Spatial Distribution of Cadmium in Avocado-Cultivated Soils of Peru: Influence of Parent Material, Exchangeable Cations, and Trace Elements
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling
2.3. Soil Analysis
2.4. Extraction and Processing of Geospatial Variables
2.5. Univariate Statistical Analysis
2.6. Multivariate Statistical Analysis
2.7. Application of Geodetector Algorithm Principle
Factor Data Processing
2.8. Statistical Analysis of Non-Parametric Comparison
2.9. Cartographic Mapping of Influencing Factors in Spatial Variability of Cd
3. Results
3.1. Statistical Distribution of Cd and Edaphic Properties: Identification of Anomalies and Geochemical Heterogeneity
3.2. Non-Parametric Spearman Correlation Between Total Cd Content and Fertility Parameters and Total Metal Accumulation in Avocado Plantation Soils in Peru
3.3. Principal Component Analysis of Fertility Parameters and Total Content of Metals Associated with Cd Accumulation in Avocado Plantation Soils in Peru
3.4. Application of Geodetector Model for Identifying Determinant Factors in Spatial Variability of Total Soil Cd in Avocado Plantations in Peru
3.5. Non-Parametric Comparison of Total Cd Levels According to Parent Material of Origin, Taxonomic Type (Wrb) of Soil, and Geological Age of Parent Material in Soils Cultivated with Avocados
3.6. Spatial Representation of Influential Factors in Cadmium Distribution Based on Geodetector Analysis
4. Discussion
4.1. Geochemical Implications of Anomalous Cd Distributions and Their Association with Edaphic Variables in Avocado Plantations in Peru
4.2. Edaphic Mechanisms of Cd Accumulation: Insights from Multivariate Statistical Analysis
4.3. Soil and Geological Factors Controlling Total Cd Accumulation in Avocado-Cultivated Soils: Influence of Taxonomic Type, Parent Material, and Geological Age
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, J.; Zhang, C.; Du, B.; Cui, H.; Fan, X.; Zhou, D.; Zhou, J. Effects of Zinc Application on Cadmium (Cd) Accumulation and Plant Growth through Modulation of the Antioxidant System and Translocation of Cd in Low- and High-Cd Wheat Cultivars. Environ. Pollut. 2020, 265, 115045. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Yang, L. A Review of Heavy Metal Contaminations in Urban Soils, Urban Road Dusts and Agricultural Soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Huang, X.; Yu, H.; Zhao, X.; Guo, X.; Ye, Y.; Xu, Z. Spatial Variation in Cadmium and Mercury and Factors Influencing Their Potential Ecological Risks in Farmland Soil in Poyang Lake Plain, China. Front. Environ. Sci. 2021, 9, 641497. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Bin Emran, T.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud. Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- McLaughlin, M.J.; Smolders, E.; Zhao, F.J.; Grant, C.; Montalvo, D. Managing cadmium in agricultural systems. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 164, pp. 1–129. [Google Scholar] [CrossRef]
- Sun, L.; Wang, R.; Ju, Q.; Xing, M.; Li, R.; Li, W.; Li, W.; Wang, W.; Deng, Y.; Xu, J. Mitigation mechanism of zinc oxide nanoparticles on cadmium toxicity in tomato. Front. Plant Sci. 2023, 14, 1162372. [Google Scholar] [CrossRef]
- Wang, R.; Sang, P.; Guo, Y.; Jin, P.; Cheng, Y.; Yu, H.; Xie, Y.; Yao, W.; Qian, H. Cadmium in food: Source, distribution and removal. Food Chem. 2023, 405, 134666. [Google Scholar] [CrossRef]
- Taramuel-Taramuel1, J.P.; Montoya-Restrepo, I.A.; Barrios, D. Challenges in the Avocado Production Chain in Latin America: A Descriptive Analysis. Agron. Colomb. 2024, 42, e113982. [Google Scholar] [CrossRef]
- European Commission. RASFF—Rapid Alert System for Food and Feed. Available online: https://webgate.ec.europa.eu/rasff-window/screen/search (accessed on 14 June 2025).
