Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (681)

Search Parameters:
Keywords = Al-Mg-Zn(-Cu)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 15535 KiB  
Article
Impact of Landfill Sites on Coastal Contamination Using GIS and Multivariate Analysis: A Case from Al-Qunfudhah in Western Saudi Arabia
by Talal Alharbi, Abdelbaset S. El-Sorogy, Naji Rikan and Hamdi M. Algarni
Minerals 2025, 15(8), 802; https://doi.org/10.3390/min15080802 - 30 Jul 2025
Viewed by 170
Abstract
The contamination due to coastal landfill is a growing environmental concern, particularly in fragile marine ecosystems, where leachate can mobilize toxic elements into soil, water, air, and sediment. This study aims to assess the impact of a coastal landfill in Al-Qunfudhah, western Saudi [...] Read more.
The contamination due to coastal landfill is a growing environmental concern, particularly in fragile marine ecosystems, where leachate can mobilize toxic elements into soil, water, air, and sediment. This study aims to assess the impact of a coastal landfill in Al-Qunfudhah, western Saudi Arabia, on nearby coastal sediments by identifying the concentration, distribution, and ecological risk of potentially toxic elements (PTEs) using geospatial and multivariate analysis tools. The results indicate significant accumulation of Pb, Zn, Cu, and Fe, with Pb reaching alarming levels of up to 1160 mg/kg in the landfill area, compared to 120 mg/kg in the coastal sediments. Zn contamination also exhibited substantial elevation, with values reaching 278 mg/kg in landfill soil and 157 mg/kg in coastal sediment. The enrichment factor values indicate moderate to severe enrichment for Pb (up to 73.20) and Zn (up to 6.91), confirming anthropogenic influence. The contamination factor analysis categorized Pb contamination as very high (CF > 6), suggesting significant ecological risk. Comparison with sediment quality guidelines suggest that Pb, Zn, and Cu concentrations exceeded threshold effect levels (TEL) in some samples, posing potential risks to marine organisms. The spatial distribution maps revealed pollutant migration from the landfill toward the coastal zone, emphasizing the necessity of monitoring and mitigation strategies. As the first comprehensive study on landfill-induced PTEs contamination in Al-Qunfudhah, these findings provide essential insights for environmental management and pollution control policies along the Red Sea coast. Full article
Show Figures

Figure 1

15 pages, 2054 KiB  
Data Descriptor
Data on Brazilian Powdered Milk Formulations for Infants of Various Age Groups: 0–6 Months, 6–12 Months, and 12–36 Months
by Francisco José Mendes dos Reis, Antonio Marcos Jacques Barbosa, Elaine Silva de Pádua Melo, Marta Aratuza Pereira Ancel, Rita de Cássia Avellaneda Guimarães, Priscila Aiko Hiane, Flavio Santana Michels, Daniele Bogo, Karine de Cássia Freitas Gielow, Diego Azevedo Zoccal Garcia, Geovanna Vilalva Freire, João Batista Gomes de Souza and Valter Aragão do Nascimento
Data 2025, 10(7), 114; https://doi.org/10.3390/data10070114 - 9 Jul 2025
Viewed by 333
Abstract
Milk powder is a key nutritional alternative to breastfeeding, but its thermal properties, which vary with temperature, can affect its quality and shelf life. However, there is little information about the physical and chemical properties of powdered milk in several countries. This dataset [...] Read more.
Milk powder is a key nutritional alternative to breastfeeding, but its thermal properties, which vary with temperature, can affect its quality and shelf life. However, there is little information about the physical and chemical properties of powdered milk in several countries. This dataset contains the result of an analysis of the aflatoxins, macroelement and microelement concentrations, oxidative stability, and fatty acid profile of infant formula milk powder. The concentrations of Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Se, V, and Zn in digested powdered milk samples were quantified through inductively coupled plasma optical emission spectrometry (ICP OES). Thermogravimetry (TG) and differential scanning calorimetry (DSC) were used to estimate the oxidative stability of infant formula milk powder, while the methyl esters of the fatty acids were analyzed by gas chromatography. Most milk samples showed significant concentrations of As (0.5583–1.3101 mg/kg) and Pb (0.2588–0.0847 mg/kg). The concentrations of aflatoxins G2 and B2 are below the limits established by Brazilian regulatory agencies. The thermal degradation behavior of the samples is not the same due to their fatty acid compositions. The data presented may be useful in identifying compounds present in infant milk powder used as a substitute for breast milk and understanding the mechanism of thermal stability and degradation, ensuring food safety for those who consume them. Full article
Show Figures

