Study of Toxic Metals and Microelements in Honey as a Tool to Support Beekeeping Production and Consumer Safety
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents, Chemicals and Gases
2.2. Sampling and Sample Preparation
2.3. ICP-MS Analysis
2.4. Validation Method
2.5. Statistical Analysis
2.6. Parameters of Toxicological Risk Assessment and Nutritional Evaluation
3. Results
3.1. Toxic Metals and Metalloids and Microelements in Honey Samples
3.2. Toxicological Assessments and Nutritional Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PTWI | Provisional Tolerable Weekly Intake |
PTDI | Provisional Tolerable Daily Intake |
PTMI | Provisional Maximum Tolerable Daily Intake |
EDI | Estimated Daily Intake |
THQ | Target Hazard Quotient |
HI | Hazard Index |
DRVs | Dietary Reference Values |
AI | Adequate Intake |
AR | Average Requirement |
PRI | Population Reference Intake |
RI | Reference Intake Range |
UL | Tolerable Upper Intake Level |
MRL | Maximum Residual Levels |
LOD | Limit of Detection |
References
- Aghamirlou, H.M.; Khadem, M.; Rahmani, A.; Sadeghian, M.; Mahvi, A.H.; Akbarzadeh, A.; Nazmara, S. Heavy metals determination in honey samples using inductively coupled plasma-optical emission spectrometry. J. Environ. Health Sci. Eng. 2015, 13, 39. [Google Scholar] [CrossRef] [PubMed]
- Tafere, D. Chemical composition and uses of honey: A review. J. Food Sci. Nutr. Res. 2021, 4, 194–201. [Google Scholar] [CrossRef]
- Tutun, H.; Kahraman, H.A.; Aluc, Y.; Avci, T.; Ekici, H. Investigation of some metals in honey samples from West Mediterranean region of Turkey. Vet. Res. Forum. 2019, 10, 181–186. [Google Scholar] [CrossRef]
- Lo Dico, G.M.; Ulrici, A.; Pulvirenti, A.; Cammilleri, G.; Macaluso, A.; Vella, A.; Giaccone, V.; Lo Cascio, G.; Graci, S.; Scuto, M.; et al. Multivariate statistical analysis of the polyphenols content for the discrimination of honey produced in Sicily (Southern Italy). J. Food Compos. Anal. 2019, 82, 103225. [Google Scholar] [CrossRef]
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical Composition, Stability and Authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Ajibola, A.; Chamunorwa, J.P.; Erlwanger, K.H. Nutraceutical values of natural honey and its contribution to human health and wealth. Nutr. Metab. 2012, 9, 61. [Google Scholar] [CrossRef]
- Mititelu, M.; Ioana Udeanu, D.; OanaDoce, A.; Tsatsakis, A.; Calina, D.; Arsene, A.L.; Nedelescu, M.; Neacsu, S.M.; Velescu, B.S.; Ghica, M. New method for risk assessment in environmental health: The paradigm of heavy metals in honey. Environ. Res. 2023, 236, 115194. [Google Scholar] [CrossRef]
- Samarghandian, S.; Farkhondeh, T.; Samini, F. Honey and Health: A Review of Recent Clinical Research. Pharmacogn. Res. 2017, 9, 121–127. [Google Scholar] [CrossRef]
- Kamaruzzaman, M.A.; Chin, K.Y.; Mohd Ramli, E.S. A review of potential beneficial effects of honey on bone health. Evid. Based Complement Altern. Med. 2019, 2019, 8543618. [Google Scholar] [CrossRef]
- Johnston, M.; McBride, M.; Dahiya, D.; Owusu-Apenten, R.; Nigam, P.S. Antibacterial activity of Manuka honey and its components: An overview. AIMS Microbiol. 2018, 4, 655–664. [Google Scholar] [CrossRef]
- Wise, J.P., Jr.; Wise, R.M.; Hoffert, A.; Wise, J.T.F.; Specht, A.J. Elevated Metal Levels in U.S. Honeys: Is There a Concern for Human Health? Biol. Trace Elem. Res. 2024, 203, 1789–1797. [Google Scholar] [CrossRef] [PubMed]
- Council Directive 2001/110/EC of 20 December 2001 relating to honey. Off. J. Eur. Comm. 2001, L10, 47–52.