- Thomas, E.; Atkinson, R.; Zavaleta, D.; Rodriguez, C.; Lastra, S.; Yovera, F.; Arango, K.; Pezo, A.; Aguilar, J.; Tames, M.; et al. The Distribution of Cadmium in Soil and Cacao Beans in Peru. Sci. Total Environ. 2023, 881, 163372. [Google Scholar] [CrossRef]
- Song, Y.; Jin, L.; Wang, X. Cadmium Absorption and Transportation Pathways in Plants. Int. J. Phytoremediat. 2017, 19, 133–141. [Google Scholar] [CrossRef]
- Guan, Q.; Wang, F.; Xu, C.; Pan, N.; Lin, J.; Zhao, R.; Yang, Y.; Luo, H. Source Apportionment of Heavy Metals in Agricultural Soil Based on PMF: A Case Study in Hexi Corridor, Northwest China. Chemosphere 2018, 193, 189–197. [Google Scholar] [CrossRef]
- Bi, X.; Zhang, M.; Wu, Y.; Fu, Z.; Sun, G.; Shang, L.; Li, Z.; Wang, P. Distribution Patterns and Sources of Heavy Metals in Soils from an Industry Undeveloped City in Southern China. Ecotoxicol. Environ. Saf. 2020, 205, 111115. [Google Scholar] [CrossRef] [PubMed]
- Quispe, K.; Mejía, S.; Carbajal, C.; Alejandro, L.; Verástegui, P.; Solórzano, R. Spatial Variability of Soil Acidity and Lime Requirements for Potato Cultivation in the Huánuco Highlands. Agriculture 2024, 14, 2286. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, Q.; Lin, Q.; Zeng, C.; Zhong, C. Cadmium Source Identification in Soils and High-Risk Regions Predicted by Geographical Detector Method. Environ. Pollut. 2020, 263, 114338. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, Y.; Chen, W.; Wang, M.; Wang, T.; Dai, Y. Dynamic Interactions between Soil Cadmium and Zinc Affect Cadmium Phytoavailability to Rice and Wheat: Regional Investigation and Risk Modeling. Environ. Pollut. 2020, 267, 115613. [Google Scholar] [CrossRef]
- Chen, S.; Wang, M.; Li, S.; Zhao, Z.; Wen-Di, E. Overview on Current Criteria for Heavy Metals and Its Hint for the Revision of Soil Environmental Quality Standards in China. J. Integr. Agric. 2018, 17, 765–774. [Google Scholar] [CrossRef]
- Tindwa, H.J.; Singh, B.R. Soil Pollution and Agriculture in Sub-Saharan Africa: State of the Knowledge and Remediation Technologies. Front. Soil Sci. 2022, 2, 1101944. [Google Scholar] [CrossRef]
- Havlin, J.L.; Tisdale, S.L.; Nelson, W.D.; Beaton, J.D. Soil Fertility and Fertilizers: An Introduction to Nutrient Management, 6th ed.; Pearson Education: Chennai, India, 2016; Volume 8, ISBN 978-93-325-7034-4. [Google Scholar]
- ISO 11464:2006; Soil Quality—Pretreatment of Samples for Physico-Chemical Analysis. ISO: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/37718.html (accessed on 19 May 2025).
- DOF—Diario Oficial de La Federación. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=717582&fecha=31/12/2002#gsc.tab=0 (accessed on 19 May 2025).
- U.S. Environmental Protection Agency. Method 9045D: Soil and Waste pH. Revision 4. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/9045d.pdf (accessed on 5 April 2025).
- ISO 11265:1994; Soil Quality—Determination of the Specific Electrical Conductivity. ISO: Geneva, Switzerland, 1994. Available online: https://www.iso.org/standard/19243.html (accessed on 10 October 2024).
- Bazán Tapia, R. Manual de Procedimientos de los Análisis de Suelos y Agua con Fines de Riego; Instituto Nacional de Innovación Agraria-INIA: Lima, Peru, 2017. [Google Scholar]
- ISRIC. SoilGrids—Global Gridded Soil Information. Available online: https://www.isric.org/explore/soilgrids (accessed on 19 May 2025).
