Assessment of Metal(loid)s and Nonmetals Contamination in Soils of Urban Ecological Parks in Brazil: Implications for Ecological Risk and Human Health
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Study Area Background
2.2. Determination of Physical-Chemical Characterization of the Soil
2.3. Sample Preparation and Digestion
2.4. Metal Quantification Using ICP-OES
2.5. Calibration Procedure
2.6. Contamination Factor
2.7. Pollution Load Index
2.8. Calculation of Geo-Accumulation Index (Igeo)
2.9. Estimated Daily Dose Exposure Risk (ADD)
- -
- Concentration of heavy metals in soils Cs (mg/kg) [23].
- -
- Ingestion rate of soil (IngR): 1000 mg/day for children and 100 for adults [38].
- -
- Conversion factor (CF): 10−6 kg/mg for children and adults [39].
- -
- Exposure frequency (EF): 104 days/year for children and 350 days/year for adults [39].
- -
- -
- -
- Average time for non-carcinogenic effects (AT): 2190 days for children and 8760 days for adults [40].
- -
- Average time for carcinogenic effects (AT): there is no value for children—25.550 days for adults [41].
- -
- Exposure time (ET): 1 h/day for children and adults [42].
- -
- Particles suspended in the air (PM): 1.36 × 10−9 kg⋅m−3 for children and adults [38].
- -
- Surface area of the skin that contacts the soil (SA): 2800 cm2 for children and 5700 cm2 for adults [38].
- -
- Skin adherence factor for soil (AF): 0.20 mg⋅cm2 for children and 0.07 mg⋅cm2 for adults [43].
- -
- Dermal absorption factor (ABS): 10−3 for children and adults for all elements [44].
- -
- Inhalation rate of soil (InhR): 7.6 m3/day for children and 20 m3/day for adults [45].
2.10. Hazard Quotient (HQ) and Hazard Index (HI)
2.11. Carcinogenic Risk (CR)
2.12. Statistical Analysis
3. Results and Discussion
3.1. Physical-Chemical Characterization of the Soil
3.2. Metal Quantification Using ICP-OES and Principal Component Analysis (PCA)
- -
- Anhanduí park (pH 5.1, soil type 2): Mn > Mg > Zn > Fe > Cu > Mo > Cr > Pb > Se > Co > Ni > P > As > Al > Cd.
- -
- Águas do Prosa park (pH 3.8, soil type 3): Zn > Mg > Cu > Fe > Mn > Cr > Al > Ni > Mo > P > Se > As > Pb > Co > Cd.
- -
- Sóter park (pH 4.6, soil type 1): Zn > Mn > Mg > Cu > Fe > Mo > Cr > Ni > Pb > Se > P > Co > Al > As > Cd.
- -
- Lago do Amor park (pH 5.8, soil type 3): Mg > Cu > Mn > Fe > Zn > Cr > Ni > Mo > Pb > Se > As >Al > Co > P > Cd.