Figure 1

19 pages, 1214 KiB  
Article
Physical and Chemical Characteristics of Different Aerosol Fractions in the Southern Baikal Region (Russia) During the Warm Season
by Liudmila P. Golobokova, Tamara V. Khodzher, Vladimir A. Obolkin, Vladimir L. Potemkin and Natalia A. Onischuk
Atmosphere 2025, 16(7), 829; https://doi.org/10.3390/atmos16070829 - 8 Jul 2025
Viewed by 262
Abstract
The Baikal region, including areas with poor environmental conditions, has significant clean background zones. In the summer of 2023, we analyzed the physical and chemical parameters of aerosol particles with different size fractions at Irkutsk and Listvyanka monitoring stations. Reduced wildfires and minimal [...] Read more.
The Baikal region, including areas with poor environmental conditions, has significant clean background zones. In the summer of 2023, we analyzed the physical and chemical parameters of aerosol particles with different size fractions at Irkutsk and Listvyanka monitoring stations. Reduced wildfires and minimal impact from fuel and energy industries allowed us to observe regional and transboundary pollution transport. A large data array indicated that, during the shift of cyclones from Mongolia to the south of the Baikal region, the concentrations of Na+, Ca2+, Mg2+, K+, and Cl ions increased at the Irkutsk station, dominated by NH4+ and SO42−. The growth of the ionic concentrations at the Listvyanka station was observed in aerosol particles during the northwesterly transport. When air masses arrived from the southerly direction, the atmosphere was the cleanest. The analysis of 27 elements in aerosols revealed that Al, Fe, Mn, Cu, and Zn made the greatest contribution to air pollution at the Irkutsk station, while Fe, Al, Cu, Cr, Mn, and Ni made the greatest contribution to air pollution at the Listvyanka station. The dynamics of the investigated elements were mainly due to natural processes in the air under various synoptic situations and weather conditions in the region, although anthropogenic factors also affected the formation of aerosol composition wth certain directions of air mass transport. Full article
Show Figures

Figure 1

17 pages, 7952 KiB  
Article
Achyrophanite, (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5, a New Mineral with the Novel Structure Type from Fumarolic Exhalations of the Tolbachik Volcano, Kamchatka, Russia
by Igor V. Pekov, Natalia V. Zubkova, Natalia N. Koshlyakova, Dmitry I. Belakovskiy, Marina F. Vigasina, Atali A. Agakhanov, Sergey N. Britvin, Anna G. Turchkova, Evgeny G. Sidorov, Pavel S. Zhegunov and Dmitry Yu. Pushcharovsky
Minerals 2025, 15(7), 706; https://doi.org/10.3390/min15070706 - 2 Jul 2025
Viewed by 292
Abstract
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, [...] Read more.
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with aphthitalite-group sulfates, hematite, alluaudite-group arsenates (badalovite, calciojohillerite, johillerite, nickenichite, hatertite, and khrenovite), ozerovaite, pansnerite, arsenatrotitanite, yurmarinite, svabite, tilasite, katiarsite, yurgensonite, As-bearing sanidine, anhydrite, rutile, cassiterite, and pseudobrookite. Achyrophanite occurs as long-prismatic to acicular or, rarer, tabular crystals up to 0.02 × 0.2 × 1.5 mm, which form parallel, radiating, bush-like, or chaotic aggregates up to 3 mm across. It is transparent, straw-yellow to golden yellow, with strong vitreous luster. The mineral is brittle, with (001) perfect cleavage. Dcalc is 3.814 g cm–3. Achyrophanite is optically biaxial (+), α = 1.823(7), β = 1.840(7), γ = 1.895(7) (589 nm), 2V (meas.) = 60(10)°. Chemical composition (wt.%, electron microprobe) is: Na2O 3.68, K2O 9.32, CaO 0.38, MgO 1.37, MnO 0.08, CuO 0.82, ZnO 0.48, Al2O3 2.09, Fe2O3 20.42, SiO2 0.12, TiO2 7.35, P2O5 0.14, V2O5 0.33, As2O5 51.88, SO3 1.04, and total 99.40. The empirical formula calculated based on 22 O apfu is Na1.29K2.15Ca0.07Mg0.34Mn0.01Cu0.11Zn0.06Al0.44Fe3+2.77Ti1.00Si0.02P0.02S0.14V0.04As4.90O22. Achyrophanite is orthorhombic, space group P2221, a = 6.5824(2), b = 13.2488(4), c = 10.7613(3) Å, V = 938.48(5) Å3 and Z = 2. The strongest reflections of the PXRD pattern [d,Å(I)(hkl)] are 5.615(59)(101), 4.174(42)(022), 3.669(31)(130), 3.148(33)(103), 2.852(43)(141), 2.814(100)(042, 202), 2.689(29)(004), and 2.237(28)(152). The crystal structure of achyrophanite (solved from single-crystal XRD data, R = 4.47%) is unique. It is based on the octahedral-tetrahedral M-T-O pseudo-framework (M = Fe3+ with admixed Ti, Al, Mg, Na; T = As5+). Large-cation A sites (A = K, Na) are located in the channels of the pseudo-framework. The achyrophanite structure can be described as stuffed, with the defect heteropolyhedral pseudo-framework derivative of the orthorhombic Fe3+AsO4 archetype. The mineral is named from the Greek άχυρον, straw, and φαίνομαι, to appear, in allusion to its typical straw-yellow color and long prismatic habit of crystals. Full article
Show Figures