- Instituto Geológico, Minero y Metalúrgico (INGEMMET): Lima, Perú. Geocatmin: Sistema de Información Geológica y Catastral del Perú. Available online: https://geocatmin.ingemmet.gob.pe/geocatmin/ (accessed on 25 March 2025).
- De la Cruz, A. Atlas de Zonas de Vida del Perú: Guía Explicativa; Nota Técnica No. 003 SE-NAMH-DHI-2017; Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI): Lima, Perú, 2017. [Google Scholar]
- Catalogo de Metadatos Cartográficos—SENAMHI. Available online: https://idesep.senamhi.gob.pe/geonetwork/srv/spa/catalog.search#/metadata/9f18b911-64af-4e6b-bbef-272bb20195e4 (accessed on 19 May 2025).
- Wang, J.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X. Geographical Detectors-Based Health Risk Assessment and Its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, L.; Cui, X.; Cheng, H.; Chen, F.; Wang, J.; Zhao, X.; Lin, C.; Pu, X. A Review of Soil Cadmium Contamination in China Including a Health Risk Assessment. Environ. Sci. Pollut. Res. 2015, 22, 16441–16452. [Google Scholar] [CrossRef]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in Soils and Groundwater: A Review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef]
- Xu, H.; Wang, H.; Croot, P.; Liu, J.; Li, Y.; Beiyuan, J.; Li, C.; Singh, B.P.; Xie, S.; Zhou, H.; et al. Investigation of Spatially Varying Relationships between Cadmium Accumulation and Potential Controlling Factors in the Topsoil of Island of Ireland Based on Spatial Machine Learning Approaches. Environ. Res. 2025, 275, 121466. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, G.; Yin, X.; Liu, Z. Field-Scale Spatial Variation of Saline-Sodic Soil and Its Relation with Environmental Factors in Western Songnen Plain of China. Int. J. Environ. Res. Public Health 2011, 8, 374–387. [Google Scholar] [CrossRef]
- Zhao, K.; Fu, W.; Ye, Z.; Zhang, C. Contamination and Spatial Variation of Heavy Metals in the Soil-Rice System in Nanxun County, Southeastern China. Int. J. Environ. Res. Public Health 2015, 12, 1577–1594. [Google Scholar] [CrossRef]
- Zahedifar, M. Effect of Biochar on Cadmium Fractions in Some Polluted Saline and Sodic Soils. Environ. Manag. 2020, 66, 1133–1141. [Google Scholar] [CrossRef]
- Kharche, V.K.; Paradhi, A.; Shirale, A.O.; Jadhao, S.D. Diagnosis, Classification and Management of Black Sodic Soils: An Overview: Classification and Management of Black Sodic Soils. J. Soil Salin. Water Qual. 2024, 16, 317–328. [Google Scholar] [CrossRef]
- Filipović, L.; Romić, M.; Romić, D.; Filipović, V.; Ondrašek, G. Organic Matter and Salinity Modify Cadmium Soil (Phyto)Availability. Ecotoxicol. Environ. Saf. 2018, 147, 824–831. [Google Scholar] [CrossRef]
