S.; Venugopal, E.; Rajendran, S.; Angleo, P.C. Phase competition induced bio-electrochemical resistance and bio-compatibility effect in nanocrystalline Zr x–Cu100− x thin films. J. Nanosci. Nanotechnol. 2018, 18, 4534–4543. [Google Scholar] [CrossRef]
- Han, C.Y.; Li, Y.; Zhang, Z.X.; Liu, W.H.; Li, X.; Guo, X.; Wan, J.; Zhang, G.H.; Wang, X.L.; Lin, Q. An artifical synapse based on graphene field-effect transistor with silver gel/polarized-aptamer gate. Org. Electron. 2021, 92, 106118. [Google Scholar] [CrossRef]
- Chuan, Y. Study on Electrospun Silicone Modified Polyurethane Nanofibers. Doctoral Thesis, Shinshu University, Nagano, Japan, 2019. [Google Scholar]
- Hart, C.; Didier, C.M.; Sommerhage, F.; Rajaraman, S. Biocompatibility of blank, post-processed and coated 3D printed resin structures with electrogenic cells. Biosensors 2020, 10, 152. [Google Scholar] [CrossRef] [PubMed]
- Madannejad, R.; Shoaie, N.; Jahanpeyma, F.; Darvishi, M.H.; Azimzadeh, M.; Javadi, H. Toxicity of carbon-based nanomaterials: Reviewing recent reports in medical and biological systems. Chem. Biol. Interact. 2019, 307, 206–222. [Google Scholar] [CrossRef]
- Das, B.; Chabukdhara, M.; Patra, S.; Gogoi, M. Current knowledge on toxicity of nanomaterials: Toxicity assessment and impact. In Nanotoxicology; Daima, H.K., Kothari, S.L., Bhargava, S.K., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 339–375. [Google Scholar]
- Wu, K.; Zhou, Q.; Ouyang, S. Direct and indirect genotoxicity of graphene family nanomaterials on DNA—A review. Nanomaterials 2021, 11, 2889. [Google Scholar] [CrossRef]
- Pelin, M.; Sosa, S.; Prato, M.; Tubaro, A. Occupational exposure to graphene based nanomaterials: Risk assessment. Nanoscale 2018, 10, 15894–15903. [Google Scholar] [CrossRef]
- Burgum, M.J.; Clift, M.J.D.; Evans, S.J.; Hondow, N.; Tarat, A.; Jenkins, G.J.; Doak, S.H. Few-layer graphene induces both primary and secondary genotoxicity in epithelial barrier models in vitro. J. Nanobiotechnol. 2021, 19, 24. [Google Scholar] [CrossRef]
- Mortezaee, K.; Najafi, M.; Samadian, H.; Barabadi, H.; Azarnezhad, A.; Ahmadi, A. Redox interactions and genotoxicity of metal-based nanoparticles: A comprehensive review. Chem. Biol. Interact. 2019, 312, 108814. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Luan, J.; Chen, W.; Fan, J.; Nan, Y.; Wang, Y.; Liang, Y.; Meng, G.; Ju, D. Mesoporous silica nanoparticles induced hepatotoxicity via NLRP3 inflammasome activation and caspase-1-dependent pyroptosis. Nanoscale 2018, 10, 9141–9152. [Google Scholar] [CrossRef] [PubMed]
- García-Rodríguez, A.; Rubio, L.; Vila, L.; Xamena, N.; Velázquez, A.; Marcos, R.; Hernández, A. The comet assay as a tool to detect the genotoxic potential of nanomaterials. Nanomaterials 2019, 9, 1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasi-Oshaghi, E.; Mirzaei, F.; Pourjafar, M. NLRP3 inflammasome, oxidative stress, and apoptosis induced in the intestine and liver of rats treated with titanium dioxide nanoparticles: In vivo and in vitro study. Int. J. Nanomed. 2019, 14, 1919–1936. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.-G.; Cai, H.-Q.; Wang, J.-L.; Mesalam, A.; Md Talimur Reza, A.M.; Li, L.; Chen, L.; Qian, C. Graphene oxide–silver nanoparticle nanocomposites induce oxidative stress and aberrant methylation in caprine fetal fibroblast cells. Cells 2021, 10, 682. [Google Scholar] [CrossRef]
- Ganguly, P.; Breen, A.; Pillai, S.C. Toxicity of nanomaterials: Exposure, pathways, assessment, and recent advances. ACS Biomater. Sci. Eng. 2018, 4, 2237–2275. [Google Scholar] [CrossRef]
- Forouzandeh, F.; Zhu, X.; Alfadhel, A.; Ding, B.; Walton, J.P.; Cormier, D.; Frisina, R.D.; Borkholder, D.A. A nanoliter resolution implantable micropump for murine inner ear drug delivery. J. Control. Release 2019, 298, 27–37. [Google Scholar] [CrossRef]
- Banerjee, U.; Jain, S.K.; Sen, A.K. Particle encapsulation in aqueous ferrofluid drops and sorting of particle-encapsulating drops from empty drops using a magnetic field. Soft Matter 2021, 17, 6020–6028. [Google Scholar] [CrossRef]