Figure 1

25 pages, 6926 KiB  
Article
Spatial Distribution of Cadmium in Avocado-Cultivated Soils of Peru: Influence of Parent Material, Exchangeable Cations, and Trace Elements
by Richard Solórzano, Rigel Llerena, Sharon Mejía, Juancarlos Cruz and Kenyi Quispe
Agriculture 2025, 15(13), 1413; https://doi.org/10.3390/agriculture15131413 - 30 Jun 2025
Viewed by 1167
Abstract
Potentially toxic elements such as cadmium (Cd) in agricultural soils represent a global concern due to their toxicity and potential accumulation in the food chain. However, our understanding of cadmium’s complex sources and the mechanisms controlling its spatial distribution across diverse edaphic and [...] Read more.
Potentially toxic elements such as cadmium (Cd) in agricultural soils represent a global concern due to their toxicity and potential accumulation in the food chain. However, our understanding of cadmium’s complex sources and the mechanisms controlling its spatial distribution across diverse edaphic and geological contexts remains limited, particularly in underexplored agricultural regions. Our study aimed to assess the total accumulated Cd content in soils under avocado cultivation and its association with edaphic, geochemical, and geomorphological variables. To this end, we considered the total concentrations of other metals and explored their associations to gain a better understanding of Cd’s spatial distribution. We analyzed 26 physicochemical properties, the total concentrations of 22 elements (including heavy and trace metals such as As, Ba, Cr, Cu, Hg, Ni, Pb, Sb, Se, Sr, Tl, V, and Zn and major elements such as Al, Ca, Fe, K, Mg, and Na), and six geospatial variables in 410 soil samples collected from various avocado-growing regions in Peru in order to identity potential associations that could help explain the spatial patterns of Cd. For data analysis, we applied (1) univariate statistics (skewness, kurtosis); (2) multivariate methods such as Spearman correlations and principal component analysis (PCA); (3) spatial modeling using the Geodetector tool; and (4) non-parametric testing (Kruskal–Wallis test with Dunn’s post hoc test). Our results indicated (1) the presence of hotspots with Cd concentrations exceeding 3 mg·kg−1, displaying a leptokurtic distribution (skewness = 7.3); (2) dominant accumulation mechanisms involving co-adsorption and cation competition (Na+, Ca2+), as well as geogenic co-accumulation with Zn and Pb; and (3) significantly higher Cd concentrations in Leptosols derived from Cretaceous intermediate igneous rocks (diorites/tonalites), averaging 1.33 mg kg−1 compared to 0.20 mg·kg−1 in alluvial soils (p < 0.0001). The factors with the greatest explanatory power (q > 15%, Geodetector) were the Zn content, parent material, geological age, and soil taxonomic classification. These findings provide edaphogenetic insights that can inform soil cadmium (Cd) management strategies, including recommendations to avoid establishing new plantations in areas with a high risk of Cd accumulation. Such approaches can enhance the efficiency of mitigation programs and reduce the risks to export markets. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