- Ondrasek, G.; Rengel, Z. The Role of Soil Organic Matter in Trace Element Bioavailability and Toxicity. In Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability; Ahmad, P., Prasad, M.N.V., Eds.; Springer: New York, NY, USA, 2012; pp. 403–423. ISBN 978-1-4614-0634-1. [Google Scholar]
- Li, W.; Qin, F.; Li, H.; Huang, Q.; Luo, L.; Xu, A. Calcium Supplementation Alleviates Cadmium Toxicity in Contaminated Soil and Rice (Oryza Sativa) Seedlings. Ciência Rural. 2025, 55, e20240467. [Google Scholar] [CrossRef]
- Liu, J.; Feng, X.; Qiu, G.; Li, H.; Wang, Y.; Chen, X.; Fu, Q.; Guo, B. Inhibition Roles of Calcium in Cadmium Uptake and Translocation in Rice: A Review. Int. J. Mol. Sci. 2023, 24, 11587. [Google Scholar] [CrossRef]
- He, L.L.; Huang, D.Y.; Zhang, Q.; Zhu, H.H.; Xu, C.; Li, B.; Zhu, Q.H. Meta-Analysis of the Effects of Liming on Soil PH and Cadmium Accumulation in Crops. Ecotoxicol. Environ. Saf. 2021, 223, 112621. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, S.; Wang, D.; Sun, D.; Ge, Y.; Zhang, S.; Li, G.; Jho, E.H.; Joo, J.C.; Zhao, X.; et al. Decoupling Soil PH and Geography: Universal Drivers of Cadmium Bioavailability in Rice across Terrains. J. Environ. Manag. 2025, 381, 125297. [Google Scholar] [CrossRef]
- Yan, Z.; Ding, W.; Xie, G.; Yan, M.; Li, J.; Han, Y.; Xiong, X.; Wang, C. Identification of Cadmium Phytoavailability in Response to Cadmium Transformation and Changes in Soil PH and Electrical Conductivity. Chemosphere 2023, 342, 140042. [Google Scholar] [CrossRef]
- Jackson, B.P.; Punshon, T. Recent Advances in the Measurement of Arsenic, Cadmium, and Mercury in Rice and Other Foods. Curr. Environ. Health Rep. 2015, 2, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Moore, R.E.T.; Rehkämper, M.; Kreissig, K.; Coles, B.; Wu, L.; Luo, Y.; Christie, P. Cadmium and Zinc Isotope Compositions Indicate Metal Sources and Retention Mechanisms in Different Soil Particle Size Fractions. J. Hazard Mater. 2024, 461, 132560. [Google Scholar] [CrossRef] [PubMed]
- Boostani, H.R.; Hosseini, S.M.; Hardie, A.G. Mechanisms of Cd Immobilization in Contaminated Calcareous Soils with Different Textural Classes Treated by Acid- and Base-Modified Biochars. Sci. Rep. 2024, 14, 24614. [Google Scholar] [CrossRef] [PubMed]
- Alloway, B.J. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability; Springer: Dordrecht, The Netherlands, 2013; Volume 22, ISBN 978-94-007-4469-1/978-94-007-4470-7. [Google Scholar]
- Abia, A.A.; Igwe, J.C. Sorption Kinetics and Intraparticulate Diffusivities of Cd, Pb and Zn Ions on Maize Cob. Afr. J. Biotechnol. 2005, 4, 509–512. [Google Scholar]
- Mehmood, S.; Ou, W.; Ahmed, W.; Bundschuh, J.; Rizwan, M.; Mahmood, M.; Sultan, H.; Alatalo, J.M.; Elnahal, A.S.M.; Liu, W.; et al. ZnO nanoparticles mediated by Azadirachta indica as nano fertilizer: Improvement in physiological and biochemical indices of Zea mays grown in Cr-contaminated soil. Environ. Pollut. 2023, 339, 122755. [Google Scholar] [CrossRef]
