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Nurul Fauzani Jamaluddin 1,2, Bojan Petrović 5 , Sanja Kojić 4 and Goran M. Stojanović 4,*
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5 Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
* Correspondence: fatimah@um.edu.my (F.I.); sgoran@uns.ac.rs (G.M.S.); Tel.: +381-603-7967688 (G.M.S.)

Abstract: bioNEMS/MEMS has emerged as an innovative technology for the miniaturisation of
biomedical devices with high precision and rapid processing since its first R&D breakthrough in
the 1980s. To date, several organic including food waste derived nanomaterials and inorganic
nanomaterials (e.g., carbon nanotubes, graphene, silica, gold, and magnetic nanoparticles) have
steered the development of high-throughput and sensitive bioNEMS/MEMS-based biosensors,
actuator systems, drug delivery systems and implantable/wearable sensors with desirable biomedical
properties. Turning food waste into valuable nanomaterials is potential groundbreaking research in
this growing field of bioMEMS/NEMS. This review aspires to communicate recent progress in organic
and inorganic nanomaterials based bioNEMS/MEMS for biomedical applications, comprehensively
discussing nanomaterials criteria and their prospects as ideal tools for biomedical devices. We
discuss clinical applications for diagnostic, monitoring, and therapeutic applications as well as the
technological potential for cell manipulation (i.e., sorting, separation, and patterning technology).
In addition, current in vitro and in vivo assessments of promising nanomaterials-based biomedical
devices will be discussed in this review. Finally, this review also looked at the most recent state-
of-the-art knowledge on Internet of Things (IoT) applications such as nanosensors, nanoantennas,
nanoprocessors, and nanobattery.

Keywords: nanomaterials; biomedical nanoelectromechanical systems (bioNEMS); biomedical mi-
croelectromechanical systems (bioMEMS); drug delivery system; point-of-care

1. Introduction

Biological (or biomedical) applications of nano-/micro-electro-mechanical systems
(bioNEMS/MEMS) are emerging advanced devices for rapid, sensitive, and real-time
analysis of biological samples. Micro and nanofabrication started with bulk and surface mi-
cromachining for silicon in the electronic industry. The rapid development of single-crystal
silicon using MEMS technology has led to an interest in employing glass and polymer-
based materials to fabricate MEMS devices. As a result, this technology branched out to
cater to other industries such as biomedical industries, which later formed the foundation
for bioNEMS/MEMS technology [1,2]. bioNEMS/MEMS devices are expected to perform
sample screening and analysis cycles in the millisecond to picosecond range, necessitating
careful consideration of factors such as device design, sensor sensitivity, and material selec-
tion. Nanomaterials-based bioNEMS/MEMS have found potential in a myriad of biomedi-
cal applications, from drug delivery systems, cell manipulation (e.g., sorting–separation
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technology and cell patterning) to point-of-care testing (e.g., surgical sensors, implant sen-
sors for tissue engineering applications, and rapid home monitoring devices) [3–6]. Hence,
the development of high-throughput nanomaterials-based bioNEMS/MEMS devices is
needed.

The primary goal of this review is to explore the progress of nanotechnology and
bioNEMS/MEMS by focusing on the fabrication strategies and clinical applications that
have rapidly evolved in the past years, as summarised in Figure 1. In this framework,
we discuss the developmental trend of nanomaterials-based bioNEMS/MEMS and the
prospects for future biomedical devices. The amalgamation of multidisciplinary fields
between engineering, materials science, chemistry, biology, and computer science has
contributed to the rapid advancement of this technology. In this instance, the integration
of bioNEMS/MEMS to the Internet of Things (IoT) technology could be realised in the
near future. Therefore, we also discuss the current state-of-art of IoT platforms and their
potential to integrate information into bioNEMS/MEMS nanodevices. Lastly, challenges
and future opportunities for further development of nanomaterials-based bioNEMS/MEMS
will be thoroughly highlighted in this review.
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devices and future opportunities for integration with Internet of Things (IoT) technology.

2. Overview of Nanomaterials for bioNEMS/MEMS Applications
2.1. Classification of Nanomaterials

Nanomaterials in biomedical applications enable the miniaturisation of bioNEMS/MEMS
with multifunctional capabilities, which facilitates control and regulation of the biological
environment [7,8]. The miniaturisation of devices is important to allow their operation
in a specific area for a selected duration of time. Materials at the nanoscale range exhibit
outstanding electrical, mechanical, chemical, and optical properties and an increase in the
surface area of a material also enhances its catalytic ability [9,10]. However, the biocompati-
bility of nanomaterials-based bioNEMS/MEMS such as biosensors, actuation systems, drug
delivery systems and smart stents is an important concern to prevent the toxicity and loss
of functionality of the device in both in vitro and in vivo conditions [11]. Some of the im-
portant criteria of nanomaterials that are promising for the fabrication of bioNEMS/MEMS
are their fascinating tuneable electronic, mechanical, and optical properties [12,13]. Fur-
thermore, nanomaterials also promote the adhesion between the substrate and biological
molecular layer and the substrate, which enables the tunnelling-based charge transport
of the nanocomposites [14]. In addition to that, other properties such as chemical stability,
thermal stability, heat conductance, porosity, and surface area are also important features
of the nanomaterials-based bioNEMS/MEMS [15,16].
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Metal nanoparticles, carbon nanomaterials including polymer nanocomposites, are
the most commonly adopted nanomaterials for the fabrication of bioNEMS/MEMS (Fig-
ure 2) [17,18]. The heterogeneous integration of bioNEMS/MEMS devices with nanomate-
rials has created a breakthrough in the biomedical field for applications such as sensing,
diagnostics, imaging, and therapeutics. The nanomaterial-bioNEMS/MEMS developed
for drug delivery applications include micropumps, microneedles, and micro-reservoirs to
achieve targeted drug delivery. The nanomaterials-based micro/nanoneedles are small-
scale bioNEMS/MEMS devices that possess unique properties whereby they can be mod-
ified for selective transport of drug molecules, and the superior electronic properties of
nanomaterials enable the control of the delivery by applying an electric field [11]. For
example, a novel approach of integrating carbon nanotube (CNT) nanofilters with SU-8
microneedle array devices was fabricated for transdermal drug delivery through the lithog-
raphy process [19]. The fabricated device is capable of penetrating the stratum corneum
layer and with the help of CNT, the drug molecules are selectively delivered to specific
tissues with an applied electric field. Similarly, for drug delivery into the tissue, a nanosized
drug delivery vehicle bioNEMS/MEMS that employs the micro-nano reservoirs concept
was used [20]. Paclitaxel drug delivery into human glioblastoma cells and human um-
bilical vein endothelial cells tissues was achieved with the help of a nanomaterial coated
biocompatible co-polymer block of poly(lactide)-poly(ethylene glycol) (PLA-PEG). The
co-polymer was found to reduce the in-vitro toxicity and the surface properties of nanoma-
terials prevent tissue aggregation and improve the drug loading to increase therapeutic
efficacy.
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Figure 2. Types of inorganic nanomaterials developed using bioNEMS/MEMS techniques for biomed-
ical applications.

In the field of biosensing, the nanomaterial-coated bioNEMS/MEMS plays a significant
role in the biomedical field due to some unique features such as portability, fast response,
and high sensitivity. The unique biological and physical properties of nanomaterials enable
target biomolecule identification and cause–effect transduction of an electronic signal in
bioNEMS/MEMS biosensors [11]. The integration of nanomaterials in the system allows
the miniaturisation of the system into a single chip to facilitate the fabrication of point-of-
care devices. A study by micro-nanocantilevers increased immobilisation of the cholesterol
oxidase enzyme for sensitive detection of cholesterol levels up to 100 femto molar within
a short period of response time. Similarly, Sharma, et al. [21] explored the effect of gold
nanoparticles on the electrical conductivity, electroactive surface area and electrochemical
activity of nano-sized carbon interdigitated electrodes. This amperometric MEMS biosensor
exhibited a wide sensing range (0.005–10 mM), high selectivity and high sensitivity with a
limit of detection (LOD) of ~1.28 µM for cholesterol detection.
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2.2. Nanomaterials Synthesised from Food Waste

In past years, a plethora of nanoparticles have been produced through various tech-
niques and adopted to advance technologies for biomedical applications [22]. With the
advancement of knowledge in the field of materials science and engineering, researchers are
keener on ensuring the sustainability of the nanomaterials production processes. Through
these initiatives, many alternative inputs for nanomaterials production as well as green
synthesis techniques were introduced widely. Rapid urbanisation led to a massive increase
in food waste or food-derived waste which includes agricultural waste [23]. Around 1.3
billion tons per year of edible food produced for human consumption were wasted globally.
The wastage of food starts from the initial stage of agricultural production down to the
final household consumption [24]. For medium- and high-income countries, food wastage
is high at the final consumer stage, whereas in low-income countries the wastage occurs
initial or middle stage of the food supply [25]. Moreover, in Europe and North America,
food wastage accounts for 280–300 kg/year, which is equivalent to 95–115 kg/year per
capita. However, in Sub-Saharan Africa and South/Southeast Asia, food wastage accounts
for 120–170 kg/year, which is equivalent to only 6–11 kg/year per capita [26]. According
to the recent food waste index published in 2021 as summarised in Figure 3, European
countries produce approximately 3400 kg/capita/year, whereas Asia is one of the highest
contributors of food waste, producing more than 4300 kg/capita/year of household food
waste [27].
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Aside from the startling statistics, the negative repercussions of wasted food on society
take many other forms, ranging from immediate financial losses to environmental pollution
including air and land contamination. Products with low and negative values (waste)
can be converted into useful resources. Its utilization as a resource for the production
of high-value materials is a profitable route to improving sustainability and lowering fi-
nancial expenditure of many industries and scientific disciplines including biomedicine
and nanomaterials [28]. The wastes can be utilized to produce valuable nanomaterials
such as carbon-based nanomaterials, silver, zinc, gold and chitosan that can be used for
biomedical applications as they add integrated functionalities to the bioNEMS/MEMS
devices [23,29,30]. Interestingly, food wastes are a valuable source for the green syn-
thesis of nanomaterials due to their low toxicity, cost-effectiveness, nano-size, and high
stability properties. These features of nanomaterials are important for integration with
bioNEMS/MEMS especially, for therapeutic and diagnostic purposes as the system must
be biocompatible as their use should not cause cell toxicity [31]. Due to the organic nature
of most of the food waste, the nanomaterials can be synthesized using green ways to
complement the traditional synthesis method such as chemical, hydrothermal, and high-
pressure treatments, which can be toxic due to the use of adverse chemicals and that limits
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its biomedical applications. Nanomaterials from food waste are often synthesized using
the pyrolysis method, carbonization, thermal decomposition and other chemical-free green
synthesis methods [32–35].