27 pages, 3410 KiB  
Article
Assessing the Authenticity and Quality of Paprika (Capsicum annuum) and Cinnamon (Cinnamomum spp.) in the Slovenian Market: A Multi-Analytical and Chemometric Approach
by Sabina Primožič, Cathrine Terro, Lidija Strojnik, Nataša Šegatin, Nataša Poklar Ulrih and Nives Ogrinc
Foods 2025, 14(13), 2323; https://doi.org/10.3390/foods14132323 - 30 Jun 2025
Viewed by 605
Abstract
The authentication of high-value spices such as paprika and cinnamon is critical due to increasing food fraud. This study explored the potential of a multi-analytical approach, combined with chemometric tools, to differentiate 45 paprika and 46 cinnamon samples from the Slovenian market based [...] Read more.
The authentication of high-value spices such as paprika and cinnamon is critical due to increasing food fraud. This study explored the potential of a multi-analytical approach, combined with chemometric tools, to differentiate 45 paprika and 46 cinnamon samples from the Slovenian market based on their geographic origin, production methods, and possible adulteration. The applied techniques included stable isotope ratio analysis (δ13C, δ15N, δ34S), multi-elemental profiling, FTIR, and antioxidant compound analysis. Distinct isotopic and elemental markers (e.g., δ13C, δ34S, Rb, Cs, V, Fe, Al) contributed to classification by geographic origin, with preliminary classification accuracies of 90% for paprika (Hungary, Serbia, Spain) and 89% for cinnamon (Sri Lanka, Madagascar, Indonesia). Organic paprika samples showed higher values of δ15N, δ34S, and Zn, whereas conventional ones had more Na, Al, V, and Cr. For cinnamon, a 95% discrimination accuracy was achieved between production practice using δ34S and Ba, as well as As, Rb, Na, δ13C, S, Mg, Fe, V, Al, and Cu. FTIR differentiated Ceylon from cassia cinnamon and suggested possible paprika adulteration, as indicated by spectral features consistent with oleoresin removal or azo dye addition, although further verification is required. Antioxidant profiling supported quality assessment, although the high antioxidant activity in cassia cinnamon may reflect non-phenolic contributors. Overall, the results demonstrate the promising potential of the applied analytical techniques to support spice authentication. However, further studies on larger, more balanced datasets are essential to validate and generalize these findings. Full article
Show Figures

Figure 1

14 pages, 4333 KiB  
Article
Hot Deformation Behavior, Processing Maps, and Microstructure Evolution of 7E97 Alloy
by Fangyan He, Xiaolan Wu, Shengping Wen, Liang Hong, Zhizheng Rong, Hanyu Chen, Kunyuan Gao, Wu Wei, Hui Huang and Zuoren Nie
Metals 2025, 15(7), 725; https://doi.org/10.3390/met15070725 - 28 Jun 2025
Viewed by 256
Abstract
A hot compression simulation was conducted on the Al-7.62Zn-2.22Mg-0.90Cu-0.30Mn-0.09Er-0.13Zr alloy (7E97) within the temperature range of 300~460 °C and strain rate range of 0.001~10 s−1 using a Gleeble-3500 hot simulator. A flow-stress constitutive equation and hot processing maps were established for the [...] Read more.
A hot compression simulation was conducted on the Al-7.62Zn-2.22Mg-0.90Cu-0.30Mn-0.09Er-0.13Zr alloy (7E97) within the temperature range of 300~460 °C and strain rate range of 0.001~10 s−1 using a Gleeble-3500 hot simulator. A flow-stress constitutive equation and hot processing maps were established for the alloy, and the microstructural evolution of the alloy after hot deformation was investigated. It was found that the dominant dynamic softening mechanism of the alloy was dynamic recovery, accompanied by minor dynamic recrystallization. The optimal hot processing window for the alloy was determined to be in the ranges of 0.001~0.05 s−1 and 350~410 °C. Full article
Show Figures