- Mehmood, S.; Mahmood, M.; Núñez-Delgado, A.; Alatalo, J.M.; Elrys, A.S.; Rizwan, M.; Weng, J.; Li, W.; Ahmed, W. A green method for removing chromium (VI) from aqueous systems using novel silicon nanoparticles: Adsorption and interaction mechanisms. Environ. Res. 2022, 213, 113614. [Google Scholar] [CrossRef]
- Rahim, H.U.; Akbar, W.A.; Alatalo, J.M. A Comprehensive Literature Review on Cadmium (Cd) Status in the Soil Environment and Its Immobilization by Biochar-Based Materials. Agronomy 2022, 12, 877. [Google Scholar] [CrossRef]
- Walsh, A.; Watson, G.W. The Origin of the Stereochemically Active Pb(II) Lone Pair: DFT Calculations on PbO and PbS. J. Solid State Chem. 2005, 178, 1422–1428. [Google Scholar] [CrossRef]
- Anjos, L.; Gaistardo, C.C.; Deckers, J.; Dondeyne, S.; Eberhardt, E.; Gerasimova, M.; Harms, B.; Jones, A.; Krasilnikov, P.; Reinsch, T.; et al. World Reference Base for Soil Resources 2014 Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015; ISBN 978-92-5-108369-7. [Google Scholar]
- Moreira, A.C.; Martins, J.M.S. Influence of Site Factors on the Impact of Phytophthora Cinnamomi in Cork Oak Stands in Portugal. For. Pathol. 2005, 35, 145–162. [Google Scholar] [CrossRef]
- Kaiser, K.; Guggenberger, G.; Haumaier, L. Changes in Dissolved Lignin-Derived Phenols, Neutral Sugars, Uronic Acids, and Amino Sugars with Depth in Forested Haplic Arenosols and Rendzic Leptosols. Biogeochemistry 2004, 70, 135–151. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, Z.; Zhou, Y.; Wang, X.; Zhang, J.; Zhou, X. Spatial Heterogeneity of Soil Thickness and Factors Controlling It in a Karst Basin. Eurasian Soil Sci. 2021, 54, 478–486. [Google Scholar] [CrossRef]
- Bockheim, J.G. Classification and Development of Shallow Soils (<50 cm) in the USA. Geoderma Reg. 2015, 6, 31–39. [Google Scholar] [CrossRef]
- Butler, J.R.; Thompson, A.J. Cadmium and Zinc in Some Alkali Acidic Rocks. Geochim. Cosmochim. Acta 1967, 31, 97–105. [Google Scholar] [CrossRef]
- Aksouh, M.Y.; Boudieb, N.; Benosmane, N.; Moussaoui, Y.; Michalski, R.; Klyta, J.; Kończyk, J. Presence of Heavy Metals in Irrigation Water, Soils, Fruits, and Vegetables: Health Risk Assessment in Peri-Urban Boumerdes City, Algeria. Molecules 2024, 29, 4187. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Liu, Y.; Zhang, H.; Chen, G.; Song, J. Cadmium Pollution Impact on the Bacterial Community of Haplic Cambisols in Northeast China and Inference of Resistant Genera. J. Soil Sci. Plant Nutr. 2020, 20, 1156–1170. [Google Scholar] [CrossRef]
- Lavkulich, L.M.; Arocena, J.M. Luvisolic Soils of Canada: Genesis, Distribution, and Classification. Can. J. Soil Sci. 2011, 91, 781–806. [Google Scholar] [CrossRef]