3.3. Contamination Factor and the Pollution Load Index (PLI)
3.4. Geo-Accumulation Index (Igeo)
3.5. Human Health Risk Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; et al. Pollution and health: A progress update. Lancet Planet. Health 2022, 6, e535–e547. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Ouyang, T.; Guo, Y.; Peng, S.; He, C.; Zhu, Z. Assessment of soil heavy metal pollution and its ecological risk for city parks, Vicinity of a Landfill, and an industrial area within Guangzhou, South China. App. Sci. 2022, 12, 9345. [Google Scholar] [CrossRef]
- Habibi, N.; Uddin, S.; Behbehani, M.; Lee, J.Y. Is atmospheric pathway a significant contributor to microplastics in the marine environment? Emerg. Contam. 2024, 10, 100297. [Google Scholar] [CrossRef]
- Kumari, S.; Mishra, A. Heavy metal contamination. In Soil Contamination—Threats and Sustainable Solutions; IntechOpen: Rijeka, Croatia, 2021; p. 298. [Google Scholar]
- Timonen, H.; Mylläri, F.; Simonen, P.; Aurela, M.; Maasikmets, M.; Bloss, M.; Kupri, H.-L.; Vainumäe, K.; Lepistö, T.; Salo, L.; et al. Household solid waste combustion with wood increases particulate trace metal and lung deposited surface area emissions. J. Environ. Manag. 2021, 293, 112793. [Google Scholar] [CrossRef]
- Banu, Z. Contamination and ecological risk assessment of heavy metal in the sediment of Turag River, Bangladesh: An index analysis approach. J. Water Resour. Prot. 2013, 5, 239–248. [Google Scholar] [CrossRef]
- Khan, M.D.H.; Talukder, A.; Rahman, M.S. Spatial distribution and contamination assessment of heavy metals in urban road dusts from Dhaka city, Bangladesh. IOSR J. Appl. Chem. 2018, 11, 90–99. [Google Scholar]
- Gope, M.; Masto, R.E.; George, J.; Hoque, R.R.; Balachandran, S. Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India. Ecotoxicol. Environ. Saf. 2017, 138, 231–241. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Q.; Ma, J.; Wu, H.; Qu, Y.; Gong, Y.; Yang, S.; An, Y.; Zhou, Y. Heavy metal(loid)s in the topsoil of urban parks in Beijing, China: Concentrations, potential sources, and risk assessment. Environ. Pollut. 2020, 260, 114083. [Google Scholar] [CrossRef]
- Huang, J.; Wu, Y.; Sun, J.; Li, X.; Geng, X.; Zhao, M.; Sun, T.; Fan, Z. Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with Positive matrix factorization model. J. Hazard. Mater. 2021, 415, 125629. [Google Scholar] [CrossRef]
- Lu, J.; Lu, H.; Lei, K.; Wang, W.; Guan, Y. Trace metal element pollution of soil and water resources caused by small-scale metallic ore mining activities: A case study from a sphalerite mine in North China. Environ. Sci. Pollut. Res. Int. 2019, 26, 24630–24644. [Google Scholar] [CrossRef]
- Tong, S.; Yang, L.; Gong, H.; Wang, L.; Li, H.; Yu, J.; Li, Y.; Deji, Y.; Nima, C.; Zhao, S.; et al. Bioaccumulation characteristics, transfer model of heavy metals in soil-crop system and health assessment in plateau region, China. Ecotoxicol. Environ. Saf. 2022, 241, 113733. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, L.; Wang, H.; Martín, J.D. Bioavailability and health risk of toxic heavy metals (As, Hg, Pb and Cd) in urban soils: A Monte Carlo simulation approach. Environ. Res. 2022, 214, 113772. [Google Scholar] [CrossRef] [PubMed]
- Peña-Fernández, A.; González-Muñoz, M.J.; Lobo-Bedmar, M.C. Establishing the importance of human health risk assessment for metals and metalloids in urban environments. Environ. Int. 2014, 72, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Aja, D.; Okolo, C.C.; Nwite, N.J.; Njoku, C. Environmental risk assessment in selected dumpsites in Abakaliki metropolis, Ebonyi state, southeastern Nigeria. Environ. Chall. 2021, 4, 100143. [Google Scholar] [CrossRef]
- Mavakala, B.K.; Sivalingam, P.; Laffite, A.; Mulaji, C.K.; Giuliani, G.; Mpiana, P.T.; Poté, J. Evaluation of heavy metal content and potential ecological risks in soil samples from wild solid waste dumpsites in developing country under tropical conditions. Environ. Chall. 2022, 7, 100461. [Google Scholar] [CrossRef]