Figure 1

14 pages, 3540 KiB  
Article
Effects of In Situ Electrical Pulse Treatment on the Microstructure and Mechanical Properties of Al-Zn-Mg-Cu Alloy Resistance Spot Welds
by Shitian Wei, Xiaoyu Ma, Jiarui Xie, Yali Xie and Yu Zhang
Metals 2025, 15(7), 703; https://doi.org/10.3390/met15070703 - 24 Jun 2025
Viewed by 302
Abstract
This study introduces a novel in situ pulsed current-assisted resistance spot welding method, which differs fundamentally from conventional post-weld heat treatments and is designed to enhance the mechanical performance of 7075-T651 aluminum alloy joints. Immediately after welding, a short-duration pulsed current is applied [...] Read more.
This study introduces a novel in situ pulsed current-assisted resistance spot welding method, which differs fundamentally from conventional post-weld heat treatments and is designed to enhance the mechanical performance of 7075-T651 aluminum alloy joints. Immediately after welding, a short-duration pulsed current is applied while the weld remains in a high excess-vacancy state, effectively accelerating precipitation reactions within the weld region. Transmission electron microscopy (TEM) observations reveal that pulsed current treatment promotes the formation of band-like solute clusters, indicating a significant acceleration of the early-stage precipitation process. Interestingly, the formation of quasicrystalline phases—rare in Al-Zn-Mg-Cu alloy systems—is incidentally observed at grain boundaries, exhibiting characteristic fivefold symmetry. Selected area electron diffraction (SAED) patterns further show that these quasicrystals undergo partial dissolution under the influence of the pulsed current, transforming into short-range ordered cluster-like structures. Lap shear tests demonstrate that joints treated with pulsed current exhibit significantly higher peak load and energy absorption compared to untreated specimens. Statistical analysis of weld size confirms that both groups possess comparable weld diameters under identical welding currents, suggesting that the observed mechanical improvements are primarily attributed to microstructural evolution rather than geometric factors. Full article
(This article belongs to the Special Issue Welding and Fatigue of Metallic Materials)
Show Figures

Figure 1

12 pages, 624 KiB  
Article
Assessment of Essential Elements and Potentially Toxic Elements (PTEs) in Organic and Conventional Flaxseeds: Implications for Dietary Exposure and Food Safety
by Rodrigo de Lima Brum, Katarzyna Siedzik, Samuel Alejandro-Vega, Soraya Paz-Montelongo, Ángel J. Gutiérrez-Fernández, Dailos González-Weller, Arturo Hardisson, Malgorzata Misniakiewicz, Ewa Pyrzyńska, Flavio Manoel Rodrigues da Silva Júnior and Carmen Rubio
Appl. Sci. 2025, 15(13), 7004; https://doi.org/10.3390/app15137004 - 21 Jun 2025
Viewed by 650
Abstract
Flax (Linum usitatissimum L.) is valued for its fibers and nutrient-rich seeds, which are increasingly consumed for their health benefits. However, flaxseeds can also accumulate potentially toxic elements (PTEs), raising concerns about safety. This study quantified 11 essential elements (e.g., Ca, Fe, [...] Read more.
Flax (Linum usitatissimum L.) is valued for its fibers and nutrient-rich seeds, which are increasingly consumed for their health benefits. However, flaxseeds can also accumulate potentially toxic elements (PTEs), raising concerns about safety. This study quantified 11 essential elements (e.g., Ca, Fe, Mg, and Zn) and 9 PTEs (e.g., Al, Cd, Pb, and Ni) in commercial flaxseed samples using inductively coupled plasma–optical emission spectrometry. Two intake scenarios (15 g/day and 30 g/day) were analyzed to estimate dietary exposure, with health risks assessed through the target hazard quotient (THQ) and hazard index (HI). The results showed that organic flaxseeds had higher levels of certain elements (e.g., Cu, K, and Pb), while Al and Ni were more abundant in conventional samples. Cadmium levels in both remained below the EU regulatory limit. The highest estimated daily intakes were for K, Mg, and Ca, highlighting the seeds’ nutritional value. However, HI values suggested that Al and Pb could pose health risks. These findings emphasize flaxseeds’ dual nature as both beneficial and potentially harmful, particularly given the lack of specific regulatory limits and limited data on elemental composition. Continued monitoring and risk assessment are recommended to safeguard public health. Full article
Show Figures