Up to now, very limited studies reported on utilizing food waste such as eggshells,
peanut shells, coconut shells and coconut noir to fabricate MEMS devices [36–38]. Despite
that, with the aid of two different kinds of agricultural waste, especially coconut coir
and coconut shell, the method for converting waste into high-value capacitor-reduced
graphene oxide electrodes has been proposed [37]. It has also been shown that negative
value peanut shells, a common agricultural waste, can be converted into graphene-like
nanosheets consisting of several layers [38]. Because of the low cost and enormous amount,
which can help in addressing global problems such as water and energy crises, this food
waste reuse strategy has enormous significance for the upcoming management of food
waste and material science. It also holds truly excellent for a sustainable society. In this view,
food waste-based bioNEMS/MEMS could open a new research niche following explosive
interests in food waste-based nanomaterials. Repurposing food waste into innovative
products is one of the promising circular economy approaches in an attempt to tackle the
food waste problem. Therefore, the exploration of new research niches could be a blueprint
to achieve sustainable food waste management in future. Furthermore, this new research
area is in alignment with the 2030 Sustainable Development Goals set by the United Nations
General Assembly in its effort to reduce 50% of food waste by 2030 [31,39].

3. Perspective on Nanotechnology as an Enabling Tool for the Design of New
Functional Materials and Devices for bioNEMS/MEMS in Medical Applications

The integration of functional nanomaterials in the fabrication of bioNEMS/MEMS
created a breakthrough in the biomedical field. Nanomaterials introduce new features
and increase the overall performance in terms of sensitivity, portability, specificity, and
throughput without affecting the economic feasibility of the system. Nanomaterials with
bioNEMS/MEMS improve the overall mechanical properties of the system and allow the
researchers to better understand the cellular interactions at the molecular level [40,41].
Moreover, nanomaterials (e.g., carbon-based nanoparticles, graphene nanosheets, silver,
zinc and gold nanoparticles) in biomedical applications provide good control and regulation
of the biological environment because the micro-sized devices can be tuned to acquire
controlled multifunctional capabilities.

Metal nanoparticles are used in the fabrication of bioNEMS/MEMS for numerous
applications due to their ease of scalability, high surface-to-volume ratio and good optical
properties [42,43]. In particular, gold nanoparticles are widely used in biomedical appli-
cations mainly due to their low toxicity, good biocompatibility, tuneable surface plasmon
resonance (SPR), easy biofunctionalization and detection [44]. MEMS are usually coated
with gold nanoparticles which are photoresponsive nanomaterials that create laser-based
actuators for applications such as studying the effect of mechanical forces on cells, and
remotely triggering cardiac muscle stimulators [45]. The metal nanoparticles-MEMS hybrid
acquires good biocompatibility which helps create infrared light-driven cellular scale me-
chanical actuators that can be distributed throughout various types of tissue samples [46].
For instance, Schlicke, et al. [47] fabricated micro- and nanoelectromechanical systems
with freestanding organically cross-linked gold nanoparticle (AuNPs) membranes with
a thickness of 29–45 nm deposited through lithographic patterning in a SU-8 resist. This
finding can be used for the fabrication of electrostatic actuators due to the conductive
and flexible nature of the hybrid system and can be tailored for different applications by
tuning the particle size or structure of the cross-linker for mechanical, electrical, and optical
properties based on the different requirements.

Currently, bioNEMS/MEMS devices rely on the usage of silicon, but it has poor me-
chanical and thermal stability, which creates a demand for more promising materials to
be integrated into the fabrication of the system for biomedical applications [48]. Carbon
nanomaterials such as graphene, nanodiamonds, and carbon nanotubes are some of the
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promising alternatives due to some remarkable properties such as high Young’s modu-
lus, hydrophobic surface, low mass, tailorable electronic configuration and high thermal
conductivity [49]. Traditional bioNEMS/MEMS face major hurdles such as contamination
diffusion barrier properties, high variability, low yields, low physical and chemical stability,
tribology and wear rates and low reproducibility of surface functionalization which limits
their commercial applications [50]. Thus, with integration with carbon nanomaterials,
commercial feasibility and scalability are made possible.

Graphene is a two-dimensional (2D) material with high strength and stiffness that
can be used in bioNEMS and MEMS applications [51]. Graphene has high mechanical
strength, high carrier mobility, low density, and remarkable mechanical and electrical
properties which makes it a suitable transducer candidate for beams and membranes in
bioNEMS/MEMS applications [52]. Moreover, it also provides substantial device scalability
without compromising the performance of the device. Its excellent electrical conductiv-
ity enables integrated electrical transduction and its planar geometry allows itself easy
compatibility with patterning using a standard lithographic process [53]. For biomedi-
cal applications, graphene is mostly used for sensing purposes. For instance, Rahman,
et al. [54] researched the feasibility of applying graphene membrane as a pressure sensor
diaphragm in the MEMS piezoresistive pressure sensor for sensitive intracranial pres-
sure monitoring. The study reported that the proposed graphene-based MEMS device
structure is suitable to detect pressure-induced strain even at low-pressure applications.
Moreover, Khan and Song [55] fabricated graphene field-effect transistor (GFETs)-based
bioMEMS devices for the detection of interleukin-6 (IL-6) protein biomarkers. In this study,
pyrene-tagged deoxyribonucleic acid (DNA) aptamers were immobilised on the sensing
platform easily due to the presence of graphene which aids the π–π stacking bonding with
the negatively charged DNA aptamer in the presence of negative electric field. Graphene
increased the immobilization rate and the surface coverage for a more sensitive IL-6 pro-
tein detection up to the picomolar range. Graphene has explored significant potential,
especially as the negative piezoconductive effect of mono-layer graphene which can be
used for flexible sensors for electronic skin and wearable devices [56]. Chen, et al. [57]
developed a nanowires/graphene heterostructure-based pressure sensor for static pres-
sure measurement. The synergistic effect between the strain-induced polarisation charges
of piezoelectric nanowire and the high carrier mobility of graphene achieved sensitivity
for static pressure measurement up to 1.06 × 102 kPa of within 5–7 ms response time.
The nanowires/graphene heterostructure-based device design developed in this study is
suitable for wearable human health inspection.

Carbon nanotubes offer great potential for electronic and biomedical applications
owing to their outstanding mechanical, electrical, optoelectrical, thermal, and physical
solid-state surface properties [58,59]. With a controlled synthesis condition, structural
properties (chirality, semi-conducting/metallic properties, single or multi-walled), and size
(diameter/length), CNT extend their applicability to bioNEMS/MEMS [50]. With these
advances in the area of biomolecule–CNT hybrid systems, many potential applications
within the biomedical field can be explored. The CNT can also be integrated into a carbon
microstructure using various MEMS fabrication techniques. The large active surface area of
CNT-modified carbon microstructures shows great potential and performance in biosens-
ing. Xi, et al. [60] studied the efficiency and performance of a multi-walled CNT-modified
C-MEMS electrode for the detection of glucose. In this study, the glucose oxidase was im-
mobilised in polymerised polypyrrole film onto the CNT carbon microstructures in which
the presence of CNT leads to increased electroactive sites for enzyme loading and facilitates
rapid electron transfer rate. This CNT-based MEMS amperometric glucose biosensor results
in the sensitive detection of glucose with a linear detection range of 5 to 80 mM and a limit
of detection of 97.3 mA M−1 cm−2 within 10 s of response time. Moreover, MEMS tech-
nology also paves a way for the fabrication of microelectrode arrays (MEA) with uniform
electrochemical characteristics for various biomedical applications. Xu, et al. [61] developed
an MEA-based bioMEMS device for electrochemical detection of 5-hydroxytryptamine
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and dopamine for neural function analysis at both the single cell and network levels. The
microelectrodes were coated with chitosan multi-walled carbon nanotubes (MWCNT)
hybrid through electrochemical deposition. This nanomaterial film allows high loading
of electrochemically active (bio-) molecules and improves the electrochemical currents of
diffusing electroactive species, which leads to high signals. The high catalytic activity of
the hybrid film bioMEMS resulted in oxidation peak separation of the electroactive neu-
rotransmitters along with improved current response with a detection range of 5 × 10−6

M to 2 × 10−4 M and 1 × 10−5 M to 3 × 10−4 M for dopamine and 5-hydroxytryptamine,
respectively. Carbon nanotubes are also often coupled with polydimethylsiloxane as poly-
mer nanocomposites for biomedical applications. For instance, these nanocomposites have
been used for the fabrication of flexible pressure sensors to detect endovascular aneurysm
repair problems [62]. The feasibility of CNT-based NEMS/MEMS has been proved by
many researchers. This integration will result in the next generation of nanotransducers.

4. NEMS/MEMS Fabrication Technologies with Nanomaterials

In this section, NEMS and MEMS fabrication technologies, which pertain to nanoma-
terial manipulation, will be described, as well as the ones which are most commonly used,
such as bulk micromachining techniques. The aforementioned techniques are microma-
chining techniques, and the following ones will be described: photolithography, electron
beam lithography, scanning probe lithography, soft lithography, nanoimprint lithography,
bulk micromachining, surface micromachining, electro-discharged micromachining, laser
micromachining and suspended carbon nanowire technique (Figure 4). In the process of
fabrication these techniques can be used sequentially.
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4.1. Photolithography

Photolithography, like other lithography processes, uses a substrate, most popularly
silicon wafers, onto which a layer of coating is applied. Photoresists are coated on a
layer of nitride, oxide, or any metal film that has been either deposited or grown on
the aforementioned silicon wafer during the photolithography process. Depending on
the type of photoresist, exposing it to light either removes or leaves the sensitive layer
behind (positive or negative, respectively). As a result, the pattern is transferred from the
overlaying mask to the photoresist [63]. Following that, other techniques such as etching
are used. Photolithography can be used multiple times, layer by layer [64].

Photolithography, also known as optical lithography or ultraviolet (UV) lithography,
is highly resistant to chemical agents, bases, and acids. It is also distinguished by its high
photosensitivity to radiation. It has adequate adhesion to the surface of the substrate.
Working resolution is limited by the diffraction of the used light and also the wavelength
of the used radiation beam [65]. Photolithography’s rapid and selective UV-curing allows
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for faster fabrication than soft lithography. In light of this, there has been an increase in the
preparation of preceramic photoresists [63].

As it is a relatively common method in practice, it has been beneficial in developing
novel approaches to different types of sensors. Micro-machined Al shadow masks have
been reported to be used in photolithography to create resonant sensors [66]. Furthermore,
a three-step photolithographic process for releasing a resonator structure also has been
proposed [66]. Sui, et al. [67], used photolithography to define the chromium (Cr) hard
mask after the completion of chromium deposition with the goal of fabricating GaN/AIN. A
different photolithography technique known as two-photon lithography has been used for
manufacturing complex 3D structures on the micro- and nanoscale [68]. Three-dimensional
direct laser lithography based on multiphoton absorption has also been used for nanoscale
structure fabrication [69]. However, both photolithography and conventional lithography
have been shown to be time-consuming processes; as a result, laser machining techniques
are becoming more popular, overcoming this limitation [68].