- Squadrone, S.; Brizio, P.; Stella, C.; Pederiva, S.; Brusa, F.; Mogliotti, P.; Garrone, A.; Cesarina Abete, M. Trace and rare earth elements in monofloral and multifloral honeys from Northwestern Italy; A first attempt of characterization by a multi-elemental profile. J. Trace Elem. Med. Biol. 2020, 61, 126556. [Google Scholar] [CrossRef] [PubMed]
- Di Fiore, C.; De Cristofaro, A.; Nuzzo, A.; Notardonato, I.; Ganassi, S.; Iafigliola, L.; Sardella, G.; Ciccone, M.; Nugnes, D.; Passarella, S.; et al. Biomonitoring of polycyclic aromatic hydrocarbons, heavy metals, and plasticizers residues: Role of bees and honey as bioindicators of environmental contamination. Environ. Sci. Pollut. Res. Int. 2023, 30, 44234–44250. [Google Scholar] [CrossRef] [PubMed]
- Zergui, A.; Boudalia, S.; Landy, J.M. Heavy metals in honey and poultry eggs as indicators of environmental pollution and potential risks to human health. J. Food Comp. Anal. 2023, 119, 105255. [Google Scholar] [CrossRef]
- Sage, M. The honey as a bioindicator of the environment. Ecol. Chem. Eng. S 2017, 24, 583–594. [Google Scholar] [CrossRef]
- Kedzierska-Matysek, M.; Teter, A.; Skałecki, P.; Topyła, B.; Domaradzki, P.; Poleszak, E.; Florek, M. Residues of Pesticides and Heavy Metals in Polish Varietal Honey. Foods 2022, 11, 2362. [Google Scholar] [CrossRef]
- Cicero, N.; Naccari, C.; Cammilleri, G.; Giangrosso, G.; Cicero, A.; Gervasi, T.; Tropea, A.; Albergamo, A.; Ferrantelli, V. Monitoring of neonicotinoid pesticides in beekeeping. Nat. Prod. Res. 2017, 31, 1258–1262. [Google Scholar] [CrossRef]
- Lodenius, M. Honey, Pollen and bees as indicators for metal pollution. Acta Univ. Carol. Environ. 2000, 14, 13–20. [Google Scholar]
- Aliferis, K.A.; Tarantilis, P.A.; Harizanis, P.C.; Alissandrakis, E. Botanical discrimination and classification of honey samples applying gas chromatography/mass spectrometry fingerprinting of headspace volatile compounds. Food Chem. 2010, 121, 856–862. [Google Scholar] [CrossRef]
- Naccari, V.; Trevisi, G.; Naccari, C.; Ferrara, G.; Bava, R.; Palma, E. Poisoning due to Spinosad in honeybees: Toxicological report. J. Apicult. Res. 2024, 1–8. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Soil-plant transfer of trace elements-an environmental issue. Geoderma 2004, 122, 143–149. [Google Scholar] [CrossRef]
- Hungerford, N.L.; Tinggi, U.; Tan, B.L.L.; Farrell, M.; Fletcher, M.T. Mineral and Trace Element Analysis of Australian/Queensland Apis mellifera Honey. Int. J. Environ. Res. Public Health 2020, 17, 6304. [Google Scholar] [CrossRef]
- Šerevičienė, V.; Zigmontienė, A.; Paliulis, D. Heavy Metals in Honey Collected from Contaminated Locations: A Case of Lithuania. Sustainability 2022, 14, 9196. [Google Scholar] [CrossRef]
- Solayman, M.; Islam, M.A.; Paul, S.; Ali, Y.; Khalil, M.I.; Alam, N.; Gan, S.H. Physicochemical Properties, Minerals, Trace Elements, and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Pant, K.; Singh Brar, D.; Thakur, A.; Nanda, V. A review on Api-products: Current scenario of potential contaminants and their food safety concerns. Food Control 2023, 145, 109499. [Google Scholar] [CrossRef]
- Patra, B.; Pradhan, N. Contamination of Honey: A Human Health Perspective. In Health Risks of Food Additives—Recent Developments and Trends in Food Sector; Arshad, M.S., Khalid, W., Eds.; Intech Open: Rijeka, Croatia, 2023. [Google Scholar] [CrossRef]
- Naccari, C.; Macaluso, A.; Giangrosso, G.; Naccari, F.; Ferrantelli, V. Risk Assessment of Heavy Metals and Pesticides in Honey From Sicily (Italy). J. Food Res. 2014, 3, 107. [Google Scholar] [CrossRef]
- Messina, E.M.D.; Naccari, C.; Alfano, C.; Galluzzo, F.G.; Cammilleri, G.; Pantano, L.; Buscemi, M.D.; Macaluso, A.; Cicero, N.; Calabrese, V.; et al. Multivariate analysis of trace metals and metalloids contents in edible land snails Cornu aspersum and Eobania vermiculata from Southern Italy. J. Food Comp. Anal. 2025, 139, 107159. [Google Scholar] [CrossRef]
- ISMEA. 2024. Available online: https://www.ismeamercati.it/flex/files/1/4/9/D.8dbdf151026c898c6b2e/Scheda_Miele_2022.pdf (accessed on 5 May 2025).