- Mohammadi, A.A.; Zarei, A.; Esmaeilzadeh, M.; Taghavi, M.; Yousefi, M.; Yousefi, Z.; Sedighi, F.; Javan, S. Assessment of heavy metal pollution and human health risks assessment in soils around an industrial zone in Neyshabur, Iran. Biol. Trace Elem. Res. 2020, 195, 343–352. [Google Scholar] [CrossRef]
- Taghavi, M.; Darvishiyan, M.; Momeni, M.; Eslami, H.; Fallahzadeh, R.A.; Zarei, A. Ecological risk assessment of trace elements (TEs) pollution and human health risk exposure in agricultural soils used for saffron cultivation. Sci. Rep. 2023, 13, 4556. [Google Scholar] [CrossRef]
- Peirovi-Minaee, R.; Alami, A.; Moghaddam, A.; Zarei, A. Determination of concentration of metals in grapes grown in Gonabad Vineyards and assessment of associated health risks. Biol. Trace Elem. Res. 2023, 201, 3541–3552. [Google Scholar] [CrossRef]
- Sobhanardakani, S. Potential health risk assessment of heavy metals via consumption of caviar of Persian sturgeon. Mar. Pollut. Bull. 2017, 123, 34–38. [Google Scholar] [CrossRef]
- Sobhanardakani, S. Tuna fish and common kilka: Health risk assessment of metal pollution through consumption of canned fish in Iran. J. Consum. Prot. Food. Saf. 2017, 12, 157–163. [Google Scholar] [CrossRef]
- Sobhanardakani, S. Ecological and human health risk assessment of heavy metal content of atmospheric dry deposition, a case study: Kermanshah, Iran. Biol. Trace. Elem. Res. 2019, 187, 602–610. [Google Scholar] [CrossRef] [PubMed]
- USEPA (United States Environmental Protection Agency). Assessing Human Health Risks from Chemically Contaminated Fish and Shellfish: A Guidance Manual; U.S. Environmental Protection Agency: Washington, DC, USA, 1989.
- Miclean, M.; Cadar, O.; Levei, E.A.; Roman, R.; Ozunu, A.; Levei, L. Metal (Pb, Cu, Cd, and Zn) transfer along food chain and health risk assessment through raw milk consumption from free-range cows. Int. J. Environ. Res. Public Health 2019, 16, 4064. [Google Scholar] [CrossRef] [PubMed]
- Rosa, A.C.G.; Melo, E.S.P.; Junior, A.S.A.; Gondim, J.M.S.; de Sousa, A.G.; Cardoso, C.A.L.; Viana, L.F.; Carvalho, A.M.A.; Machate, D.J.; do Nascimento, V.A. Transfer of metal(loid)s from soil to leaves and trunk xylem sap of medicinal plants and possible health risk assessment. Int. J. Environ. Res. Public Health 2022, 19, 660. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, H.G.; Jacomine, P.K.T.; dos Anjos, L.H.C.; de Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.B.; de Almeida, J.A.; de Araújo Filho, J.C.; de Oliveira, J.B.; Cunha, T.G.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, DF, Brazil, 2018; ISBN 978-85-7035-800-4. [Google Scholar]
- USEPA (United States Environmental Protection Agency). Method 3051A: Microwave Assisted Acid Digestion of Sediments, Sludges, and Oils; U.S. Environmental Protection Agency: Washington, DC, USA, 2007.
- Long, G.L.; Winefordner, J.D. Limit of detection: A closer look at the IUPAC definition. Anal. Chem. 1983, 55, 712A–724A. [Google Scholar] [CrossRef]
- Martin, J.-M.; Meybeck, M. Elemental mass-balance of material carried by major world rivers. Mar. Chem. 1979, 7, 173–206. [Google Scholar] [CrossRef]
- Förstner, U.; Ahlf, W.; Calmano, W. Studies on the transfer of heavy metals between sedimentary phases with a multi-chamber device: Combined effects of salinity and redox variation. Mar. Chem. 1989, 28, 145–158. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Rubio, B.; Nombela, M.A.; Vilas, F. Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): An assessment of metal pollution. Mar. Pollut. Bull. 2000, 40, 968–980. [Google Scholar] [CrossRef]
- Ministério do Meio Ambiente. Conselho Nacional do Meio Ambiente. Resolução Nº 420, de 28 de Dezembro de 2009, Brasil. Available online: http://hab.eng.br/wp-content/uploads/2017/09/resolucao-conama-420-2009-gerenciamento-de-acs.pdf (accessed on 3 June 2024).