Aside from directly fabricating NEMS/MEMS, photolithography is used as a fabri-
cation step for cantilevers. UV lithography was used as the first step in the fabrication
of cantilevers by Udara, et al. [70]. X-ray photolithography is used to create patterns in
relatively thick photoresist layers [71].

4.2. Electron Beam Lithography

Aside from the variations discussed in the following paragraph, electron beam lithog-
raphy (EBL) is a serial write patterning process that produces patterns as a direct result of a
small spot of electrons being deflected across a substrate [72]. The previously mentioned
process is mostly used in nanoscale pattern creation [73].

The advantages of EBL over other methods include the absence of a mask for pattern
transfer [73]. Moreover, it gives precise control over the energy and dose of the electron
beam, as well as accurate registration over small areas on a wafer and lower defect densi-
ties [64]. However, the application of EBL is constrained by its slow exposure speed, high
cost, and resolution limitations caused by electron beam diffraction in solids [64,74].

4.3. Scanning Probe Lithography

Scanning probe lithography (SPL) is another type of atomic-scale write patterning
process based on scanning tunnelling microscopy, which generates images by passing
a conducting tip over a surface with a constant tunnelling current [64]. The advantage
of SPL over EBL is that it has higher resolution and lower energy electrons with lateral
scattering [64,75]. Aside from that, it has demonstrated other advantages over other
lithographic processes. These include low costs, 3D patterning, high-quality patterning,
and so on [76].

One significant disadvantage is that SPL, particularly mechanical SPL (m-SPL), which
uses force to pattern, is relatively slow [76]. This can be overcome by using different types
of SPL, such as thermal SPL [77]. Thermal SPL (t-SPL) uses concentrated heat to activate
endothermic decomposition and evaporation of thermally sensitive resist [76].

SPL maximises friction-induced selective etching, which uses a diamond tip to scratch
the surface of a resist. It has higher resolution and flexibility, making it a promising method
for fabricating micro/nanostructures [78].

4.4. Soft Lithography

Soft lithography, which is primarily used for the fabrication of nano/microstructures,
is a method that uses a master stamp to transfer the pattern onto a substrate using a special
ink [64]. Because of its biocompatibility and low cost, polydimethylsiloxane (PDMS) has
been most commonly used as a stamping material. Soft lithography is most commonly
used for the development of microfluidic devices [79]. It is used for developing lab-on-chip
and flexible electronics [80].

Soft lithography is typically comprised of six stages [81].
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1. Soft mould creation;
2. Preparation of metal and ceramic slurries;
3. Filling of the soft mould with the prepared slurries;
4. Drying or curing and demoulding;
5. De-binding;
6. Sintering.

As previously stated, the soft lithography process is relatively slow due to the exten-
sive steps and processes involved. As a result, photolithography is preferred for ease of
fabrication [63]. There are five types of soft lithography, which include micro-moulding in
capillaries, micro-transfer moulding, micro-contact printing, replica moulding and solvent-
assisted micro-moulding [81].

4.5. Nanoimprint Lithography

Nanoimprint lithography (NIL) is a high resolution (more than 10 nm) and high
efficiency lithography technique that employs a patterning technology that involves the
deposition and exposure of a low viscosity resist onto a substrate [82]. This process utilises
capillary action in which the fluid quickly flows into the lowered pattern mask and the
resist will be exposed under UV light for curing. Finally, the pattern mask is removed,
leaving the resist on the substrate [83]. NIL is used for nano structuring Si wafers [78], as
well as crystalline silicon pillars [84].

Depending on the polymer characteristics, there are three families of NIL [85]:

1. Electrical NIL;
2. Thermal NIL;
3. UV NIL.

NIL has drawbacks despite being a high-efficiency, high-resolution method that is
more widely used than other lithography techniques. The pattern stamp’s positioning is
critical, and if there is a mechanical shift, the imprinting will be misaligned [75]. Aside
from that, controlling defectivity and template life is difficult [74].

4.6. Bulk Micromachining

Bulk micromachining is a MEMS fabrication process that involves removing spe-
cific amounts of the silicon substrate to create the desired structure [71,80]. Etching is a
significant subtype of bulk micromachining that will be discussed in detail below [71].

This method is most often performed by depositing a masking material layer and then
patterning it by exposing the areas on the substrate which will be etched [86]. It has been
used in a wide range of different MEMS applications (MEMS silicon accelerometers) [87],
as well as cantilever fabrication [88,89]. Bulk micromachining techniques can be used along
with other methods such as wafer bonding [90]. Aside from etching techniques, some bulk
micromachining techniques are silicon wet bulk micromachining techniques.

1. Silicon wet bulk micromachining

Used mainly for the fabrication of cantilevers and cavities, silicon wet bulk microma-
chining is used in laboratories and the industry for MEMS applications [91]. It is used for
surface texturing with the goal of minimising the reflectance of light [92].

2. Etching

Etching is the process of removing materials from a specified area [79]. It is divided
into two groups: dry and wet etching. During the process of dry etching, microfeatures
are achieved by milling through the usage of an ion beam or using reactive ion etching,
whereas wet etching uses etchant solutions [81].

(a) Wet etching

The amount of etching of a substrate is controlled by parameters such as etching
solution concentration, etching temperature, rate, and roughness [79], making wet etching
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highly modulable. The ability of batch fabrication is an important aspect of wet etching,
resulting in it being widely used in the industry [91]. When it comes to NEMS/MEMS
fabrication, wet etching can be used in creating anisotropic directional etches on crys-
talline materials [66] for the production of cantilevers [70], as well as in the fabrication of
microfluidic devices [93].

(b) Dry etching

As the name implies, dry etching does not use any etchant solution. There are two
types of dry etching, namely ion beam etching and reactive ion etching [79]. The ion beam
etching produces smooth edges on curves, whereas reactive ion etching uses inductively
coupled plasma (ICP-RIE) to remove the chromium oxide sacrificial layer at a cryogenic
temperature [84,94]. Dry etching is a common method used in NEMS/MEMS applications.
For example, this method was adapted in the process of making 3D silicon nanowires for
FET biosensors [95]. With the goal of making PIN diodes, Schottky diodes, junction field-
effect transistors (JFETs), and metal oxide semiconductor field-effect transistors (MOSFETs),
the previously mentioned ICP-RIE is used [96]. ICP-RIE is also used in the fabrication
of resonators for high-frequency bands [97]. Moreover, dry etching is used as a step-in
fabrication of silicon-on-glass MEMS [98].

4.7. Surface Micromachining

As the opposite of bulk micromachining, surface micromachining techniques implore
additive processes that utilise thin films. A sacrificial layer is usually used for creating
a beam or membrane for moving parts. The most commonly used structural materials
are polysilicon and metal [64]. It has various uses, mainly for NEMS/MEMS applications,
capacitive MEMS accelerometer [87], and bulk acoustic resonators [66].

The drawback of using surface micromachining in comparison to bulk micromachining
is the fact that there is a need for a post-process with the goal of stress release [64].

4.8. Combined Micromachining

Since both surface and bulk micromachining techniques possess disadvantages, a
technique based on aspects of both of these micromachining techniques was developed [64].
A combination of both of these methods utilises etching techniques followed by deposition
techniques which in turn create more complex structures [79].

4.9. Electron-Discharge Micromachining

Electro-discharge machining (EDM) is the process of machining any conductive ma-
terial regardless of its chemical and mechanical properties, whilst getting thermo-electric
energy as a side product [99]. Similar to EDM, micro-electro-discharge machining or electro-
discharge micromachining were utilised in the fabrication of microscale features on any
conductive material that gives a crucial advantage [100]. Therefore, it is frequently used in
NEMS/MEMS applications [73]. It is used for the development of micro-electrodes and
micro-gears [101], as well as accelerometers [102].

4.10. Laser Micromachining

Laser micromachining is a NEMS/MEMS fabrication technique which does not re-
quire a mask, nor any post fabrication steps [79]. Aside from not needing a mask during
fabrication, laser micromachining is precise, fast and has fewer heat-affected zones [68]. In
addition to its frequent use in the fabrication of biomedical technologies, laser microma-
chining is widely used in optoelectronics, photonics and applications utilising glass [93].
It is suitable for rapid prototyping and is commonly used in fabrication of microfluidic
devices [79]. However, there is still on-going investigation into its parameter optimization
for better performance [103].
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4.11. Electrospinning

The production of nanofibers from polymer with the aid of a high electrostatic force is
called electrospinning. During this process, the jet moves towards the receptor and when
it is within a distance of a few nanometres with the help of Casimir force, the jet and the
receptor attract which in turn attaches nanofibers to the surface of the receptor. These
nanofibers are in nano-range diameters and can be used in many NEMS/MEMS-based
devices [104,105].

The advantages and disadvantages of the discussed fabrication strategies are sum-
marised in Table 1.

Table 1. Advantages and disadvantages of bioNEMS/MEMS fabrication strategies.

Technique Advantages Disadvantages Ref

Photolithography

# Strong chemical stability
# Adequate adhesion
# Good photosensitivity

# Resolution limited to the
wavelength of the used light [63,65]

Electron Beam
Lithography

# No mask used
# Precise control over energy

and dose of the electron beam
# Accurate registration over

small areas on a wafer
# Lower defect densities

# Low exposure speed
# Costly method
# Resolution is limited to the

diffraction of electron beam
in solids

[64,73,74]

Scanning Probe
Lithography

# High resolution method
# Electrons have lower energy

in comparison to EBL
# Low cost
# 3D patterning
# High quality patterning

# Relatively slow method [64,75,76]

Soft
Lithography

# Cost-effective
# Does not require much

expertise or sophisticated
equipment

# Slow
# Other methods are

commonly preferred
[64,106]

Nanoimprint
Lithography

# High resolution (better than
10 nm)

# High efficiency

# Mechanical misalignments
are common

# Defectivity and template life
are difficult to control

[74]

Bulk
Micromachining

# Low cost
# Etched surface is smooth
# Good for making holes in

MEMS

# No layering on the same
wafer [71,79,92]
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Table 1. Cont.

Technique Advantages Disadvantages Ref

Surface
Micromachining

# Simple method
# Low cost
# Convenient formation of

multilayer systems

# Due to thin layers, bending
is frequent

# Post processing is needed
for stress relieving

[64,107,108]

Combined
Micromachining

# Decreased fabrication cost;
improves yield

# Low cost
# Guarantees electrical

reliability

# Post processing is needed [79]

Electron-discharge
Micromachining

# Fabrication on any conductive
material

# Only used on conductive
material [99]

Laser
Micromachining

# No mask required
# No post fabrication steps
# Precise, fast
# Few heat-affected zones
# Good for rapid prototyping

# Micro cracks
# Shock wave surface damage [68,79,109]

Electrospinning

# Suitable for testing
# Simple set up
# High modulative capability
# High productivity

# Great nanofiber diameter
distribution [105,110]

5. Clinical Applications of Nanomaterials-Based bioNEMS/MEMS

Emerging as one of the most advanced miniaturised electronics, bioNEMS/MEMS
offer the indispensable potential for various analytical biology characterisation in biomed-
ical fields. In the current research, increasing interests are directed at nanomaterials
(e.g., nanocrystal, organic/inorganic nanoparticles, carbon nanoparticles and composite-
nanoparticles) based nano/microsystems to sense or actuate biological components target-
ing diagnostics (e.g., detection early sign of diseases—cancers, cardiovascular diseases, oral
diseases), monitoring (e.g., disease monitoring—diabetes, glucose and blood coagulation
monitoring) therapeutics (e.g., drug delivery actuators) and cell manipulation applica-
tions [3,111–113]. This section highlights the clinical applications of nanomaterials-based
bioNEMS/MEMS classified into diagnostic, monitoring, therapeutic and cell manipulation
applications in great detail.