- Xie, Y.; Wan, B.; Yang, Y.; Cui, X.; Xin, Y.; Guo, L.-H. Cytotoxicity and autophagy induction by graphene quantum dots with different functional groups. J. Environ. Sci. 2019, 77, 198–209. [Google Scholar] [CrossRef]
- Barrios, A.C.; Wang, Y.; Gilbertson, L.M.; Perreault, F. Structure–property–toxicity relationships of graphene oxide: Role of surface chemistry on the mechanisms of interaction with bacteria. Environ. Sci. Technol. 2019, 53, 14679–14687. [Google Scholar] [CrossRef]
- Patel, G.; Patra, C.; Srinivas, S.P.; Kumawat, M.; Navya, P.N.; Daima, H.K. Methods to evaluate the toxicity of engineered nanomaterials for biomedical applications: A review. Environ. Chem. Lett. 2021, 19, 4253–4274. [Google Scholar] [CrossRef]
- Bourquin, J.; Milosevic, A.; Hauser, D.; Lehner, R.; Blank, F.; Petri-Fink, A.; Rothen-Rutishauser, B. Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials. Adv. Mater. 2018, 30, 1704307. [Google Scholar] [CrossRef] [PubMed]
- Kreyling, W.G.; Holzwarth, U.; Schleh, C.; Kozempel, J.; Wenk, A.; Haberl, N.; Hirn, S.; Schäffler, M.; Lipka, J.; Semmler-Behnke, M.; et al. Quantitative biokinetics of titanium dioxide nanoparticles after oral application in rats: Part 2. Nanotoxicology 2017, 11, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Cambiaghi, A. Biological Evaluation of Medical Devices as an Essential Part of the Risk Management Process: Updates and Challenges of ISO 10993-1: 2018; Eurofins Medical Device Testing: Lancaster, PA, USA, 2018. [Google Scholar]
- Biological Evaluation of Medical Devices—Part 1: Evaluation and Testing Within a Risk Management Process (ISO 10993-1: 2018); International Organization for Standardization: Geneva, Switzerland, 2018.
- Burton, S.D. Not anytime soon: The clinical translation of nanorobots and its biocompatibility-interdisciplinarity critique. In Artificial Intelligence and Its Discontents: Critiques from the Social Sciences and Humanities; Hanemaayer, A., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 147–178. [Google Scholar] [CrossRef]
- Tang, Y.H.; Lin, Y.H.; Huang, T.T.; Wang, J.S.; Hu, Y.C.; Shiao, M.H. Development of micro-needle array for tumor vaccine patch applications. In Proceedings of the 2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO), Macao, China, 22–26 July 2019; pp. 129–132. [Google Scholar]
- Molino, J.; Araúz, B.; Nieto, C.; Reginensi, D.; Tristan, S.d. Advancements in MEMS and NEMS from bio-tribological perspective. J. Nanomed. Nanotechnol. Nanomater. 2021, 2, 133. [Google Scholar]
- Mariello, M.; Kim, K.; Wu, K.; Lacour, S.P.; Leterrier, Y. Recent advances in encapsulation of flexible bioelectronic implants: Materials, technologies, and characterization methods. Adv. Mater. 2022, 34, 2201129. [Google Scholar] [CrossRef]
- Deng, S.; Gigliobianco, M.R.; Censi, R.; Di Martino, P. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: Current status, challenges and opportunities. Nanomaterials 2020, 10, 847. [Google Scholar] [CrossRef]
- Pushpamalar, J.; Meganathan, P.; Tan, H.L.; Dahlan, N.A.; Ooi, L.-T.; Neerooa, B.N.H.M.; Essa, R.Z.; Shameli, K.; Teow, S.-Y. Development of a polysaccharide-based hydrogel drug delivery system (DDS): An update. Gels 2021, 7, 153. [Google Scholar] [CrossRef]
- Muhammad, Z.; Raza, A.; Ghafoor, S.; Naeem, A.; Naz, S.S.; Riaz, S.; Ahmed, W.; Rana, N.F. PEG capped methotrexate silver nanoparticles for efficient anticancer activity and biocompatibility. Eur. J. Pharm. Sci. 2016, 91, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Harish, V.; Tewari, D.; Gaur, M.; Yadav, A.B.; Swaroop, S.; Bechelany, M.; Barhoum, A. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials 2022, 12, 457. [Google Scholar] [CrossRef]
- Toumey, C. Later voices on ethics in nanotechnology. Nat. Nanotechnol. 2019, 14, 636–637. [Google Scholar] [CrossRef]
- Selvaraj, S.; Sundaravaradhan, S. Challenges and opportunities in IoT healthcare systems: A systematic review. SN Appl. Sci. 2019, 2, 139. [Google Scholar] [CrossRef]