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef]
- Muller, G. Dei Schwermetallbelstung der sedimente des Neckars and seiner Nebenfusse: Eine estandsaufnahme. Chem. Ztg. 1981, 105, 157–164. [Google Scholar]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Penteado, J.O.; Brum, R.d.L.; Ramires, P.F.; Garcia, E.M.; dos Santos, M.; da Silva Júnior, F.M.R. Health risk assessment in urban parks soils contaminated by metals, Rio Grande city (Brazil) case study. Ecotoxicol. Environ. Saf. 2021, 208, 111737. [Google Scholar] [CrossRef] [PubMed]
- USEPA (United States Environmental Protection Agency). Risk Assessment Guidance for Superfund (RAGS) Volume III: Part A, Process for Conducting Probabilistic Risk Assessment; U.S. Environmental Protection Agency: Washington, DC, USA, 2001.
- USEPA (United States Environmental Protection Agency). Volume II of Remedial Investigation. In Human Health Risk Assessment, Revision 2; U.S. Environmental Protection Agency: Washington, DC, USA, 2014. Available online: https://semspub.epa.gov/work/01/550299.pdf (accessed on 3 June 2024).
- USEPA (United States Environmental Protection Agency). Exposure Factors Handbook: 2011 Edition; U.S. Environmental Protection Agency: Washington, DC, USA, 2011.
- Ocampos, M.S.; Leite, L.C.S.; de Pádua Melo, E.S.; de Cássia Avellaneda Guimarães, R.; Oliveira, R.J.; de Cássia Freitas, K.; Hiane, P.A.; Karuppusamy, A.; do Nascimento, V.A. Indirect methods to determine the risk of damage to the health of firefighters and children due to exposure to smoke emission from burning wood/coal in a controlled environment. Int. J. Environ. Res. Public Health 2023, 20, 5607. [Google Scholar] [CrossRef] [PubMed]
- USEPA (United States Environmental Protection Agency). Exposure Factors Handbook Chapter 5 (Update): Soil and Dust Ingestion; U.S. Environmental Protection Agency: Washington, DC, USA, 2017.
- USEPA (United States Environmental Protection Agency). Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). In Risk Assessment Guidance for Superfund; U.S. Environmental Protection Agency: Washington, DC, USA, 2004. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part-e (accessed on 25 March 2024).
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci. Total Environ. 2010, 408, 726–733. [Google Scholar] [CrossRef]
- Van der Berg, R. Human Exposure to Soil Contamination: A Qualitative and Quantitative Analysis Towards Proposals for Human Toxicological Intervention Values; RIVM Report no. 72520101; National Institute of Public Health and Environmental Protection (RIVM): Bilthoven, The Netherlands, 1995. [Google Scholar]
- USEPA (United States Environmental Protection Agency). Regional Screening Levels (RSLs)—Generic Tables—Summary Table. [WWW Document]. Regional Screening Levels (RSLs)—Generic Tables—Summary Table. 2023. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 29 April 2023).
- Shomar, B.; Rashkeev, S.N. A comprehensive risk assessment of toxic elements in international brands of face foundation powders. Environ. Res. 2021, 192, 110274. [Google Scholar] [CrossRef]
- Cu, Y.C.; Lin, Q.; Cao, Y.P. Metals in exposed lawn soils from 18 urban parks and its human health implications in southern China’s largest city, Guangzhou. J. Clean. Prod. 2016, 115, 122–129. [Google Scholar] [CrossRef]
- De Miguel, E.; Iribarren, I.; Chacón, E.; Ordoñez, A.; Charlesworth, S. Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere 2007, 66, 505–513. [Google Scholar] [CrossRef]
- Ahmad, I.; Khan, B.; Asad, N.; Mian, I.A.; Jamil, M. Traffic-related lead pollution in roadside soils and plants in Khyber Pakhtunkhwa, Pakistan: Implications for human health. Int. J. Environ. Sci. Technol. 2019, 16, 8015–8022. [Google Scholar] [CrossRef]
- USEPA (United States Environmental Protection Agency), Integrated Risk Information System (IRIS). Chemical Search. Oral Slope Factor. 1995. Available online: https://cfpub.epa.gov/ncea/iris/search/index.cfm (accessed on 18 April 2023).