5.1. Diagnostic Applications

The ability to manufacture bioNEMS and MEMS in nano and sub-micron scales
has facilitated the development of user-friendly diagnostic devices. Advancement of
NEMS/MEMS in various industries such as lab-on-a-chip (LoC), miniaturised biosensors
and point-of-care testing enables rapid diagnosis and monitoring of chronic diseases such as
asthma, diabetes, Alzheimer’s disease, cardiovascular diseases, and cancers. Most notably,
early detection of cancer biomarkers is feasible with the help of these biosensors. Table 2
summarises recent research on diagnostic and monitoring applications using bioNEMS
and MEMS technology. The transition of NEMS and MEMS technology to carbon-based
NEMS/MEMS (C-NEMS/C-MEMS) for cancer biomarkers detection is an attempt to
increase the sensitivity of the sensing devices. Carbon-NEMS/C-MEMS involves the
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patterning of carbon-based materials followed by pyrolysis in an oxygen-free environment.
According to Forouzanfar, et al. [114], C-NEMS/MEMS approaches offer facile fabrication
of electrochemical-based sensors equipped with tailored glassy-like carbon structures
(e.g., three-dimensional micropillar, microchannel, microarray) and active surfaces for
functionalization due to the high presence of carboxyl groups (-COOH). This has been
observed in several studies that developed label-free C-MEMS aptasensors through the
introduction of carbon-rich materials (e.g., reduced graphene oxide, SU-8 photoresist) for
early detection of cancer biomarkers. In both studies, electrochemical characterisation
revealed a comparable linear range of detection [114,115].

The pressure sensor is another class of sophisticated biosensors with the ability to
transduce external pressure into electrical signals. Using NEMS and MEMS technology,
diagnosis and prevention of progressive vision impairment disorders such as glaucoma can
be achieved by employing pressure detection. Glaucoma is known to be caused by elevated
intraocular pressure (IOP) and without proper treatment, can lead to permanent blindness
due to chronic optic nerve damage [116]. In most cases, glaucoma is non-detectable until a
later chronic stage. A research group led by Liu, et al. [117] developed a contact lens sensor
using self-assembly graphene (SAG) film and MEMS technology. The advanced sensor
expressed ultra-high sensitivity towards simulated IOP fluctuation as shown in Figure 5.
Furthermore, the sensor showed reliable IOP detection in vitro tests on silicone (Figure 5a)
and porcine eyes. The contact lens biosensor showed enhanced sensitivity owing to the
excellent strain sensitivity and desirable graphene properties with flexible overlapping
morphology as illustrated in Figure 5c. To date, limited studies were invested in pressure-
based biosensors using NEMS and MEMS technology despite promising findings in recent
research that show the applicability of this technology for early diagnosis of glaucoma.
Despite promising findings in recent research that show the applicability of this technology
for early diagnosis of glaucoma, limited studies have been invested in pressure-based
biosensors using NEMS and MEMS technology to date. With the estimated projection
of glaucoma to reach 112 million cases by 2040, immediate interventions and research
investment are required [116]. Examples of recent bioNEMS/MEMS with nanomaterials in
diagnostic, monitoring and therapeutic applications are summarised in Table 2.
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of the sensing mechanism of contact lens integrated with SAG film. Reprinted with permission from
ref [117]. Copyright 2022 John Wiley and Sons.
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Table 2. Example studies on nanomaterials-based bioNEMS/MEMS for diagnostic, monitoring and
therapeutic applications (selected studies between 2017–2022).

Technology Type of
Nanomaterials

Biomedical
Application(s)

Tested
Biological
Samples

Outcome(s) Application(s) Ref

NEMS

1D photonic
crystal Cancers -

# Improved optical
sensitivity (13 452
nm/RIU) figure of
merit (FOM) (7 912
RIU−1) compared to
existing biosensors

Label-free
diagnostic
biosensor

(diagnostic)

[112]

Mesoporous
silica

nanoparticles
Cancers -

# Fast delivery of drug
loaded nanocarriers
within 30 min without
the need for external
stimulation

# Controlled release of
payloads

Targeted drug
delivery for

cancer therapy
(therapeutic)

[3]

MEMS

Titanium diox-
ide/tungsten

trioxide
(TiO2/WO3)
nanocompos-

ites

Cardiovascular
diseases -

# Highly selective
towards isoprene
(breath biomarker for
cholesterol
abnormalities) ranging
between 20 ppb
(abnormal cholesterol)
to 80 ppb (normal
cholesterol)

Cholesterol
breath analyser

(diagnostic)
[118]

Monolayer
graphene

Coronavirus
disease (e.g.,
COVID-19)

Nasopharyngeal
liquids

# Highly sensitive and
label-free detection of
unamplified
SARS-COV-2 as low as
0.02 copies/µL in
nasopharyngeal swap
samples

Point-of-care
testing

(diagnostic)
[4]

Biofunctionalized
reduced

graphene oxide
Diabetes Human blood

serum

# Ultra-high selectivity
towards glucose
compared to uric acid,
cholesterol and
ascorbic acid

# 4.3 times higher
glucose sensitivity for
3D carbon electrodes
compare to 2D carbon
electrodes

Electrochemical
glucose

biosensor
(monitoring)

[113]
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Table 2. Cont.

Technology Type of
Nanomaterials

Biomedical
Application(s)

Tested
Biological
Samples

Outcome(s) Application(s) Ref

Reduced
graphene oxide,

gold and
platinum alloy
nanoparticles

Diabetes Human sweat

# High sensitivity with
favourable glucose
detection limits

# Comparable efficiency
to the commercial sensor
with glucose recovery
between 93 to 96%

Wearable
glucose sensor
(monitoring)

[119]

Cerium oxide-
polyethylene

glycol-glucose
oxidase

nanoparticles

Diabetes Artificial tear

# In vivo: Detectable
changes in reflection
spectrum corresponded
to glucose concentration
in diabetic mouse group
compared to
non-diabetic mouse
group

Contact lens
biosensor

(monitoring)
[120]

Magnetic
nanoparticles

Cardiovascular
diseases -

- Negligible increase in
simulated body
temperature (~2 ◦C),
thus reducing risk of
induced hyperthermia

- In vivo catheter
implantation showed
good biocompatibility

Implantable
catheter

(therapeutic)
[118]

C-MEMS

Gold (Au)
nanoparticles

Cholesterol-
associated
diseases

-

# Au nanoparticles
deposition facilitated
selective
immobilisation of
cholesterol oxidase

# High sensitivity and
reliability to detect the
low concentration of
cholesterol

Cholesterol
rapid detection

(diagnostic)
[21]

Interdigitated
array

nanoelectrode

Cardiovascular
disease

(myocardial
infarction)

Human serum
Highly sensitive for cardiac
myoglobin detection as low

as 0.43 pg/mL

Immunosensor
for cardiac
Biomarker

(diagnostic)

[121]

Gold particles
with dendritic
nanostructures

(AuNs)

Diabetes -

# AuNs/nanoporous
sponge-like networks
electrodes showed
3.8-fold higher
sensitivity and
27.7-fold increase in
detection limit
compared to
AuNs/bare carbon
electrodes

Non-enzymatic
glucose sensor
(monitoring)

[122]
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5.2. Monitoring Applications

Apart from diagnostic applications, these nano/microsystems have shown promising
potential in various disease monitoring applications. Undoubtedly, research on monitoring
glucose levels for diabetic patients receives much attention from the mainstream scientific
community as diabetes is one of the top four leading non-communicable diseases behind
cardiovascular diseases, cancers, and respiratory diseases. It is estimated that 693 million
patients will be diagnosed with diabetes and at least half of the world’s population will
remain undiagnosed by 2045 [123]. As a result, numerous studies are being directed
towards early diagnosis of diabetes, monitoring of blood glucose levels and delivery of
therapeutic agents (e.g., insulin). In recent years, the use of biological fluids such as
whole blood, sweat and tears has shown promising outcomes for monitoring glucose
levels [113,119,120] (Table 2). Monitoring glucose with enzymatic-based sensors (e.g.,
electrochemical and optical sensors) that rely on the detection of the glucose oxidase
enzyme can be difficult. This is because of the fact that the glucose oxidase enzyme is
extremely sensitive to changes in pH, body temperature, and ionic strength [124]. Despite
challenges in regulating sweat behaviour in situ, current proof-of-concept studies have
demonstrated the ability of their biosensors to detect and monitor glucose levels from
biological sweat [119,125]. In this case, future research could look into how different real
sweat conditions affect enzyme-based biosensor sensitivity and reliability.

Surgical technology has recently followed the trend of incorporating nano/micro-
systems to monitor surgical performance and post-operative treatments. Because of ad-
vancements in sensor technology, real-time monitoring of various post-operative care and
recovery such as fracture healing, early signs of infection determination that could poten-
tially lead to sepsis if not properly assessed and treated, and wound recovery monitoring
is now possible [126]. Implantable biosensors are also useful for many invasive implant
surgeries (e.g., orthopaedic implants—total knee and hip replacements, spine implants)
because they provide real-time implant monitoring or post-implantation data for improved
clinical outcomes [5,126]. Anderson, Wilson and Holdsworth [5] demonstrated techni-
cal modifications to a MEMS pressure sensor that allowed them to measure changes in
deformation up to 350 µm.