- Chaves, L.H.G.; de Souza, R.S.; de Brito Chaves, I.; Tito, G.A. Energia Livre da Reação de Adsorção do Cádmio em Luvissolos e Cambissolos. Rev. Caatinga 2010, 23, 84–89. [Google Scholar]
- Akça, E.; Aydemir, S.; Kadir, S.; Eren, M.; Zucca, C.; Günal, H.; Previtali, F.; Zdruli, P.; Çilek, A.; Budak, M.; et al. Calcisols and Leptosols; Springer: Berlin/Heidelberg, Germany, 2018; pp. 139–167. [Google Scholar] [CrossRef]
- Zhou, W.; Ren, L.; Zhu, L. Reducement of Cadmium Adsorption on Clay Minerals by the Presence of Dissolved Organic Matter from Animal Manure. Environ. Pollut. 2017, 223, 247–254. [Google Scholar] [CrossRef]
- Rassaei, F.; Hoodaji, M.; Abtahi, S.A. Adsorption Kinetic and Cadmium Fractions in Two Calcareous Soils Affected by Zinc and Different Moisture Regimes. Paddy Water Environ. 2020, 18, 595–606. [Google Scholar] [CrossRef]
- Escrig, I.; Morell, I. Effect of Calcium on the Soil Adsorption of Cadmium and Zinc in Some Spanish Sandy Soils. Water Air Soil Pollut. 1998, 105, 507–520. [Google Scholar] [CrossRef]
Parameter | Unit | Mean | SD | Var | CV | Skewness | Kurtosis | Min | Max | P25 | Median | P75 | Shapiro |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | Ratio | 7.52 | 0.43 | 0.18 | 5.68 | −0.04 | 1.51 | 6.00 | 9.10 | 7.30 | 7.50 | 7.80 | 7.27 × 10−34 |
EC | dS·m−1 | 2.30 | 3.52 | 12.40 | 153.36 | 5.53 | 41.82 | 0.22 | 40.05 | 0.92 | 1.31 | 2.00 | 4.67 × 10−6 |
OM | % | 2.04 | 1.69 | 2.87 | 82.93 | 1.82 | 4.33 | 0.00 | 10.37 | 0.83 | 1.56 | 2.76 | 1.69 × 10−33 |
Olsen P | mg·kg−1 | 34.78 | 74.29 | 5519.41 | 213.63 | 6.17 | 45.34 | 0.00 | 732.00 | 7.04 | 13.28 | 31.61 | 4.53 × 10−20 |
N | mg·g−1 | 2.40 | 5.40 | 29.15 | 224.96 | 7.58 | 61.82 | 0.00 | 52.06 | 0.87 | 1.38 | 2.20 | 7.25 × 10−35 |
Sand | % | 56.82 | 15.65 | 245.07 | 27.55 | 0.82 | 0.36 | 19.31 | 97.38 | 45.74 | 54.46 | 63.72 | 9.14 × 10−37 |
Clay | % | 18.56 | 9.78 | 95.61 | 52.68 | 0.32 | −0.30 | 0.05 | 56.74 | 11.26 | 17.73 | 25.74 | 5.00 × 10−12 |
Silt | % | 24.70 | 11.63 | 135.22 | 47.08 | 0.17 | −0.12 | 1.21 | 61.86 | 17.77 | 24.32 | 31.47 | 1.65 × 10−4 |
Carbonates | % | 3.68 | 3.00 | 9.03 | 81.71 | 2.12 | 8.35 | 0.00 | 23.12 | 1.44 | 3.11 | 5.32 | 3.64 × 10−4 |
Ca+2 | cmol·kg−1 | 15.70 | 17.22 | 296.58 | 109.68 | 3.21 | 17.27 | 0.29 | 166.78 | 4.95 | 9.50 | 19.97 | 5.88 × 10−20 |
K+ | cmol·kg−1 | 0.69 | 0.75 | 0.56 | 107.61 | 2.24 | 6.17 | 0.03 | 4.78 | 0.21 | 0.42 | 0.89 | 2.80 × 10−26 |
Mg+2 | cmol·kg−1 | 1.48 | 1.89 | 3.56 | 127.56 | 2.35 | 5.40 | 0.01 | 11.35 | 0.46 | 0.73 | 1.35 | 1.05 × 10−24 |
Na+ | cmol·kg−1 | 2.24 | 4.12 | 16.93 | 183.33 | 3.02 | 11.65 | 0.01 | 32.69 | 0.16 | 0.53 | 1.55 | 7.56 × 10−28 |
CECe | cmol·kg−1 | 20.12 | 19.81 | 392.57 | 98.48 | 3.17 | 18.44 | 1.02 | 200.46 | 7.32 | 14.65 | 26.12 | 2.24 × 10−30 |