- Xia, Q.; Zhang, J.; Chen, Y.; Ma, Q.; Peng, J.; Rong, G.; Tong, Z.; Liu, X. Pollution, sources and human health risk assessment of potentially toxic elements in different land use types under the background of industrial cities. Sustainability 2020, 12, 2121. [Google Scholar] [CrossRef]
- USDOE, The Risk Assessment Information System (RAIS). RAIS Toxicity Values and Physical Parameters Search. 2011. The Risk Assessment Information System. Available online: https://rais.ornl.gov/cgi-bin/tools/TOX_search (accessed on 18 April 2023).
- Zhang, R.; Chen, T.; Zhang, Y.; Hou, Y.; Chang, Q. Health risk assessment of heavy metals in agricultural soils and identification of main influencing factors in a typical industrial park in Northwest China. Chemosphere 2020, 252, 126591. [Google Scholar] [CrossRef]
- Konstantinova, E.; Minkina, T.; Mandzhieva, S.; Nevidomskaya, D.; Bauer, T.; Zamulina, I.; Sushkova, S.; Lychagin, M.; Rajput, V.D.; Wong, M.H. Ecological and human health risks of metal–PAH combined pollution in riverine and coastal soils of Southern Russia. Water 2023, 15, 234. [Google Scholar] [CrossRef]
- Chen, R.; Han, L.; Liu, Z.; Zhao, Y.; Li, R.; Xia, L.; Fan, Y. Assessment of soil-heavy metal pollution and the health risks in a mining area from Southern Shaanxi Province, China. Toxics 2022, 10, 385. [Google Scholar] [CrossRef] [PubMed]
- Alsafran, M.; Usman, K.; Al Jabri, H.; Rizwan, M. Ecological and health risks assessment of potentially toxic metals and metalloids contaminants: A case study of agricultural soils in Qatar. Toxics 2021, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Korna, R.; Fan, J.; Ke, W.; Lou, W.; Wang, J.; Zhu, F. Spatial distribution, environmental risks, and sources of potentially toxic elements in soils from a typical abandoned antimony smelting site. J. Environ. Sci. 2023, 127, 780–790. [Google Scholar] [CrossRef]
- Abreu Junior, C.H.; Muraoka, T.; Lavorante, A.F.; Villanueva, F.C.A. Condutividade elétrica, reação do solo e acidez potencial em solos adubados com composto de lixo. Rev. Bras. Ciência Do Solo 2000, 24, 635–647. [Google Scholar] [CrossRef]
- Sintorini, M.M.; Widyatmoko, H.; Sinaga, E.; Aliyah, N. Effect of pH on metal mobility in the soil. IOP Conf. Ser. Earth Environ. Sci. 2021, 737, 012071. [Google Scholar] [CrossRef]
- Pikuła, D. Effect of the degree of soil contamination with Cd, Zn, Cu i Zn on its content in the forder crops and mobility in the soil Profile. In Soil Contamination—Recent Advances and Future Perspectives; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Díez, M.; Simón, M.; García, I.; Martín, F. Assessment of the critical load of trace elements in soils polluted by pyrite tailings. A laboratory experiment. Water Air Soil Pollut. 2009, 199, 381–387. [Google Scholar] [CrossRef]
- Kazlauskaitė-Jadzevičė, A.; Volungevičius, J.; Gregorauskienė, V.; Marcinkonis, S. The role of pH in heavy metal contamination of urban soil. J. Environ. Eng. Land. Manag. 2014, 22, 311–318. [Google Scholar] [CrossRef]
- USEPA (United States Environmental Protection Agency). Guidance for Developing Ecological Soil Screening Levels; Office of Emergency and Remedial Response, OSWER Directive 9285.77-55, U.S. Environmental Protection Agency: Washington, DC, USA, 2003.