5.3. Therapeutic Applications

Recent MEMS technology advancements enable the delivery of multiple therapeu-
tics at a predetermined time within a miniaturised implantable “pharmacy-on-a-chip”
design. In 2012, Farra, et al. [127] pioneered the first human clinical trial by subcuta-
neously implanting a “pharmacy-on-a-chip” device to deliver an anti-osteoporosis drug
an alternative anabolic osteoporosis treatment. The trial confirmed systematic delivery
of the anti-osteoporosis drug (up to 20 doses per device) equivalent to the conventional
subcutaneous injections. Furthermore, eight osteoporotic postmenopausal women who
volunteered for the trial experienced no cytotoxicity side effects from the implanted devices
and experienced minimal pain before and after implantation. Their promising findings
served as a stepping stone for further development of future devices that can deliver
precise dosage by opening up to 100 different reservoirs within microseconds [128]. A
recent study by Li, et al. [129] developed hybridised gefitinib-loaded nanocarriers for lung
tumour-targeted delivery. The hybridised nanocarrier systems embedded within the NEMS
platform demonstrated a pH-responsive with prolonged in vitro drug release. Their study
showed that the NEMS system was reliable for improving the delivery of gefitinib to the
targeted lung tumour cells. Overall, the system has a lot of potential as a multifunctional
and high-performance biomaterial for targeted lung tumour drug delivery with enhanced
antitumor effect and sustained release behaviour. The latest research has demonstrated
effective transmembrane delivery of drug nanoparticles through the adaptation of NEMS
to the resonator technology. Specifically, Lu, Palanikumar, Choi, Huskens, Ryu, Wang,
Pang and Duan [3] established an acoustic method for direct delivery of doxorubicin (DOX)
across biological barriers of the cell membrane and endosomes. In this research, the delivery
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of DOX-loaded mesoporous silica nanoparticles to the targeted cytoplasm was navigated
via controlled hypersound from the NEMS resonator. The hypersound-influenced drug
delivery facilitated cellular uptake of drug nanocarriers with a size ranging between 100 to
200 nm showing the versatility to deliver a wide range of therapeutic drug nanoparticles
for cancer therapy. Another interesting and impactful research niche to improve the lives
of Alzheimer’s patients correlates to the in vitro screening and monitoring of Alzheimer’s
therapeutic drugs containing acetylcholinesterase (AChE) inhibitors. In this instance, Chae,
et al. [130] developed a low-cost graphene-based enzyme biosensor for screening and
monitoring enzymatic reactions between AChE and AChE inhibitor-therapeutic drugs. As
compared to conventional in vivo screening using transgenic animals or heavy dependence
on high-tech research instruments to analyse physiological fluids, the low-cost graphene-
based enzyme biosensor successfully screened two different AChE inhibitor-therapeutic
drugs (i.e., donepezil and rivastigmine). They also observed a significant enzymatic reac-
tion between AChE and AChE inhibitors with the ability of the biosensor to detect low up
to micromolar concentrations of AChE.

Nanochannels have been employed in recent studies using NEMS technology for drug
delivery systems (DDS). DDS can be divided into passive and active targeting strategies.
Nanochannels are part of the passive targeting strategy by having a supersaturated drug
reservoir for the passive release of drugs at the targeted sites through concentration-driven
transport [131]. By carefully adjusting the size and surface chemistry of microchannels, it is
possible to achieve sustained drug release. In vitro and in vivo assessments using rodents,
dogs, pigs and non-human primates have validated the applicability of nanochannel
NEMS technology as drug nanocarriers [132]. Since the discovery of nanochannels, several
promising nanochannel innovations have been commercialised and available in the market
with controlled drug release properties. Recently, NanoMedical Systems launched the
nStrada platform, a nanochannel chip drug delivery technology platform. At present, the
company is leading the innovation of nanochannel chips by having a refillable system with
high dosing properties compared to their competitors [133].

5.4. Cell Manipulation

The future of bioNEMS/MEMS is still blooming with limitless design possibilities
considering its multifunctionalities in a myriad of biomedical applications. The technology
has become an ideal tool for cell manipulation in the field of cell patterning and cell-sorting
applications as illustrated in Figure 6 [111,134]. Sorting and patterning of cells or biological
molecules using microchannels or nanochannels can be very useful for various clinical
diagnoses, stem cell research, cell-based drug screening, and tissue engineering [135]. The
guidance of cellular movement within the micro/nanochannels can be achieved via pas-
sive (e.g., channel/surface geometry, hydrodynamic forces) or active mechanisms. Active
mechanisms rely on external stimulation such as dielectrophoresis (DEP), optical, mag-
netophoresis and acoustophoresis [111,135,136]. Integrating nano/microfluidic and LoC
with bioNEMS and MEMS technology allows the fabrication of low-cost, high-throughput
devices for cell sorting and separation of biological samples. The current state-of-the-
art technology demonstrated promising sorting and separation of rare blood cell types
(e.g., sickle-cell red blood cells), circulating cancer, or parasites from biological blood sam-
ples [136,137]. The design of microfluidic systems using nanomaterials-based bioMEMS
technology can be traced back to a conceptual microfluidic bioparticle sorter conducted by
Nieuwenhuis and co-workers in 2005 [138]. In this study, gold (300 nm) and chromium
made up the different configurations of sorter electrodes (i.e., triangular and tetrahedral) for
potential cell alignment and DEP separation. The shift towards sorting and manipulation
of other biological components shows the potential of this technology for other biomed-
ical applications. For example, Fujiwara, Morikawa, Endo, Hisamoto and Sueyoshi [6]
developed a micro-nanofluidic system with nanochannels for size-sorting of exosomes, a
subtype of extracellular vesicles. Classification of exosomes depending on sizes may yield
more information on the exosomes’ biogenesis and a better understanding of extracellular
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vesicle mechanisms as potential biomarkers for liquid biopsy of cancers. In this instance,
the micro-nanofluidic design developed by Fujiwara and colleagues demonstrated the
ability to control the size-sorting of exosomes by manipulating the electric double layers of
the integrated nanochannels.
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6. Integrating NEMS/MEMS with IoT Applications with the Help of Nanomaterials
for Biomedical Applications

Nanomaterials not only play an important role in sensing technology but also con-
tribute to the boosting of wireless body networks and the emergence of the sixth generation
(6G) mobile networks. The progress of nanotechnology to some extent, has had an impact
on the size of wireless devices and led to the rise of nanodevices [139]. The integration of
information from nanodevices with communication technologies, the Internet of Things
(IoT) as well as the Internet of Bodies (IoB) has an enormous impact on our ability to
improve human health and longevity [140]. Highly functional nanodevices for real-time
monitoring and response against threats before they yield catastrophic consequences are
highly dependent on modern telemedicine. However, processing power and memory
will be the limitations of nanodevices due to their tiny form factors [139]. To overcome
these limitations, nanodevices are incorporated into either whole or parts of nanocircuits
namely nanosensor, nanoprocessor, nanomemory, nanoantenna, and nanobattery for ro-
bust technologies [140]. Adopting nanomaterials within nanocircuits not only ensures the
functionality, energy efficiency, and accuracy of nanodevices while reducing their size, but
also ameliorates the device properties and function itself compared to normal device size.

This section will review the role of nanomaterial in the development of nanodevice
and IoT for healthcare applications.

6.1. Nanosensor

Nanosensors are one of the important parts of a nanodevice that are capable of sens-
ing physical, chemical, and biological monitoring [141]. It comes in a nanoscale size,
nanosensor is a miniaturised traditional bioanalytical method, such as immunoassay, chro-
matography, and spectroscopy, by integration of microfluidics, and microelectronics in
lab-on-a-chip [142]. Nanomaterials and nanotechnology are widely used during the fabrica-
tion process of nanosensors to enhance accuracy, precision, and sensing detection [143,144].
The integration of nanosensor with IoT and body area network (BAN) technology in wear-
able and implantable sensors offer many advantages in providing real-time point-of-care
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diagnostics and therapeutics. Furthermore, the IoT and BAN platforms are considerate
of patients’ health and information privacy, as well as security concerns [145]. A compre-
hensive table highlighting the nanomaterials based nanosensors in wearable devices and
implants for various biomedical applications is provided in Table 3.

Table 3. Examples of nanomaterials-based nanosensors in wearable devices and implants.

Application Types of Nanosensor Advantage(s) Ref

Wearable cardiovascular
monitoring

# MEMS pressure sensor array
# Electrochemical
# Optical
# Pressure
# Paper-based

# IoT platforms in cardiovascular
monitoring potentially reduce
morbidity and mortality statistics due
to early diagnosis and response

[143,146]

Human steroid
Hormone sensing

# Nanoslot array-based terahertz
molecule-specific sensor chip

# Implantable sensor

# Discrimination and quantification of
trace amounts of steroid hormones in
biological specimens to elucidate
changing expression and prevention of
endocrine disorders

[147,148]

Artificial auditory system

# Piezoresistive
# Hydrogel
# Nanocomposites

# Closely mimic the biological cochlea
for hearing disorder due to ageing [149]

Smart electronics textile
for wearable body sensor

# Carbon-based nanomaterials
(CNT)

# Reduced graphene oxide (rGO)

# Real-time body physical, chemical and
electrophysiological sensing (strain,
pressure, temperature, sweat,
electrocardiogram (ECG),
electromyography (EMG) and etc.)

[150]

Ocular applications
(contact lens)

# Graphene contact lens
electrodes

# The graphene electrodes demonstrate
high-efficacy measurements of various
kinds of electroretinography without
corneal irritation for ocular application

[144,151]

6.2. Nanoantenna

Antennas are an important part of wireless communication data transfer, including
body area networks (BAN) and IoT. In BAN, signals from nanosensors or biosensors are
transmitted to the IoT gateway or bridge by using Bluetooth (IEEE 802.15.1) and Zig-
bee/Xbee (IEEE 802.15.4) connectivity modules within the permitted frequency bands
for medical devices according to the Industrial, Scientific, and Medical (ISM) radio band,
2.45 GHz. The IoT gateway or bridge then transmits the received signals from the nanosen-
sors or biosensors to the cloud storage via an internet connection (Wi-fi, 4G/5G, ethernet,
etc.).

The nanoantenna is a nanoscale version of radio-frequency (RF) or microwave an-
tennas used for signal transmission and reception [152]. Desirable properties such as
radiation, bandwidth, and transmission efficiency of the nanoantenna are not only main-
tained but enhanced with the use of nanomaterials (e.g., quantum dots, metallic nanos-
tructures/nanoparticles, graphene, indium-doped tin oxide (ITO)-based CNT and silver-
nanowires) compared to the conventional metal antenna [153–155]. Recently, 2D titanium
carbide (MXene) coating is explored in wireless communication and offers an opportunity
to produce transparent antennas [156]. To date, the nanomaterials-based nanoantenna
not only improves the transmission performance of existing wireless modules and com-
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munication technologies such as Bluetooth, Zigbee/Xbee RF modules, and 5G, but also
contributes to the 6G communication technology. The evolution of the 6G network has
become an important point in the healthcare sector toward smart healthcare treatments
that eliminate time and space barriers through patient remote monitoring and telesurgery,
for instance [157].

Aside from high-speed communication, nanoantenna radiation and electromagnetic
wave properties have the potential to be used for biosensing and imaging [154,158], en-
ergy harvesting [159], optical circuits [160], and in vitro and in vivo applications [161].
Table 4 summarises the benefits of nanomaterials-based nanoantennas for wireless sensing
technology and healthcare applications.

Table 4. Examples of nanomaterials-based nanoantenna and its advantages for wireless communica-
tion.