ECP | % | 75.70 | 16.44 | 270.40 | 21.72 | −1.59 | 2.92 | 7.27 | 98.92 | 70.91 | 78.90 | 85.68 | 4.83 × 10−25 |
EPP | % | 4.92 | 4.58 | 20.96 | 93.01 | 1.81 | 4.00 | 0.10 | 25.18 | 1.54 | 3.62 | 6.66 | 1.31 × 10−18 |
EMP | % | 8.13 | 6.11 | 37.32 | 75.11 | 1.56 | 3.85 | 0.20 | 43.26 | 3.43 | 7.31 | 10.49 | 8.33 × 10−21 |
ESP | % | 11.25 | 16.43 | 270.00 | 146.11 | 2.07 | 3.68 | 0.14 | 75.52 | 1.45 | 3.94 | 10.78 | 3.62 × 10−17 |
(Ca+2 + Mg+2)/K+ | Ratio | 44.04 | 65.61 | 4304.48 | 148.96 | 5.70 | 49.22 | 2.78 | 797.90 | 12.99 | 23.89 | 49.98 | 1.69 × 10−27 |
Ca+2/Mg+2 | Ratio | 22.00 | 38.06 | 1448.24 | 172.97 | 6.26 | 55.86 | 0.22 | 472.00 | 6.79 | 10.51 | 21.36 | 6.02 × 10−32 |
Mg+2/K+ | Ratio | 0.74 | 1.09 | 1.18 | 147.00 | 8.05 | 77.00 | 0.03 | 13.00 | 0.33 | 0.53 | 0.85 | 1.27 × 10−33 |
Ctotal | g·kg−1 | 16.93 | 13.03 | 169.78 | 76.94 | 1.76 | 4.36 | 0.45 | 81.82 | 7.59 | 13.30 | 23.03 | 1.71 × 10−35 |
Corg | g·kg−1 | 12.11 | 9.94 | 98.78 | 82.08 | 1.76 | 4.02 | 0.00 | 60.40 | 5.06 | 9.21 | 16.24 | 3.09 × 10−19 |
CECt | cmol·kg−11 | 19.74 | 4.11 | 16.89 | 20.82 | 0.01 | −1.17 | 11.60 | 27.20 | 16.44 | 19.17 | 23.77 | 1.09 × 10−19 |
BD | g·m−3 | 1.29 | 0.06 | 0.00 | 4.41 | −0.13 | 0.82 | 1.05 | 1.45 | 1.26 | 1.28 | 1.34 | 2.79 × 10−10 |
Parameter | Unit | Mean | SD | Var | CV | Skewness | Kurtosis | Min | Max | P25 | Median | P75 | Shapiro |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cd | mg·kg−1 | 0.54 | 1.00 | 1.01 | 185.09 | 7.30 | 73.46 | 0.00 | 11.98 | 0.14 | 0.26 | 0.59 | 7.27 × 10−34 |
As | mg·kg−1 | 50.8 | 58.13 | 3379.229 | 114.44 | 1.12 | 0.80 | 0 | 246.21 | 0.16 | 39.97 | 90.28 | 1.14 × 10−20 |
Cu | mg·kg−1 | 38.97 | 30.45 | 926.9072 | 78.134 | 0.68 | −0.51 | 1.39 | 142.97 | 11.23 | 34.965 | 58.74 | 2.19 × 10−15 |
Sr | mg·kg−1 | 79.33 | 61.36 | 3764.538 | 77.341 | 2.58 | 11.30 | 8.11 | 555.1 | 39.29 | 64.39 | 99.08 | 8.90 × 10−23 |
Mo | mg·kg−1 | 1.696 | 2.595 | 6.734276 | 153 | 6.88 | 53.19 | 0 | 26.27 | 0.823 | 1.3 | 1.8 | 1.69 × 10−35 |
Ni | mg·kg−1 | 15.09 | 15.84 | 250.9882 | 105.01 | 4.53 | 28.96 | 2.09 | 159.34 | 7.575 | 10.395 | 15.78 | 1.11 × 10−30 |
Ag | mg·kg−1 | 0.217 | 0.961 | 0.9232046 | 442.63 | 9.03 | 84.22 | 0 | 9.66 | 0 | 0.06 | 0.2 | 1.03 × 10−38 |
Pb | mg·kg−1 | 24.42 | 17.98 | 323.2254 | 73.608 | 2.79 | 9.93 | 6.3 | 132.31 | 13.76 | 20.175 | 27.59 | 5.74 × 10−26 |
Se | mg·kg−1 | 0.483 | 2.609 | 6.806738 | 540.43 | 7.08 | 50.73 | 0 | 22.34 | 0 | 0 | 0 | 7.23 × 10−39 |
TI | mg·kg−1 | 0.254 | 0.646 | 0.4172612 | 254.05 | 9.15 | 95.20 | 0 | 8.41 | 0.06 | 0.14 | 0.26 | 2.90 × 10−37 |
V | mg·kg−1 | 84.47 | 84.31 | 7107.503 | 99.81 | 0.92 | 0.78 | 0 | 444.67 | 0.183 | 78.575 | 132.4 | 1.01 × 10−17 |
Fe | mg·kg−1 | 20525 | 7164 | 51324370 | 34.905 | 0.97 | 2.28 | 7279 | 56875 | 15601 | 20008.9 | 24796 | 4.66 × 10−10 |