Graphical abstract

15 pages, 1064 KiB  
Article
Networking 13 Berry Minerals to Sustain a High Yield of Firm Cranberry Fruits
by Leon Etienne Parent
Horticulturae 2025, 11(6), 705; https://doi.org/10.3390/horticulturae11060705 - 18 Jun 2025
Viewed by 411
Abstract
The N fertilization to reach high cranberry (Vaccinium macrocarpon) yields resulted in high proportions of soft berries. Our objective was to define the mineral nutrient balance of cranberry to reach a high yield of firm berries. The database comprised 393 observations [...] Read more.
The N fertilization to reach high cranberry (Vaccinium macrocarpon) yields resulted in high proportions of soft berries. Our objective was to define the mineral nutrient balance of cranberry to reach a high yield of firm berries. The database comprised 393 observations on cv. ‘Stevens’. Berries were analyzed for total S, N, P, K, Ca, Mg, B, Cu, Zn, Mn, Fe, Al, and Si. Random Forest and XGBoost machine learning models were run to predict yield and firmness classes using raw concentrations, centered log ratios (clr) accounting for nutrient interactions, and weighted log ratios (wlr) that also considered the importance of each dual interaction. The wlr returned the most accurate models. The wlr standards elaborated from the high-yielding and nutritionally balanced subpopulation most often differed between the high-yield class and the high-firmness class. The wlr Cu level was significantly (p ≤ 0.01) too high to reach the high-yielding class in the nutritionally imbalanced subpopulation. There was excessive Al and shortage of Si and Mg to reach high berry firmness in the nutritionally imbalanced subpopulation (p ≤ 0.01), indicating the large influence of soil genesis on berry firmness. Despite statistical evidence, cranberry response to Al and Si corrective measures should be tested to elaborate site-specific recommendations based on soil and tissue tests. Full article
(This article belongs to the Special Issue Mineral Nutrition of Plants)
Show Figures

Figure 1

16 pages, 887 KiB  
Article
Study of Toxic Metals and Microelements in Honey as a Tool to Support Beekeeping Production and Consumer Safety
by Clara Naccari, Vincenzo Ferrantelli, Gaetano Cammilleri, Giuseppe Barbaccia, Pietro Riolo, Maria Carmela Ferrante, Antonio Procopio and Ernesto Palma
Foods 2025, 14(11), 1986; https://doi.org/10.3390/foods14111986 - 4 Jun 2025
Viewed by 553
Abstract
Background: Honey is a beekeeping product with high nutritional value, considered a bio-indicator of environmental pollution. The aim of this study was to determine the mineral content in honey by analyzing toxic metals in accordance with EU regulations and evaluating the intake of [...] Read more.
Background: Honey is a beekeeping product with high nutritional value, considered a bio-indicator of environmental pollution. The aim of this study was to determine the mineral content in honey by analyzing toxic metals in accordance with EU regulations and evaluating the intake of microelements through honey consumption. Methods: Honey samples of different floral origins were subjected to ICP-MS analysis for the determination of toxic metals and metalloids (Cd, Pb, As) as well as microelements (Cu, Zn, Se, Fe, Mn, Co, and Al). The data were considered significant for p-values < 0.05. Results: All analyzed minerals were detected above the limit of detection (LOD) in every sample. Among toxic metals, lead (Pb) levels exceeded the maximum residue limit (MRL) of 0.1 mg/kg, as established by EU Regulation 2023/915, in most samples. However, these levels corresponded to a small percentage of the Provisional Tolerable Weekly and Daily Intake. The concentrations of microelements significantly contributed to the Recommended Daily Allowance (RDA). Conclusions: This study documents the presence of toxic metals in the analyzed honey, with lead (Pb) levels exceeding the MRL. The microelement content provides adequate nutritional intake through honey consumption. Therefore, studying the mineral profile can be used to monitor environmental pollution in the areas where the apiaries are located and to assess the safety of honey. Full article
(This article belongs to the Special Issue Heavy Metals Contamination in Food and Associated Human Health Risk)
Show Figures