Types of
Nanoantenna Nanomaterial(s) Advantages(s) Ref

Flexible and low-cost patch
antenna

# MXene (Ti3C2Tx)

# A functional nanomaterial-based antenna
that serves the dual purpose of sensing and
communication

# High potential for based wireless sensing
[162]

Circular patch
nanoantenna

# Graphene

# Graphene nanoantenna enables high
miniaturization

# Ultra-wideband (UWB) behaviour
# Easy reconfiguration

[163]

Graphene plasmonic
Terahertz (THz) antenna

# Graphene

# The silicon-based substrate on graphene
THz antennas demonstrates good
performance in reflection coefficient,
impedance bandwidth, front-to-back ratio
and directivity and promising for THz
short-range communication, sensing and
biomedical applications

[164]

ITO-based CNT coated
transparent nano E-shape

patch antenna

# ITO-based CNT

# ITO-based CNT nanoantenna has better
performance in terms of broad bandwidths,
reasonable radiation efficiency, sufficient
gain, lightweight and compactness

# Suitable for satellite communication that is
potentially used for telehealth in rural or
areas with limited mobile communication
network

[153]

Half-wave dipole MXene
antenna for RF devices

# 2D titanium carbide
(MXene) coating

# MXene coating offers a transparent
antenna for various classes of RF for IoT
applications, portable, flexible and
wearable electronic devices

[156]

Optical dipole nanoantenna
# Cadmium selenide

quantum dots

# Intensified Terahertz radiation for
time-domain spectroscopy for medical
imaging applications

[154]
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6.3. Nanoprocessor

The processor is the heart and brain of every electronic device. It is primarily made
from silicon and consists of transistors. The nanoprocessor and its core (nanocore) are
constructed from intrinsically nanometre-scale building blocks and designed to be imple-
mented with minimal logic resources to control memories for small tasks [165,166]. In IoT
applications, the main feature of a nanoprocessor is the transfer of the data flows from
far-end devices through the communication channels in real time. Small energy consump-
tion and low cost yet high speed are among the important features for nanoprocessors to
function as IoT nanodevices [165].

The development of the nanoprocessor is yet to surface and is still in its state-of-the-art
stage [167]. However, the use of nanomaterials in processor and core fabrication demon-
strates their performance ability compared to silicon-semiconductor-based materials [168].
Table 5 summarises the role of nanomaterials in reducing energy consumption, boosting
processor speed and moving towards flexible read-access memory for IoT and wearable
smart data storage.

Table 5. Nanomaterials and selected applications of nanoprocessors for future biomedical applica-
tions along with their advantages.

Application(s) Nanomaterial(s) Advantage(s) Ref

Energy consumption

# Carbon nanotube
field-effect transistor
(CNFET)-based digital
circuits

# The CNFET that designed and fabricated
using industry-standard design flows and
processes overcoming nanoscale
imperfections at macroscopic scales across
full water substrates

# Offer energy-efficiency benefit

[168]

Interconnect wires in the
processor core

# Integrating graphene on
the interconnect wires

# Increase about 8% of speed boost and
contribute to 12% of energy saving [169]

High-performance resistive
read access memory (RRAM)

# Graphene oxidised with
a perpendicular
oxidation gradient

# Offers a high on-off current ratio of ~105,
long-term retention of ~106 s,
reproducibility over 104 cycles and
long-term flexibility at a bending strain of
0.6%

# Demonstrate great potential in wearable
smart data-storage devices

[170]

Complementary
metal-oxide-semiconductor

(CMOS) oscillators

# Graphene- silica (Si)
CMOS hybrid circuit

# Introduces graphene in Si CMOS has
ameliorated voltage swing and switch
ability of Si CMOS circuit in a modern
electronics system

[171]

6.4. Nanobattery

Nanobattery is not only defined based on its nanosize but uses nanotechnology in a
macro-sized battery to enhance its performance and lifetime [172]. Nanobattery perfor-
mance metrics include higher power density, faster charging times, and longer shelf life.
Nanomaterials with different morphologies such as confined nanoparticles, nanosphere,
nanopyramid, nanowires, nanostraws, nanotubes, and nanosheets with different com-
positions can function as an anode, cathode, separator, and electrolytes in nanobatter-
ies [173,174]. The nanomaterials play important roles in rechargeable lithium (Li) batteries
in enhancing Li storage hosting of active materials, polysulfide (PS) adsorption and conver-
sion, oxygen reduction reaction (ORR), and oxygen evolution reaction (OER) [173].
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The emergence of wearable devices has led to the development of flexible and stretch-
able batteries due to reasonable energy densities, being lightweight, portable, wearable,
and implantable [174,175]. Carbon nanomaterials such as graphene, CNTs, and their com-
posites have demonstrated potential for modifying the composition and fabrication of
flexible electrodes [174]. Nanomaterial-based electrodes in Li-ion and lithium-sulphur
batteries such as graphene/MXene heterostructures exhibit outstanding performance in
improving the electrochemical performance of fast charging batteries [176,177]. The incor-
poration of safe and rechargeable zinc/manganese dioxide chemistry into biocompatible
poly(styrene-isobutylene-styrene) (SIBS) polymer and carbon nanofiber has resulted in the
development of washable rechargeable batteries. Nanomaterial-based flexible, stretchable,
and washable batteries have attracted significant interest for powering systems in wearable
devices, electronic skin, strain sensors, and implantable medical devices [178].

7. Safety and Toxicity, the Biocompatibility of Nanomaterials-Based bioNEMS/MEMS
7.1. Safety

Numerous regulatory bodies that evaluated the effects of nanomaterials on occupa-
tional safety and health have published their official guidelines [179–184]. Potential dangers
may include the following: (i) inhaled nanomaterials may deposit in the respiratory tract
and harm lung cells and tissues, (ii) certain nanomaterials have the potential to breach cell
membranes and harm cellular structures and functions, (iii) risk of explosions and fires may
be present in some nanomaterials because they may be pyrophoric or easily combustible.

Inhalation, dermal contact, unintentional injection and ingestion can all result in
exposures, and the risk grows as exposure time and nanoparticle concentrations in the
sample or air rise. The greatest exposure hazard is inhalation. Sonication, shaking, stirring,
pouring, or spraying can also cause inhalation exposure, while nanomaterials suspended
in a solution or slurry present a lower risk. The least dangerous nanoparticles are those
that are fixed inside the matrix. Risk assessment, engineering and administrative control
are recommended work practices [179]. To identify the necessary control measures and
ascertain whether the implemented controls are successful in reducing exposure, a thorough
risk assessment should be carried out. It is advised to use high-efficiency particulate
absorbing (HEPA) filter-equipped ventilation enclosures or local exhaust ventilation that
operate at negative pressure. Administrative controls consist of developing protocols for
decontaminating surfaces and cleaning [184].

The term “nano” should be included in the descriptor, for example, “nano materials”,
and should be stored in labelled containers that indicate their chemical content and form.

Building validated models that can forecast the emission, passage, modification,
deposition, and uptake of nanomaterials in the environment is necessary for scientists and
researchers to evaluate the safety of nanomaterials [185,186].

Because of their small size, nanoparticles found in bioNEMS/MEMS structures may
be able to interact with different biological barriers in the body. This interaction could
cause a toxic effect. On the other hand, drug delivery could benefit from this. However, it
is crucial to comprehend whether the nanoscale carriers have any negative effects. The fate
of nanomaterial during diagnosis or treatment, as well as how the particles are excreted,
biodegraded, or accumulated, is crucial because accumulation can have negative long-term
effects, and therefore the safety profile of nanomaterials in humans is still a significant
concern [187,188].

Two categories can be used to describe safety and health hazards associated with the
use of nanomaterials in bioNEMS/MEMS: (i) potential medical applications for treating
diseases using nanotechnological innovations; and (ii) additional health risks associated
with nanomaterial exposure [189,190].

It has been speculated recently that it is time for a shift in perspective when it comes
to the safety evaluation of nanomaterials in bioengineering (Figure 7). The suggestion
presented recently is that we should stop worrying about insurmountable problems and
instead pay attention to the significant progress that has been made in past few years as new
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and advanced approaches have been integrated into nanosafety research [191]. To use the
newly developed techniques for the risk and hazard evaluation of biological nanomaterials,
we need a paradigm shift in the way that nanosafety assessment is carried out.
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7.2. Toxicity

There are many worries about the potential toxicity of nanoparticles. Suitable regu-
lations for their use and evaluation are regularly amended and the recently adopted ISO
standard 10993-22 is devoted to the biocompatibility assessment of nanomaterials used
in medical devices [192]. Cell survival has been found to be influenced by nanoparticle
features such as size, surface charge, dispersion state, matrix composition, surface function-
alization, and protein corona formation [193]. These parameters must be mastered in order
to conduct a biocompatibility assessment using the appropriate methodology. Numerous
assays are used to determine the toxicity of the nanostructures because there are more
nanomaterials and nanoparticles every day [185]. These tests are categorised into two main
groups: in vitro and in vivo tests. Table 6 summarises the cytotoxicity methods recently
used in nanomaterials toxicity assessment along with the main effects observed during
evaluation in specific cell lines and tissues.

Table 6. Nanomaterials and cytotoxicity assay together with the main results of toxicity assessment.

Test Nanomaterial Toxicity Assessment Ref

MTT Zr x -Cu100x No toxicity in osteoblast cells [194]

MTT Graphene Biocompatible against HK-2 cells [195]

MTT Silicon MEMS No signs of infection or inflammation [196]

Trypan blue exclusion assay PDMS, PS, SU-8 >85% cells viability [197]

Clonogenic Assay Carbon >50 cell colony formation [198]

Apoptosis Assay Ag DNA damage leading to apoptosis [199]

DNA laddering Graphene DNA damage due to oxidation stress [200–203]

Caspase Assay Mesoporous Si Liver inflammation, hepatotoxicity [204]

Comet Assay TiO2, SiO2, ZnO, CeO2, Ag,
MWCNT Mild to considerable genotoxic effect [205]
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Table 6. Cont.

Test Nanomaterial Toxicity Assessment Ref

Tunnel Assay TiO2
Increased gene expression of the
inflammation and apoptotic effect [206]

Annexin V and Propidium
iodide GO-Ag Increased production of ROS [207]

Lipid peroxidation Assay Carbon based Generation of ROS, inflammation,
damage to the proteins [198,199]

7.2.1. In Vitro Assessment of Nanomaterials Toxicity
Cytotoxicity Assays

In vitro cytotoxicity assays are among the gold standard technique to assess the cyto-
toxicity of nanomaterials.

1. Microculture tetrazolium assay

The colorimetric microculture tetrazolium assay is intended and widely used for a
qualitative evaluation of the nanomaterial cytotoxicity [208]. It is a non-radioactive assess-
ment technique that measures cell viability using the metabolic activity of the mitochondria.
When it comes to cytotoxicity testing of nanomaterials-based NEMS/MEMS MTT test
has been employed in various systems. Nano-crystalline Zr x -Cu100x thin films with
thicknesses ranging from 50 to 185 nm were assessed in terms of their cytotoxicity. As
determined by the MTT assay, Zr-Cu thin film is suitable as a bio-coating for minimally
invasive medical devices because it did not cause cytotoxicity in osteoblast cells [194].
A graphene field-effect transistor-based artificial synapse was used for the MTT test of
the bioMEMS system, and the results showed that the cell viability (against HK-2 cells)
shows no decrease with the increased concentration, which suggests that the silver gel is a
biocompatible material [195].