- Flamminii, F.; Consalvo, A.; Cichelli, A.; Chiaudani, A. Assessing Mineral Content and Heavy Metal Exposure in Abruzzo Honey and Bee Pollen from Different Anthropic Areas. Foods 2024, 13, 1930. [Google Scholar] [CrossRef]
- EFSA. 2019. Available online: https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/sp.efsa.2017.e15121 (accessed on 27 April 2025).
- THE COMMISSION OF THE EUROPEAN COMMUNITIES. Commission Directive 2008/100/EC of 28 October 2008 Amending Council Directive 90/496/EEC on Nutrition Labelling for Foodstuffs as Regards Recommended Daily Allowances, Energy Conversion Factors and Definitions. Off. J. Eur. Union 2008, L285, 9–12. Available online: http://data.europa.eu/eli/dir/2008/100/oj (accessed on 19 September 2024).
- Liolios, V.; Tananaki, C.; Papaioannou, A.; Kanelis, D.; Rodopoulou, M.A.; Argena, N. Mineral Content in Monofloral Bee Pollen: Investigation of the Effect of the Botanical and Geographical Origin. J. Food Meas. Charact. 2019, 13, 1674–1682. [Google Scholar] [CrossRef]
- De Andrade, C.K.; dos Anjos, V.E.; Felsner, M.L.; Torres, Y.R.; Quináia, S.P. Relationship between geographical origin and contents of Pb, Cd, and Cr in honey samples from the state of Paraná (Brazil) with chemometric approach. Environ. Sci. Pollut. Res. 2014, 21, 12372–12381. [Google Scholar] [CrossRef]
- Fakhri, Y.; Abtahi, M.; Atamaleki, A.; Raoofi, A.; Atabati, H.; Asadi, A.; Miri, A.; Shamloo, E.; Alinejad, A.; Keramati, H.; et al. The concentration of potentially toxic elements (PTEs) in honey: A global systematic review and meta-analysis and risk assessment. Trends Food Sci. Technol. 2019, 91, 498–506. [Google Scholar] [CrossRef]
- Wilczyńska, A.; Żak, N.; Stasiuk, E. Content of Selected Harmful Metals (Zn, Pb, Cd) and Polycyclic Aromatic Hydrocarbons (PAHs) in Honeys from Apiaries Located in Urbanized Areas. Foods 2024, 13, 3451. [Google Scholar] [CrossRef] [PubMed]
- Arif, N.; Yadav, V.; Singh, S.; Singh, S.; Ahmad, P.; Mishra, R.K.; Sharma, S.; Tripathi, D.K.; Dubey, N.K.; Chauhan, D.K. Influence of High and Low Levels of Plant-Beneficial Heavy Metal Ions on Plant Growth and Development. Front. Environ. Sci. 2016, 4, 69. [Google Scholar] [CrossRef]
- Awad, M.M.; Boone, R.B. Assessment of Spatial Variations in Pesticide, Heavy Metal, and Selenium Residues in Honey Bee (Apis mellifera L.) Products. Sci 2023, 5, 24. [Google Scholar] [CrossRef]