Figure 1

24 pages, 70177 KiB  
Article
Geology, Structure, Geochemistry, and Origin of Iron Oxide Deposits in Dehbid, Southwest Iran
by Abdorrahman Rajabi, Reza Nozaem, Sara Momenipour, Shojaedin Niroomand, Shahrokh Rajabpour, Somaye Rezaei, Pura Alfonso, Carles Canet, Ahmad Kazemi Mehrnia, Pouria Mahmoodi, Amir Mahdavi, Mansoor Kazemirad, Omid Laghari Firouzjaei and Mohammad Amini
Minerals 2025, 15(6), 590; https://doi.org/10.3390/min15060590 - 30 May 2025
Viewed by 921
Abstract
The Dehbid region, located in the southern part of the Sanandaj–Sirjan Zone (SSZ), is a significant iron oxide mining district with over 20 iron oxide deposits (IODs) and reserves of up to 50 million tons of iron oxide ores. The region features a [...] Read more.
The Dehbid region, located in the southern part of the Sanandaj–Sirjan Zone (SSZ), is a significant iron oxide mining district with over 20 iron oxide deposits (IODs) and reserves of up to 50 million tons of iron oxide ores. The region features a NW–SE oriented ductile shear zone, parallel to the Zagros thrust zone, experienced significant deformation. Detailed structural studies indicate that the iron mineralization is primarily stratiform to stratabound and hosted in late Triassic to early Jurassic silicified dolomites and schists. These ore deposits consist of lenticular iron oxide orebodies and exhibit various structures and textures, including banded, laminated, folded, disseminated, and massive forms of magnetite and hematite. The Fe2O3 content in the mineralized layers varies from 30 to 91 wt%, whereas MnO has an average of 3.9 wt%. The trace elements are generally low, except for elevated concentrations of Cu (up to 4350 ppm) and Zn (up to 3270 ppm). Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) analysis of magnetite reveals high concentrations of Mg, Al, Si, Mn, Ti, Cu, and Zn, with significant depletion of elements such as Ga, Ge, As, and Nb. This study refutes the hypothesis of vein-like or hydrothermal genesis, providing evidence for a sedimentary origin based on the trace element geochemistry of magnetite and LA-ICP-MS geochemical data. The Dehbid banded iron ores (BIOs) are thought to have formed under geodynamic conditions similar to those of BIOs in back-arc tectonic settings. The combination of anoxic conditions, submarine hydrothermal iron fluxes, and redox fluctuations is essential for the formation of these deposits, suggesting that similar iron–manganese deposits can form during the Phanerozoic under specific geodynamic and oceanographic conditions, particularly in tectonically active back-arc environments. Full article
(This article belongs to the Special Issue Mineralogy and Geochemistry of Polymetallic Ore Deposits)
Show Figures

Figure 1

24 pages, 1729 KiB  
Article
Assessment of Metal(loid)s and Nonmetals Contamination in Soils of Urban Ecological Parks in Brazil: Implications for Ecological Risk and Human Health
by Fernanda Guerreiro de Paula, Igor Domingos de Souza, Elaine Silva de Pádua Melo, Marta Aratuza Pereira Ancel, Diego Azevedo Zoccal Garcia, Danielle Bogo, Rita de Cássia Avellaneda Guimarães, Karine de Cássia Freitas Gielow, Rodrigo Juliano Oliveira, Gisele Melo Sanches, Priscila Aiko Hiane and Valter Aragão do Nascimento
Urban Sci. 2025, 9(6), 193; https://doi.org/10.3390/urbansci9060193 - 28 May 2025
Viewed by 682
Abstract
Metal(loid)s and nonmetals in the soil of urban parks can pose risks to human health. Thus, we aimed to study the soil elemental content, soil types and their pH, contamination factor, geo-accumulation index, pollution load index, total carcinogenic risk, and hazard quotient for [...] Read more.
Metal(loid)s and nonmetals in the soil of urban parks can pose risks to human health. Thus, we aimed to study the soil elemental content, soil types and their pH, contamination factor, geo-accumulation index, pollution load index, total carcinogenic risk, and hazard quotient for children and adults by ingestion, inhalation, and dermal routes contact in ecological parks (EP) in Central-West Brazil. In Lago do Amor EP, high concentrations of Mg and Mn and lower pH values predominate, while in the Águas do Prosa EP, there is a greater influence of Zn. Except for the range of average concentrations of Al, Fe, P, Mg, and Mn in all EP soils, the range of the average concentrations of As, Cd, Co, Pb, Cr, Cu, Mo, Se, and Zn were generally higher than those permissible limits. There is moderate contamination by Mo, Ni, Cd, and mainly Se in Lago do Amor, Anhanduí, and Sóter EPs. The geo-accumulation index revealed that Lago do Amor EP is moderately polluted by Cd. Oral ingestion was evidenced as the main route of possible contamination by heavy metals, especially for children, who presented a carcinogenic risk greater than 10−1 for As, Cr, and Ni. Full article
Show Figures