The MTT test has been employed in the initial biocompatibility testing of a peristaltic
micropump that is wirelessly controlled in murine inner ear drug delivery, where a silicon
MEMS-based 32-kHz oscillator was used [209]. A biocompatibility study was conducted,
and the outcomes showed that the micropump parts passed important biocompatibility
tests after a month a micropump prototype was implanted without any signs of infection
or inflammation. According to these findings, these particular micropump parts passed
important biocompatibility tests, indicating that they were appropriate for translational
applications such as subcutaneous implantation in both humans and animals.

2. Trypan blue exclusion assay

Trypan blue testing has recently been employed to examine the cytotoxicity of various
coatings used with resin 3D printing. It has been demonstrated how multiple procedures
can be coupled to offer better biocompatibility, which in turn increases accessibility to 3D-
printed BioMEMS manufacturing. Any combination of the post-process treatments resulted
in viable cultures (above the 85.00% threshold) for HL-1 cells. Similar performances of
above the 85% threshold were observed for all of the coatings (PDMS, PS, SU-8, Au, and
Medco/PET), with PDMS outperforming the others [197]. Cytotoxicity in encapsulated
particles in aqueous ferrofluid droplets was examined, and a magnetic field was used
to separate the encapsulated particles from the empty droplets. Trypan blue test results
showed that 86% of cells were still alive after 2 h when compared to the control, showing
that the ferrofluid used in the experiments had little impact on the viability of the cells.
These findings suggest that the proposed method for sorting empty droplets in biochemical
assays is appropriate [210]. Trypan blue testing demonstrates also that both the silicone-
modified polyurethane films and nanofibers caused less toxicity in contact with cells. In
contrast to the positive control, the cells can maintain their spreading shape and discrete
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intracytoplasmic granules without experiencing cell lysis, which can be considered as
survival and the morphological grade of cytotoxicity is supposed to be zero [196].

3. Clonogenic assay

The carbon nanoparticles’ relative toxicities are described in a recent review [198]. It
has been shown that the small size of nanoparticles permits them to penetrate through
harmful biological barriers. Depending on the type of analysis and models, negative
consequences are highlighted.

4. Apoptosis assay

Apoptosis, or programmed cell death, has found significant application potential in
the evaluation of nanotoxicity. Analysis of the DNA damage caused by polysaccharide-
surface functionalised (coated) and non-functionalised (uncoated) silver nanoparticles in
mammalian cells, including mouse embryonic stem cells and mouse embryonic fibroblasts,
revealed that severe DNA damage could cause the cells to undergo apoptosis. The enhanced
activity of the apoptosis markers caspase-3 and caspase-9 provide further proof that silver
nanoparticle therapy activated the apoptosis pathway in Drosophila melanogaster larval
tissues [199].

5. DNA laddering

Various genotoxic effects of graphene nanoparticles were hypothesised based on
the recent literature findings [200–202]. There are not many investigations on graphene
genotoxicity caused by direct interaction with DNA as of now [200,202,203]. It has been
well documented that DNA damage results from oxidative stress brought on by graphene
nanoparticles [200,203]. Studies on other forms of indirect genotoxicity, including epigenetic
toxicity, inflammation, as well as autophagy, mostly concentrate on the genotoxic effects
brought on by graphene. There is not much data on the mechanisms underlying this
impact [211]. The inherent physicochemical characteristics of graphene nanoparticles (such
as surface functionalization or coatings), exposure dose or durations, and their destination
in organisms or the surroundings will all affect how genotoxic they are [200,212].

6. Caspase assay

Caspase assay has recently been used for determining the molecular basis of hepatic
toxicity brought on by mesoporous silica nanoparticles (MSNPs) both in vitro and in vivo.
The findings showed that these nanoparticles caused liver inflammation, hepatic cell
pyroptosis, and hepatotoxicity. These findings shed new light on the hepatotoxicity caused
by MSNPs and show that the NLRP3 inflammasome, pyroptosis, and reactive oxygen
species (ROS) are effective targets for raising biocompatibility and lowering the potential
toxicity of MSNPs. To avoid the adverse effects of MSNPs in future biomedical applications,
more study is required to assess the association between hepatotoxicity and the sizes or
surface chemical modifications of MSNPs in vivo [204].

7. Comet assay

The possibility for DNA damage by nanomaterials is the most significant of their
possible impacts. The development of standard techniques for genotoxicity detection is
a key objective of the EU project NANoREG. One of the proposed techniques mentions
the use of comet assay as a tool to find DNA strand breaks that have been induced. Using
two different human lung epithelial cell lines, eight different nanoparticles—titanium
dioxide (TiO2) NPs, silica dioxide (SiO2) NPs, zinc oxide (ZnO) NPs, cerium dioxide
(CeO2) NPs, silver NPs, and multi-walled carbon nanotubes were examined [205]. The
outcomes supported the usefulness of the comet assay to identify nanomaterial’s potential
for genotoxicity. The findings suggest that the majority of the nanomaterials had mild to
considerable genotoxic effects, demonstrating the applicability of the cell line to assess a
material’s genotoxic potential.

8. TUNEL assay
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Rat liver and intestinal NLRP3 inflammasome, oxidative stress, and apoptosis were
studied in vivo and in vitro using TiO2 NPs [206]. Titanium dioxide nanoparticles increased
cytotoxicity, oxidative stress, and apoptosis rate in a dose-dependent manner. Additionally,
TiO2 NPs increased the gene expression of the inflammation and apoptotic pathways in the
liver and gut. The liver and gut experienced morphological alterations as a result of TiO2
NPs. TiO2 NPs may cause oxidative stress, inflammation, and apoptosis, which may have
deleterious effects on the structure and operation of the liver and the intestines.

9. Annexin V and Propidium iodide (PI)

From the standpoint of cytotoxicity, graphene oxide–silver nanoparticles (GO-AgNPs)
have attracted a lot of interest for their potential in biomedical applications. However, it is
unknown if GO-AgNPs are hazardous to people and animals. In caprine foetal fibroblast
cells, GO-AgNP-mediated cytotoxicity and epigenetic modification status were found. It
was completed using the annexin V/PI assay [207]. The results showed that GO-AgNPs
cytotoxicity is dose-dependent. By decreasing cell viability, producing ROS, boosting
lactate dehydrogenase and malondialdehyde leakage, and enhancing the expression of pro-
apoptotic genes, GO-AgNPs significantly increased cytotoxicity. DNA hypomethylation
and DNMT3A expression were both induced by GO-AgNPs. The prospective applications
of GO-AgNPs in biomedicine should be reassessed because they increase the production of
ROS, induce apoptosis, and result in DNA hypomethylation.

Oxidative Stress Assays

1. 2,7-Dichlorodihydrofluorescein (DCFH) assay

When DCFH is used in an assay, ROS transforms it into the fluorescent substance
2,7-dichlorofluorescein, which is then identified by fluorimetry. Since DCFH is readily
oxidised by several ROS functional groups, it is highly favoured as a cytotoxicity assay.
This fluorogenic dye assesses the activity of ROS, including hydroxyl, peroxyl, and others.
When a dye enters cells, esterases deacetylate it into a non-fluorescent substance. The latter
is transformed into dichloro-dihydro-fluorescein by reactive oxygen species, which can
be detected with a fluorometer, a flow cytometer, or a fluorescence microscope with an
excitation spectrum at 485 nm and an emission spectrum at 535 nm [213]. For quantita-
tive determination of H2O2 and other hydroperoxide group members such as tert-butyl
hydroperoxide, DCFH is a regularly used assay. For nanoscale zinc oxide particles, used in
the human lung adenocarcinoma cell line DCFH assay demonstrated that these NP cause
apoptosis by raising intracellular ROS levels [199].

2. Lipid peroxidation assay

Lipid peroxidation has been connected in some cases to the cytotoxicity of carbon-
based nanomaterials (CBNMs) [198]. The small size of CBNMs permits them to penetrate
harmful biological barriers. One of the most significant toxicity mechanisms of NPs is
the generation of ROS, which causes oxidative stress, inflammation, lipid peroxidation,
and damage to the proteins, cell membrane, and DNA. Oxidative stress is defined as
an imbalance between the biological system’s capacity to remove reactive intermediates
(superoxide radical anions and hydroxide ions) and the amount of ROS produced. This
imbalance may be caused by either an increase in ROS production, a decrease in the cell
nucleus defence mechanisms, or a combination of both.

7.2.2. In Vivo Assessment of Nanomaterials Toxicity

A variety of techniques, including biodistribution, clearance, serum chemistry, and
histopathology, animal models such as mice and rats are frequently used.

Biodistribution

The biodistribution and nanotoxicity of NPs are governed by their physiochemical
properties. Following the administration of nanomaterials, the presence of nanomaterials in
key organs or tissues such as the lung, liver, kidneys, heart, brain, pancreas, fat, and muscle
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is estimated. Then, physical detection techniques can be used to monitor the distribution of
NPs in these organs. By using instrumental neutron activation analyses for gold composite
NPs in animal tumour models, it was demonstrated that composite nanodevices might
target specific organs based on their size and/or surface charge [199]. The biokinetics
and biodistribution of nanomaterials delivered through the respiratory system differ from
those following intravenous exposure. The biokinetics of intravenously administered
nanomaterials does not serve as a substitute for exposure through the lungs or mouth [214].
Rats were used to evaluate the biokinetics and biodistribution in diverse organs over the
course of 1 h to 28 days using radiolabelled TiO2 NPs. The liver accumulated the most
titanium following intravenous injection, followed by the spleen, skeleton, and blood after
1 h. Thereafter, the blood’s volume rapidly shrank, but the distribution of titanium in the
other organs and tissues remained stable until day 28 [215].

Clearance

By analysing the excretion and metabolism of NPs at a certain time point after NP
therapy, the clearance of NPs is investigated. Their transit to the liver and kidney was
discovered to be significantly constrained [199]. Nanomaterials that enter the vascular
system connect with blood cells and are then disseminated to the organs on the periphery.
Their size, surface structure, and changes all affect how they are distributed to peripheral
organs and how they are cleared. Due to their prolonged circulation duration, nanoma-
terials that are not effectively eliminated from the body are more likely to interact with
cells, tissue, and organs and accumulate there. Different pathways might be used by the
body to remove nanoparticles. Although renal clearance is the most efficient excretion
method, many nanomaterials cannot be cleared via this method due to size limits (6–8
nm) [214]. Instead, they undergo biliary excretion, where they are broken down by the liver
and eliminated through the gastrointestinal tract. As nanoparticles trapped in the mucus
are normally carried to the pharynx and then swallowed, mucociliary clearances in the
respiratory system can be closely associated with gastrointestinal clearance. Nanomateri-
als that have been ingested by mononuclear macrophages can stay for a very long time,
trapped within the reticuloendothelial system, while elimination via the kidneys and liver
can take place over a timescale ranging from 30 min to a few days.