- Corredera, L.; Bayarri, S.; Pérez-Arquillué, C.; Lázaro, R.; Molino, F.; Herrera, A. Evaluation of Heavy Metals and Polycyclic Aromatic Hydrocarbons in Honeys from Different Origins. J. Food Protect. 2014, 77, 504–509. [Google Scholar] [CrossRef]
- Massous, A.; Ouchbani, T.; Lo Turco, V.; Litrenta, F.; Nava, V.; Albergamo, A.; Potortì, A.G.; Di Bella, G. Monitoring Moroccan Honeys: Physicochemical Properties and Contamination Pattern. Foods 2023, 12, 969. [Google Scholar] [CrossRef]
- Yarsan, E.; Karacal, F.; Ibrahim, I.G.; Dikmen, B.; Koksal, A.; Das, Y.K. Contents of some metals in honeys from different regions in Turkey. Bull. Environ. Contam. Toxicol. 2007, 79, 255–258. [Google Scholar] [CrossRef]
- Czipa, N.; Andrasi, D.; Kovacs, B. Determination of essential and toxic elements in Hungarian honeys. Food Chem. 2015, 175, 536–542. [Google Scholar] [CrossRef]
- Shaw, J.; Cunningham, C.; Harper, S.; Ragazzon-Smith, A.; Lythgoe, P.R.; Walker, T.R. Biomonitoring of honey metal(loid) pollution in Northwest England by citizen scientists. Environ. Adv. 2023, 13, 100406. [Google Scholar] [CrossRef]
- Bazeyad, A.Y.; Al-Sarar, A.S.; Rushdi, A.I.; Hassanin, A.S.; Abobakr, Y. Levels of heavy metals in a multifloral Saudi honey. Environ. Sci. Pollut. Control Ser. 2019, 26, 3946–3953. [Google Scholar] [CrossRef] [PubMed]
- Gobedo, T.R.; Stoner, H.; Taylor, P.; Jeuland, M. Metals in honey from bees as a proxy for environmental contamination in the United States. Environ. Poll. 2025, 364, 125221. [Google Scholar] [CrossRef]
- THE EUROPEAN COMMISSION. Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Off. J. Eur. Union 2023, L119, 103–157. Available online: http://data.europa.eu/eli/reg/2023/915/oj (accessed on 19 September 2024).
- Alaerjani, W.M.A.; Mohammed, M.E.A. Impact of floral and geographical origins on honey quality parameters in Saudi Arabian regions. Sci. Rep. 2024, 14, 8720. [Google Scholar] [CrossRef]
- Albu, A.; Simeanu, C.; Pop, I.M.; Pui, A.; Tarcău, D.; Cucu-Man, S.-M. Selected Characteristics of Multifloral Honeys from North-Eastern Romania. Agriculture 2024, 14, 26. [Google Scholar] [CrossRef]
- US Environmental Protection Agency’s Integrated Risk Information System (USEPA-IRIS), 2002. USEPA-IRIS. Available online: https://www.epa.gov/iris (accessed on 19 September 2024).