Figure 1

19 pages, 5224 KiB  
Article
Effect of Metal Oxides on the Pyrolytic Behavior and Combustion Performance of 5-Aminotetrazole/Sodium Periodate Gas Generators in Atmospheric Environment
by Chengkuan Shi, Zefeng Guo, Bohuai Zhou, Yichao Liu, Jun Huang and Hua Guan
Materials 2025, 18(10), 2249; https://doi.org/10.3390/ma18102249 - 13 May 2025
Viewed by 383
Abstract
5-aminotetrazole (5AT)-based gas generators, particularly the 5AT/NaIO4 system, have garnered interest for their high gas production and energy potential. This study investigates the impact of various metal oxides (MnO2, Al2O3, TiO2, CuO, Fe2 [...] Read more.
5-aminotetrazole (5AT)-based gas generators, particularly the 5AT/NaIO4 system, have garnered interest for their high gas production and energy potential. This study investigates the impact of various metal oxides (MnO2, Al2O3, TiO2, CuO, Fe2O3, MgO, ZnO, and MoO3) on the thermal decomposition and combustion performance of 5AT/NaIO4. The REAL calculation program was used to infer reaction products, which indicated that the gas products are almost all harmless, with negligibly low percentages of NO and CO. Thermogravimetric analysis revealed that metal oxides, especially MoO3, significantly advance the decomposition process above 400 °C, reducing the activation energy by 130 kJ/mol and lowering critical ignition and thermal explosion temperatures. Combustion performance tests and closed bomb tests confirmed MoO3’s positive effect, accelerating reaction rates and enhancing decomposition efficiency. The system’s high Gibbs free energy indicates non-spontaneous reactions. These findings provide valuable insights for designing environmentally friendly gas generators, highlighting MoO3’s potential as an effective catalyst. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

14 pages, 12484 KiB  
Article
Comparative Study on the Catalytic Ozonation of Biotreated Landfill Leachate Using γ-Al2O3-Based Catalysts Loaded with Different Metals
by Jiancheng Li, Liya Fu, Yin Yu, Yue Yuan, Hongbo Xi and Changyong Wu
Sustainability 2025, 17(10), 4376; https://doi.org/10.3390/su17104376 - 12 May 2025
Viewed by 404
Abstract
Global municipal solid waste (~2B tons/year) affects sustainability, as landfill and incineration face persistent leachate contamination, demanding effective management to advance water recycling and circular economies. Accelerated investigation of hybrid biocatalytic ozonation systems is imperative to enhance contaminant removal efficiency for stringent discharge [...] Read more.
Global municipal solid waste (~2B tons/year) affects sustainability, as landfill and incineration face persistent leachate contamination, demanding effective management to advance water recycling and circular economies. Accelerated investigation of hybrid biocatalytic ozonation systems is imperative to enhance contaminant removal efficiency for stringent discharge compliance. This study investigates the catalytic ozonation effects of γ-Al2O3-based catalysts loaded with different metals (Cu, Mn, Zn, Y, Ce, Fe, Mg) on the biochemical effluent of landfill leachate. The catalysts were synthesized via a mixed method and subsequently characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Pseudo-second-order kinetics revealed active metal loading’s impact on adsorption capacity, with Cu/γ-Al2O3 and Mg/γ-Al2O3 achieving the highest Qe (0.85). To elucidate differential degradation performance among the catalysts, the ozone/oxygen gas mixture was introduced at a controlled flow rate. Experimental results demonstrate that the Cu/γ-Al2O3 catalyst, exhibiting optimal comprehensive degradation performance, achieved COD and TOC removal efficiencies of 84.5% and 70.9%, respectively. UV–vis absorbance ratios revealed the following catalytic disparities: Mg/γ-Al2O3 achieved the highest aromatic compound removal efficiency; Ce/γ-Al2O3 excelled in macromolecular organics degradation. EEM-PARAFAC analysis revealed differential fluorophore removal: Cu/γ-Al2O3 exhibited broad efficacy across all five components, while Mg/γ-Al2O3 demonstrated optimal removal of C2 and C4, but showed limited efficacy toward C5. These findings provide important insights into selecting catalysts in practical engineering applications for landfill leachate treatment. This study aims to elucidate catalyst formulation-dependent degradation disparities, guiding water quality-specific catalyst selection to ultimately enhance catalytic ozonation efficiency. Full article
Show Figures

Figure 1

Back to TopTop