Technique | Advantages | Disadvantages | Ref |
---|---|---|---|
Photolithography |
|
| [63,65] |
Electron Beam Lithography |
|
| [64,73,74] |
Scanning Probe Lithography |
|
| [64,75,76] |
Soft Lithography |
|
| [64,106] |
Nanoimprint Lithography |
|
| [74] |
Bulk Micromachining |
|
| [71,79,92] |
Surface Micromachining |
|
| [64,107,108] |
Combined Micromachining |
|
| [79] |
Electron-discharge Micromachining |
|
| [99] |
Laser Micromachining |
|
| [68,79,109] |
Electrospinning |
|
| [105,110] |
Application | Types of Nanosensor | Advantage(s) | Ref |
---|---|---|---|
Wearable cardiovascular monitoring |
|
| [143,146] |
Human steroid Hormone sensing |
|
| [147,148] |
Artificial auditory system |
|
| [149] |
Smart electronics textile for wearable body sensor |
|
| [150] |
Ocular applications (contact lens) |
|
| [144,151] |
Types of Nanoantenna | Nanomaterial(s) | Advantages(s) | Ref |
---|---|---|---|
Flexible and low-cost patch antenna |
|
| [162] |
Circular patch nanoantenna |
|
| [163] |
Graphene plasmonic Terahertz (THz) antenna |
|
| [164] |
ITO-based CNT coated transparent nano E-shape patch antenna |
|
| [153] |
Half-wave dipole MXene antenna for RF devices |
|
| [156] |
Optical dipole nanoantenna |
|
| [154] |
Application(s) | Nanomaterial(s) | Advantage(s) | Ref |
---|---|---|---|
Energy consumption |
|
| [168] |
Interconnect wires in the processor core |
|
| [169] |
High-performance resistive read access memory (RRAM) |
|
| [170] |
Complementary metal-oxide-semiconductor (CMOS) oscillators |
|
| [171] |
Test | Nanomaterial | Toxicity Assessment | Ref |
---|---|---|---|
MTT | Zr x -Cu100x | No toxicity in osteoblast cells | [194] |
MTT | Graphene | Biocompatible against HK-2 cells | [195] |
MTT | Silicon MEMS | No signs of infection or inflammation | [196] |
Trypan blue exclusion assay | PDMS, PS, SU-8 | >85% cells viability | [197] |
Clonogenic Assay | Carbon | >50 cell colony formation | [198] |
Apoptosis Assay | Ag | DNA damage leading to apoptosis | [199] |
DNA laddering | Graphene | DNA damage due to oxidation stress | [200,201,202,203] |
Caspase Assay | Mesoporous Si | Liver inflammation, hepatotoxicity | [204] |
Comet Assay | TiO2, SiO2, ZnO, CeO2, Ag, MWCNT | Mild to considerable genotoxic effect | [205] |
Tunnel Assay | TiO2 | Increased gene expression of the inflammation and apoptotic effect | [206] |
Annexin V and Propidium iodide | GO-Ag | Increased production of ROS | [207] |
Lipid peroxidation Assay | Carbon based | Generation of ROS, inflammation, damage to the proteins | [198,199] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahlan, N.A.; Thiha, A.; Ibrahim, F.; Milić, L.; Muniandy, S.; Jamaluddin, N.F.; Petrović, B.; Kojić, S.; Stojanović, G.M. Role of Nanomaterials in the Fabrication of bioNEMS/MEMS for Biomedical Applications and towards Pioneering Food Waste Utilisation. Nanomaterials 2022, 12, 4025. https://doi.org/10.3390/nano12224025
Dahlan NA, Thiha A, Ibrahim F, Milić L, Muniandy S, Jamaluddin NF, Petrović B, Kojić S, Stojanović GM. Role of Nanomaterials in the Fabrication of bioNEMS/MEMS for Biomedical Applications and towards Pioneering Food Waste Utilisation. Nanomaterials. 2022; 12(22):4025. https://doi.org/10.3390/nano12224025
Chicago/Turabian StyleDahlan, Nuraina Anisa, Aung Thiha, Fatimah Ibrahim, Lazar Milić, Shalini Muniandy, Nurul Fauzani Jamaluddin, Bojan Petrović, Sanja Kojić, and Goran M. Stojanović. 2022. "Role of Nanomaterials in the Fabrication of bioNEMS/MEMS for Biomedical Applications and towards Pioneering Food Waste Utilisation" Nanomaterials 12, no. 22: 4025. https://doi.org/10.3390/nano12224025
APA StyleDahlan, N. A., Thiha, A., Ibrahim, F., Milić, L., Muniandy, S., Jamaluddin, N. F., Petrović, B., Kojić, S., & Stojanović, G. M. (2022). Role of Nanomaterials in the Fabrication of bioNEMS/MEMS for Biomedical Applications and towards Pioneering Food Waste Utilisation. Nanomaterials, 12(22), 4025. https://doi.org/10.3390/nano12224025