- Kaygusuz, H.; Tezcan, F.; Erim, F.B.; Sahin, H.; Can, Z.; Kolayli, S. Characterization of Anatolian honeys based on minerals, bioactive components and principal component analysis. Food Sci. Technol. 2016, 68, 273–279. [Google Scholar] [CrossRef]
- Terrab, A.; González, G.; Díez, M.; Heredia, F. Mineral content and electrical conductivity of the honeys produced in Northwest Morocco and their contribution to the characterization of unifloral honeys. J. Sci. Food Agric. 2003, 83, 637–643. [Google Scholar] [CrossRef]
- Pavlin, A.; Kocar, D.; Imperl, J.; Kolar, M.; Marolt, G.; Petrova, P. Honey Origin Authentication via Mineral Profiling Combined with Chemometric Approaches. Foods 2023, 12, 2826. [Google Scholar] [CrossRef]
- Costa-Silva, F.; Maia, M.; Matos, C.C.; Calçada, E.; Barros, A.I.R.N.A.; Nunes, F.M. Selenium content of Portuguese unifloral honeys. J. Food Comp. Anal. 2011, 24, 351–355. [Google Scholar] [CrossRef]
- Perna, A.; Simonetti, A.; Intaglietta, I.; Sofo, A.; Gambacorta, E. Metal content of southern Italy honey of different botanical origins andits correlation with polyphenol content and antioxidant activity. Int. J. Food Sci. Technol. 2012, 47, 1909–1917. [Google Scholar] [CrossRef]
- Ligor, M.; Kowalkowski, T.; Buszewski, B. Comparative Study of the Potentially Toxic Elements and Essential Microelements in Honey Depending on the Geographic Origin. Molecules 2022, 27, 5474. [Google Scholar] [CrossRef] [PubMed]
- Oroian, M.; Prisacaru, A.; Hretcanu, E.C.; Stroe, S.-G.; Leahu, A.; Buculei, A. Heavy metals profile in honey as a potential indicator of botanical and geographical origin. Int. J. Food Proper. 2016, 19, 1825–1836. [Google Scholar] [CrossRef]
- Eddie-Amadi, B.F.; Ezejiofor, A.N.; Orish, C.N.; Orisakwe, O.E. Zinc and selenium mitigated heavy metals mixture (Pb, Al, Hg and Mn) mediated hepatic-nephropathy via modulation of oxido-inflammatory status and NF-kB signaling in female albino rats. Toxicology 2022, 481, 153350. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
RF-Power (W) | 1500 |
Carrier gas flow (mL/min) | 1.2 |
Plasma gas flow (mL/min) | 15 |
Auxiliary gas flow (mL/min) | 1.0 |
Spray chamber | Water-cooled double pass |
Spray chamber temperature (°C) | 2 |
Lens voltage | 4.5 |
Mass resolution | 0.7 |
Integration time points/ms | 3 |
Points per peak | 3 |
Replicates | 4 |
Honey Samples | Pb | Cd | As | |
---|---|---|---|---|
Wildflower (n = 10) | Mean | 0.125 | 0.008 | 0.003 |
S.D. | 0.085 | 0.003 | 0.002 | |
Median | 0.934 | 0.006 | 0.002 | |
Citrus (n = 8) | Mean | 0.124 | 0.009 | 0.013 |
S.D. | 0.066 | 0.005 | 0.001 | |
Median | 0.111 | 0.008 | 0.009 | |
Chestnut (n = 8) | Mean | 0.079 | 0.006 | 0.003 |