Serum Chemistry

To evaluate nanotoxicity, alterations in serum chemistry after NPs administration
are analysed. Blood urea nitrogen, creatinine, glucose, total protein, albumin, globulin,
albumin to globulin ratio, sorbitol dehydrogenase, alanine aminotransferase, alkaline
phosphatase, and creatine kinase are the parameters that are determined during serum
chemistry tests. Red blood cell count, haemoglobin, packed cell volume, mean red cell
volume, mean red cell haemoglobin, mean red cell haemoglobin concentration, white blood
cell count, differential white blood cell count, and platelet count are all variables that must
be determined during a haematological analysis [199].

Histopathology

Histopathological analysis of NP-exposed organs, including the heart, lungs, spleen,
liver, kidneys, and eyes, is another method for determining nanotoxicity. After exposure
to nano-ferric oxide, follicular lymphoid hyperplasia with inflammatory cells gathered
around bronchia was discovered. Alveolar walls thickened after NP therapy, indicating
the establishment of fibrosis. The pulmonary alveoli were discovered to contain the
macrophage-phagocytosed particles. The pulmonary alveolus contained inflammatory
cells such as neutrophils, lymphocytes, and eosinophils [199].

7.3. Biocompatibility

The biological risk has to be calculated as part of risk management, by standards,
for the medical device to be regarded as biocompatible [216]. The manufacturer is in
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charge of assessing the biocompatibility of a finished device, and they should do so as early
in the product life cycle as possible to plan a strategy to meet regulatory requirements.
An updated version of ISO 10993-1 that stressed the value of learning more about the
device was released in August 2018 [217]. Not all biological effects should be evaluated
by biological testing, according to the new version of the standard. If a valid reason can
be provided, some tests can now be waived. Although there is a truly impressive number
of articles describing bioNEMS/MEMS systems for various medical indications, not all
of them provide biocompatibility data, much less according to the ISO 10993 standard.
However, some studies accurately reported the biocompatibility tests that were actually
conducted with the design of NEMS/MEMS systems.

In the literature, less optimistic views on this topic can be found regarding the rapid
translation of bioNEMS/MEMS systems into clinical practice. In a recent review, Bur-
ton [218] suggests that findings demonstrate that clinical translatability is hampered by
insufficient consideration of the biocompatibility of nanorobots with human in-vivo envi-
ronments in upstream development processes. The design focus is undoubtedly amplified
by the absence of meaningful integration with multidisciplinary downstream knowledge.

Utilising MEMS technology, the vaccine-coated solid microneedle patch was created
via the process of silicon microneedle arrays using wet chemical etching, inductively
coupled plasma reactive ion etching and UV lithography [219]. This combination of vaccine
formulation and microneedle to fabricate the delivery device was evaluated in vitro and
the material under test exhibited no cytotoxic effects and complied with ISO 10993-5
biocompatibility requirements.

In general, we can take parts of cells and partially make them function outside the
organism using nanotechnology. Adenosine triphosphate, a high-energy phosphate particle
used to store and deliver energy for work inside living organisms, expands as the engines
move. The devices might be on a scale that is comparable to a single molecule. Such devices
would malfunction as a result of wear. Particularly for man-made nanomachinery used
in physiological conditions, tribological considerations, together with biocompatibility
concerns in the design are critical [220].

For implants and encapsulations, biocompatibility should be assessed from two differ-
ent perspectives [221]. The first is surface biocompatibility, which states that the coating
must be chosen to reduce the foreign-body reaction, prevent any significant post-operative
inflammation, and prevent the diffusion of harmful materials. In addition to cytotoxicity
testing, non-biocompatible chemical groups can be detected by changes in cell shape and
metabolism. The criteria for assessing a medical device’s biocompatibility are part of the
ISO 10993 standards. The mechanical compatibility between the encapsulated implant and
the surrounding tissue is the focus of the second form of biocompatibility, known as struc-
tural biocompatibility. To lessen implant insertion injury, particularly to the central nervous
system, new materials and techniques are required. In vivo tests need to be performed to
evaluate this property.

Another aspect of biocompatibility that plays a vital role in biomedical applications, as
well as the repurposing of food waste to fabricate nanomaterials for potential applications
in bioNEMS and MEMS is non-toxic and high nutritional values. As discussed previously,
nanomaterials are one of the most researched materials in drug delivery. Because of their
adaptability and numerous intriguing qualities, including controlled release, blood stability,
non-immunogenicity and non-toxic nature, biodegradable polymer-based nanoparticles
are used in innovative drug delivery methods [222,223]. Colloidal drug carriers such as
liposomes, emulsions, micelles and nanoparticles have shown promising characteristics as
future medications that can cross the blood-brain barrier. Similar to this, colloidal systems
are employed to control the rate of medication release at targeted areas (i.e., tissues or
organs). There are myriad nanomaterials (e.g., silver nanoparticles, gold nanoparticles,
carbon nanotubes, laponite nanoplates, polymer-based nanoparticles) that paved the way
towards greener MEMS and NEMS [224,225].
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Recently, the World Health Organisation also created some guidelines with advice on
ethics and good laboratory practices for how to better protect workers from the possible
risks of dangerous nanomaterials. Anyone can share their view of the ethics of nanotech-
nology in several different forums. The opinions of these populations tend not to be based
on the vocabulary of the professional ethicists. Researchers, engineers, philosophers and
policymakers should communicate and provide their ideas in a similar and simple language
that is clearer and more effective [226].

8. Challenges and Conclusions

This review summarises the most recent advancements in bioNEMS and MEMS based
on nanomaterials for biomedical applications. We discussed the critical nanomaterial
selections and desirable properties (for example, mechanical, optical, and electrical) as
biosensors, actuator systems, drug nanocarriers, and other biomedical applications. The
evolution of fabrication strategies from traditional techniques (such as bulk and surface mi-
cromachining) to more advanced techniques such as photolithography and electrospinning
was thoroughly discussed. According to the most recent literature review, the incorporation
of nanotechnology into NEMS and MEMS has demonstrated undeniable potential in clinical
applications (i.e., diagnostic, monitoring, therapeutic applications, cell manipulation) with
dependable functionality in vitro and in vivo. As a result, more groundbreaking discover-
ies and innovative bioNEMS/MEMS-based platforms are expected to be translated from
bench to bedside in the future. Despite thriving research in the field of nanomaterials-based
bioNEMS/MEMS in recent years, bioNEMS/MEMS for real-world human applications is
still in its infancy. Many ideas remain unexplored, and numerous challenges in this field
remain unsolved. As such, some of the major challenges are highlighted as follows. One
of the major challenges associated with this technology is the scaling up of materials for
commercialisation. In most cases, high-quality nanomaterials involved precise synthesis
routes under harsh conditions with heavy reliance on sophisticated instrumentations [9].
Furthermore, expensive chemicals required for nanomaterial synthesis could further hin-
der the scaling-up process due to projected increased production costs. An attempt to
reduce production costs by switching to cheaper materials may jeopardise the quality
of nanomaterials, thus the overall functionality and reliability of the bioNEMS/MEMS
platforms.

A paradigm shift towards upcycling food waste to create innovative nanomaterials for
future bioNEMS/MEMS devices will be a crucial step for sustainable food waste manage-
ment. The food waste-to-nanomaterials conversion strategy is anticipated to reduce carbon
footprints and greenhouse gas emissions (e.g., methane and carbon dioxide) to the atmo-
sphere. Food wastes are rich in valuable nutrients from organic to inorganic biomolecules
(e.g., flavonoids, phenolic and alkaloids compounds) with a proven sustainable synthesis of
food waste-mediated nanomaterials such as silver and gold nanoparticles. These high-value
engineered nanoparticles have shown potential for various biomedical applications due
to their non-toxicity, better biocompatibility, and green synthesis properties. Furthermore,
the conversion of food waste materials into useful nanomaterials could potentially reduce
the cost of source materials, eventually controlling the end-user price [28,44]. Regardless,
pre-processing of food waste could contribute to higher overhead costs, thus requiring
deliberate strategies to overcome it. Food waste valorisation and zero-waste strategies
have opened up exciting research avenues in the NEMS and MEMS applications with the
foreseeable future of green device technology.

Taking a glimpse into integrating nanotechnology and NEMS/MEMS technology to
IoT applications, limitless opportunities and challenges lie ahead of this exceptional idea.
The current state-of-art knowledge proved that there is potential for further research and
scientific breakthroughs [168]. Despite the opportunities of IoT technology in improving
human health and longevity through rapid disease diagnosis and real-time treatment
monitoring. Upcoming research direction is anticipated to delve into proof-of-concept
experiments and application research in the next decades is of paramount importance.
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Above all, challenges associated with nano biodevices into IoT systems can be classified as
the followings [140]:

1. Connectivity

In a telehealth system, any disruption in data transmission could have devastating
patient consequences. IoT device connectivity depends on the transmission coverage of
its wireless modules such as RF module, Bluetooth, and Wi-Fi. For that reason, wireless
and internet connectivity in the healthcare setting must be strengthened with ultra-high
reliability and low-latency communication networks to prevent connectivity problems
during an emergency situation.

2. Data continuity

Nanodevices such as wearable and medical implants are highly dependent on the
battery’s life to ensure their functionalities, efficiency, and performance [227]. Frequently
charging the devices may disturb data continuity while direct charging of wearable devices
exposes patients to an electrical hazard. The incorporation of nanomaterials in maximised
nanobattery runtime and the emergence of wireless energy harvesting through nanoanten-
nas potentially provide uninterrupted access to essential patient data.

3. Compliance

Healthcare IoT is subject to evolving regulations that vary by country. For example,
US Food Drug Administration (FDA), CE marking for European Union, Therapeutic Goods
Administration (TGA) Australia, and Medical Device Authority (MDA) Malaysia are
compliance bodies that outline the need for device makers, pharmaceutical companies, and
other players to ensure the safety, efficiency, and reliability of medical devices including
IoT device for healthcare applications.

4. Coexistence

Other than IoT nanodevices for healthcare applications, there are many existing IoT
devices currently available that potentially compete for connectivity. The existence of
many IoT nanodevices in specific and limited spaces potentially leads to signal interference
between devices that causes connectivity failures or corrupted data.

5. Cybersecurity

Health Insurance Portability and Accountability Act (HIPAA) sets the standard for
sensitive patient data protection. Under HIPAA, companies that deal with protected health
information (PHI) must comply with the physical, network, and process security measures
outlined in the HIPAA. Although data collection using IoT devices commonly contain basic
information such as patient ID and physiological information, the health and information
privacy of patients, and security concerns remain important. Security breaches potentially
expose patient information to irresponsible parties.

Regardless, prospects of NEMS and MEMS for engineering-based applications have
been positive leading to rapid translation of this technology to biomedical fields. In closing,
it is anticipated that this comprehensive review article will enlighten novel research direc-
tions and inspire ideas for further exploration of nanomaterials-based bioNEMS/MEMS
for biomedical applications in the near future.
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