Ca, total | mg·kg−1 | 17613 | 23074 | 532430500 | 131.01 | 3.96 | 22.26 | 0 | 226545 | 6084 | 9731 | 19658 | 6.68 × 10−30 |
K, total | mg·kg−1 | 2074 | 955.1 | 912246.5 | 46.053 | 0.34 | −0.14 | 210.9 | 5469.2 | 1316 | 2092.41 | 2722 | 9.68 × 10−5 |
Mg, total | mg·kg−1 | 6595 | 3369 | 11348920 | 51.084 | 1.30 | 3.64 | 112.2 | 21862 | 4758 | 6217.78 | 7881 | 2.64 × 10−15 |
Na, total | mg·kg−1 | 1345 | 2543 | 6469144 | 189.09 | 3.00 | 11.45 | 5.6 | 20612 | 103 | 282.51 | 849.5 | 7.84 × 10−31 |
Hg | mg·kg−1 | 0.169 | 0.321 | 0.1033403 | 190.05 | 2.78 | 8.02 | 0 | 1.89 | 0.02 | 0.04 | 0.175 | 1.69 × 10−30 |
Ba | mg·kg−1 | 203.6 | 180.4 | 32560.27 | 88.617 | 1.91 | 3.58 | 13.71 | 899.2 | 85.25 | 137.185 | 251.3 | 4.45 × 10−23 |
Zn | mg·kg−1 | 99.18 | 59.42 | 3530.34 | 59.91 | 2.77 | 13.23 | 19.95 | 554.4 | 64.13 | 85.295 | 115.2 | 3.27 × 10−23 |
Sb | mg·kg−1 | 0.51 | 0.817 | 0.6676311 | 160.22 | 6.86 | 73.80 | 0 | 11 | 0.08 | 0.26 | 0.715 | 6.78 × 10−32 |
Cr | mg·kg−1 | 12.52 | 12.13 | 147.1572 | 96.881 | 3.34 | 15.89 | 0.04 | 97.51 | 6.073 | 9.815 | 15.4 | 1.75 × 10−26 |
Al, total | mg·kg−1 | 10045 | 6905 | 47683900 | 68.745 | −0.17 | −0.96 | 3.73 | 28827 | 1311 | 11625.4 | 14965 | 1.45 × 10−14 |
Olsen P | Sand | Clay | Silt | Pb | Mg | Zn | pH | OM | ESP | ECP | Alt | PM | ST | GA | CLI | GT | LZ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
q-statistic | 0.04 | 0.05 | 0.02 | 0.06 | 0.16 | 0.26 | 0.28 | 0.02 | 0.02 | 0.10 | 0.09 | 0.02 | 0.23 | 0.15 | 0.18 | 0.21 | 0.12 | 0.26 |
p-value | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.03 | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solórzano, R.; Llerena, R.; Mejía, S.; Cruz, J.; Quispe, K. Spatial Distribution of Cadmium in Avocado-Cultivated Soils of Peru: Influence of Parent Material, Exchangeable Cations, and Trace Elements. Agriculture 2025, 15, 1413. https://doi.org/10.3390/agriculture15131413
Solórzano R, Llerena R, Mejía S, Cruz J, Quispe K. Spatial Distribution of Cadmium in Avocado-Cultivated Soils of Peru: Influence of Parent Material, Exchangeable Cations, and Trace Elements. Agriculture. 2025; 15(13):1413. https://doi.org/10.3390/agriculture15131413
Chicago/Turabian StyleSolórzano, Richard, Rigel Llerena, Sharon Mejía, Juancarlos Cruz, and Kenyi Quispe. 2025. "Spatial Distribution of Cadmium in Avocado-Cultivated Soils of Peru: Influence of Parent Material, Exchangeable Cations, and Trace Elements" Agriculture 15, no. 13: 1413. https://doi.org/10.3390/agriculture15131413
APA StyleSolórzano, R., Llerena, R., Mejía, S., Cruz, J., & Quispe, K. (2025). Spatial Distribution of Cadmium in Avocado-Cultivated Soils of Peru: Influence of Parent Material, Exchangeable Cations, and Trace Elements. Agriculture, 15(13), 1413. https://doi.org/10.3390/agriculture15131413