S.D. | 0.043 | 0.002 | 0.011 | |
Median | 0.075 | 0.005 | 0.003 | |
Honeydew (n = 6) | Mean | 0.109 | 0.008 | 0.006 |
S.D. | 0.013 | 0.002 | 0.001 | |
Median | 0.103 | 0.007 | 0.004 | |
Erika (n = 6) | Mean | 0.104 | 0.007 | 0.007 |
S.D. | 0.004 | 0.001 | 0.001 | |
Median | 0.091 | 0.006 | 0.006 |
Honey Samples | Se | Zn | Cu | Fe | Mn | Co | Ni | Cr | Al | |
---|---|---|---|---|---|---|---|---|---|---|
Wildflower (n = 10) | Mean | 0.024 | 2.114 | 0.372 | 1.058 | 1.210 | 0.016 | 0.071 | 0.036 | 4.466 |
S.D. | 0.009 | 0.102 | 0.109 | 0.548 | 0.097 | 0.004 | 0.017 | 0.006 | 0.498 | |
Median | 0.013 | 1.983 | 0.457 | 1.750 | 1.052 | 0.018 | 0.076 | 0.035 | 4.172 | |
Citrus (n = 8) | Mean | 0.562 | 1.288 | 0.351 | 2.755 | 5.716 | 0.012 | 0.079 | 0.011 | 6.037 |
S.D. | 0.036 | 0.078 | 0.022 | 0.265 | 0.559 | 0.005 | 0.006 | 0.002 | 0.915 | |
Median | 0.178 | 1.311 | 0.358 | 2.776 | 5.695 | 0.012 | 0.078 | 0.018 | 6.133 | |
Chestnut (n = 8) | Mean | 0.050 | 2.313 | 1.910 | 1.056 | 2.896 | 0.019 | 0.108 | 0.086 | 4.764 |
S.D. | 0.015 | 0.210 | 0.283 | 0.039 | 0.042 | 0.003 | 0.012 | 0.024 | 0.814 | |
Median | 0.059 | 2.352 | 1.937 | 1.069 | 2.948 | 0.020 | 0.109 | 0.087 | 4.626 | |
Honeydew (n = 6) | Mean | 0.212 | 1.905 | 0.878 | 1.623 | 3.274 | 0.016 | 0.086 | 0.044 | 5.089 |
S.D. | 0.005 | 0.047 | 0.081 | 0.081 | 0.065 | 0.009 | 0.023 | 0.008 | 0.372 | |
Median | 0.014 | 1.722 | 0.688 | 0.830 | 0.547 | 0.013 | 0.187 | 0.032 | 4.982 | |
Erika (n = 6) | Mean | 0.275 | 1.836 | 1.046 | 1.811 | 3.962 | 0.016 | 0.091 | 0.047 | 5.297 |
S.D. | 0.007 | 0.047 | 0.010 | 0.169 | 0.013 | 0.001 | 0.005 | 0.001 | 0.287 | |
Median | 0.018 | 1.469 | 0.233 | 1.354 | 0.158 | 0.003 | 0.043 | 0.036 | 5.031 |
PTWI (Provisional Tolerable Weekly Intake) | ||||
---|---|---|---|---|
Pb | PTWI 0.025 mg/kg | JECFA 1993 | PTWI withdrawn. Not possible to establish a new PTWI protective for health | Evaluation 2011 |
Cd | PTWI 0.007 mg/kg bw | JECFA 2003 | PTMI 25 µg/kg b.w./month | Evaluation 2010, confirmed 2021 |
As | PTWI 0.015 mg/kg bw | JECFA 1988 | PTWI 15 µg/kg b.w. withdrawn | Evaluation 2011 |
Al | PTWI 1 mg/kg bw | JECFA 1988 | PTWI 2 mg/kg b.w. | Evaluation 2011 |
PMTDI (Provisional Maximum Tolerable Daily Intake) | ||||
Se | PMTDI 9.4 μg/kg bw/day | JECFA 2011 | PTWI 66 μg/kgb.w./week | JECFA-WHO, 72 (2011) |
Zn | PMTDI 0.3-1 mg/kg bw/day | JECFA 1992 | PTWI 7mg/kg b.w./week | JECFA 1992 |
Cu | PMTDI 0.5 mg/kg bw/day | JECFA 1992 | PTWI 3.5mg/kg bw/week | JECFA 1992 |
Fe | PMTDI 0.8 mg/kg bw/day | JECFA 1983 | - | - |
Mn | PMTDI 0.36mg/kg bw/day | JECFA 1992 | PTWI 2.5 mg/kg b.w./week | JECFA 1992 |
Element | Parameter | Wildflower | Citrus | Chestnut | Honeydew | Erika |
---|---|---|---|---|---|---|
Pb | PTWI | 1.40 × 10−2 | 1.30 × 10−2 | 9.00 × 10−3 | 1.20 × 10−2 | 1.10 × 10−2 |
EDI | 3.00 × 10−6 | 2.00 × 10−4 | 3.00 × 10−6 | 2.00 × 10−4 | 3.00 × 10−6 | |
THQ | 9.70 × 10−4 | 9.60 × 10−4 | 6.10 × 10−4 | 8.50 × 10−4 | 8.10 × 10−4 | |
Cd | PTDI | 2.97 × 10−5 | 3.26 × 10−5 | 2.28 × 10−5 | 2.82 × 10−5 | 2.79 × 10−5 |
EDI | 2.00 × 10−7 | 2.00 × 10−7 | 2.00 × 10−7 | 2.00 × 10−7 | 1.00 × 10−7 | |
THQ | 2.23 × 10−3 | 2.44 × 10−3 | 1.71 × 10−3 | 2.12 × 10−3 | 2.09 × 10−3 | |
As | PTWI | 5.00 × 10−4 | 2.30 × 10−3 | 6.00 × 10−4 | 1.10 × 10−3 | 1.40 × 10−3 |
EDI | 1.00 × 10−7 | 3.00 × 10−7 | 1.00 × 10−7 | 2.00 × 10−7 | 2.00 × 10−7 | |
THQ | 2.40 × 10−4 | 1.16 × 10−3 | 3.00 × 10−4 | 5.60 × 10−4 | 6.80 × 10−4 | |
Al | PTDI | 9.00 × 10−4 | 1.20 × 10−3 | 9.00 × 10−4 | 1.00 × 10−3 | 1.00 × 10−3 |
EDI | 1.20 × 10−4 | 1.60 × 10−4 | 1.30 × 10−4 | 1.40 × 10−4 | 1.40 × 10−4 | |
THQ | 1.20 × 10−4 | 1.60 × 10−4 | 1.30 × 10−4 | 1.40 × 10−4 | 1.40 × 10−4 | |
Se | PTMI | 2.60 × 10−3 | 6.10 × 10−2 | 5.40 × 10−3 | 2.30 × 10−2 | 2.98 × 10−2 |
EDI | 1.00 × 10−6 | 1.50 × 10−5 | 1.00 × 10−6 | 6.00 × 10−6 | 7.00 × 10−6 | |
THQ | - | - | - | - | - | |
Zn | PTMI | 2.30 × 10−1 | 1.40 × 10−1 | 2.51 × 10−1 | 2.07 × 10−1 | 1.99 × 10−1 |
EDI | 5.70 × 10−5 | 3.50 × 10−5 | 6.30 × 10−5 | 5.20 × 10−5 | 5.00 × 10−5 | |
THQ | 1.90 × 10−4 | 1.20 × 10−4 | 2.10 × 10−4 | 1.70 × 10−4 | 1.70 × 10−4 | |
Cu | PMTDI | 3.00 × 10−4 | 3.00 × 10−4 | 1.50 × 10−3 | 7.00 × 10−4 | 8.00 × 10−4 |
EDI | 1.00 × 10−5 | 1.00 × 10−5 | 5.20 × 10−5 | 2.40 × 10−5 | 2.80 × 10−5 | |
THQ | 2.50 × 10−4 | 2.40 × 10−4 | 1.30 × 10−3 | 6.00 × 10−4 | 7.10 × 10−4 | |
Fe | PTMI | 1.15 × 10−1 | 2.99 × 10−1 | 1.15 × 10−1 | 1.76 × 10−1 | 1.97 × 10−1 |
EDI | 2.90 × 10−5 | 7.50 × 10−5 | 2.90 × 10−5 | 4.40 × 10−5 | 4.90 × 10−5 | |
THQ | 4.00 × 10−5 | 1.10 × 10−4 | 4.00 × 10−5 | 6.00 × 10−5 | 7.00 × 10−5 | |
Mn | PTMI | 1.30 × 10−3 | 6.20 × 10−3 | 3.10 × 10−3 | 3.60 × 10−3 | 4.30 × 10−3 |
EDI | 3.30 × 10−5 | 1.55 × 10−4 | 7.90 × 10−5 | 8.90 × 10−5 | 1.08 × 10−4 | |
THQ | 3.30× 10−5 | 1.55 × 10−4 | 7.90 × 10−5 | 8.90 × 10−5 | 1.08 × 10−4 |
Element | Honey Type | Conc. Found (mg/Kg) | EDI from Honey (mg/day) | AI | AR | PRI | UL | Risk |
---|---|---|---|---|---|---|---|---|
Cu | Wildflower | 0.372 | 7.10 × 10−4 | 0.4–1.6 mg/day | NA | NA | 1–5 mg/day | None |
Citrus | 0.351 | 6.70 × 10−4 | None | |||||
Chestnut | 1.911 | 3.67 × 10−3 | None | |||||
Honeydew | 0.878 | 1.69 × 10−3 | None | |||||
Erika | 1.046 | 2.01 × 10−3 | None | |||||
Fe | Wildflower | 1.058 | 2.03 × 10−3 | 5–16 mg/day | 5–12.7 mg/day | 7–16.3 mg/day | ND | None |
Citrus | 2.755 | 5.29 × 10−3 | None | |||||
Chestnut | 1.056 | 2.03 × 10−3 | None | |||||
Honeydew | 1.623 | 3.12 × 10−3 | None | |||||
Erika | 1.811 | 3.47 × 10−3 | None | |||||
Mn | Wildflower | 1.210 | 2.32 × 10−3 | 0.5–3 mg/day | NA | NA | ND | None |
Citrus | 5.716 | 1.10 × 10−2 | None | |||||
Chestnut | 2.896 | 5.56 × 10−3 | None | |||||
Honeydew | 3.274 | 6.28 × 10−3 | None | |||||
Erika | 3.962 | 7.61 × 10−3 | None | |||||
Se | Wildflower | 0.024 | 4.61 × 10−2 | 15–85 µg/day | NA | NA | 45–255 µg/day | None |
Citrus | 0.174 | 3.34 × 10−1 | None | |||||
Chestnut | 0.050 | 9.60 × 10−2 | None | |||||
Honeydew | 0.083 | 1.59 × 10−1 | None | |||||
Erika | 0.102 | 1.96 × 10−1 | None | |||||
Zn | Wildflower | 2.115 | 4.07 × 10−3 | 2.4–12.7 mg/day | 2.4–12.7 mg/day | 2.9–16.3 mg/day | 7–25 mg/day | None |
Citrus | 1.289 | 2.47 × 10−3 | None | |||||
Chestnut | 2.313 | 4.44 × 10−3 | None | |||||
Honeydew | 1.905 | 3.66 × 10−3 | None | |||||
Erika | 1.836 | 3.52 × 10−3 | None |
Honey Samples | Wildflower | Citrus | Chestnut | Honeydew | Erika |
---|---|---|---|---|---|
Cr % RDA 30 µg/day | 0.227 | 0.069 | 0.547 | 0.206 | 0.232 |
Cu % RDA 1 mg/day | 0.071 | 0.066 | 0.363 | 0.167 | 0.198 |
Fe % RDA 14 mg/day | 0.014 | 0.037 | 0.014 | 0.022 | 0.025 |
Mn % RDA 10 mg/day | 0.023 | 0.108 | 0.0550 | 0.062 | 0.075 |
Se % RDA 55 µg/day | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 |
Zn % RDA 10 mg/day | 0.040 | 0.024 | 0.044 | 0.036 | 0.035 |
Mo % RDA 100 µg/day | 0.017 | 0.074 | 0.014 | 0.035 | 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naccari, C.; Ferrantelli, V.; Cammilleri, G.; Barbaccia, G.; Riolo, P.; Ferrante, M.C.; Procopio, A.; Palma, E. Study of Toxic Metals and Microelements in Honey as a Tool to Support Beekeeping Production and Consumer Safety. Foods 2025, 14, 1986. https://doi.org/10.3390/foods14111986
Naccari C, Ferrantelli V, Cammilleri G, Barbaccia G, Riolo P, Ferrante MC, Procopio A, Palma E. Study of Toxic Metals and Microelements in Honey as a Tool to Support Beekeeping Production and Consumer Safety. Foods. 2025; 14(11):1986. https://doi.org/10.3390/foods14111986
Chicago/Turabian StyleNaccari, Clara, Vincenzo Ferrantelli, Gaetano Cammilleri, Giuseppe Barbaccia, Pietro Riolo, Maria Carmela Ferrante, Antonio Procopio, and Ernesto Palma. 2025. "Study of Toxic Metals and Microelements in Honey as a Tool to Support Beekeeping Production and Consumer Safety" Foods 14, no. 11: 1986. https://doi.org/10.3390/foods14111986
APA StyleNaccari, C., Ferrantelli, V., Cammilleri, G., Barbaccia, G., Riolo, P., Ferrante, M. C., Procopio, A., & Palma, E. (2025). Study of Toxic Metals and Microelements in Honey as a Tool to Support Beekeeping Production and Consumer Safety. Foods, 14(11), 1986. https://doi.org/10.3390/foods14111986