- Canadian Council of Ministers of the Environment. Canadian soil quality guidelines for the protection of environmental and human health: Summary tables. In Canadian Environmental Quality Guidelines, 1999; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2007. [Google Scholar]
- Zoz, T.; Lana, M.; Steiner, F.; Frandoloso, J.F.; Fey, R. Influência do pH do solo e de fertilizantes fosfatados sobre a adsorção de fósforo em latossolo vermelho. Agric. Food Sci. Environ. Sci. 2009, 4, Synergismus scyentifica UTFPR. [Google Scholar]
- Pandey, B.; Agrawal, M.; Singh, S. Ecological risk assessment of soil contamination by trace elements around coal mining area. J. Soils Sediments 2016, 16, 159–168. [Google Scholar] [CrossRef]
- Setälä, H.; Francini, G.; Allen, J.A.; Jumpponen, A.; Hui, N.; Kotze, D.J. Urban parks provide ecosystem services by retaining metals and nutrients in soils. Environ. Pollut. 2017, 231, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Flues, M.; Sato, I.M.; Cotrim, M.B.; Salvador, V.L.; Ranzani, A.C.; Vallilob, M.I.; Oliveira, E. Soil Characterization in a subtropical forest crossed by highways (Cantareira State Park, SP, Brazil). J. Braz. Chem. Soc. 2004, 15, 496–503. [Google Scholar] [CrossRef]
- Ljung, K.; Selinus, O.; Otabbong, E. Metals in soils of children’s urban environments in the small northern European city of Uppsala. Sci. Total Environ. 2006, 366, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Rahmonov, O.; Kowal, A.; Rahmonov, M.; Pytel, S. Variability of concentrations of potentially toxic metals in the topsoil of urban forest parks (Southern Poland). Forests 2024, 15, 1020. [Google Scholar] [CrossRef]
- Gąsiorek, M.; Kowalska, J.; Mazurek, R.; Pająk, M. Comprehensive assessment of heavy metal pollution in topsoil of historical urban park on an example of the Planty Park in Krakow (Poland). Chemosphere 2017, 179, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Sapcanin, A.; Cakal, M.; Jacimovic, Z.; Pehlic, E.; Jancan, G. Soil pollution fingerprints of children playgrounds in Sarajevo city, Bosnia and Herzegovina. Environ. Sci. Pollut. Res. 2017, 24, 10949–10954. [Google Scholar] [CrossRef]
- Madrid, L.; Diaz-Barrientos, E.; Ruiz-Cortés, E.; Reinoso, R.; Biasioli, M.; Davidson, C.M.; Duarte, A.C.; Grcman, H.; Hossack, I.; Hursthouse, A.S.; et al. Variability in concentrations of potentially toxic elements in urban parks from six European cities. J. Environ. Monit. 2006, 8, 1158–1165. [Google Scholar] [CrossRef]
- Wu, X.; Du, E.; Guo, Y.; Xia, N.; Tang, Y.; Wang, Y.; Guo, H. Climate control of topsoil potassium, calcium, and magnesium concentrations in urban forests across eastern China. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006230. [Google Scholar] [CrossRef]
- Khorshid, M.S.H.; Kruse, J.; Semella, S.; Vohland, M.; Wagner, J.F. Phosphorus fractions and speciation in rural and urban calcareous soils in the semiarid region of Sulaimani city, Kurdistan, Iraq. Environ. Earth Sci. 2019, 78, 531. [Google Scholar] [CrossRef]
- Ng, S.L.; Chan, L.S.; Lam, K.C.; Chan, W.K. Heavy metal contents and magnetic properties of playground dust in Hong Kong. Environ. Monit. Assess. 2004, 89, 221–232. [Google Scholar] [CrossRef]
- Tepanosyan, G.; Yenokyan, T.; Sahakyan, L. Geospatial patterns and geochemical compositional characteristics of molybdenum in different mediums of an urban environment. Environ. Res. 2023, 239, 117340. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Hao, M.; Li, Y.; Li, S. Contamination, sources and health risks of toxic elements in soils of karstic urban parks based on Monte Carlo simulation combined with a receptor model. Sci. Total Environ. 2022, 839, 156223. [Google Scholar] [CrossRef] [PubMed]
- Egbueri, J.C.; Ukah, B.U.; Ubido, O.E.; Unigwe, C.O. A chemometric approach to source apportionment, ecological and health risk assessment of heavy metals in industrial soils from southwestern Nigeria. J. Environ. Anal. Chem. 2022, 102, 3399–3417. [Google Scholar] [CrossRef]
- Jiang, H.H.; Cai, L.M.; Wen, H.H.; Hu, G.C.; Chen, L.G.; Luo, J. An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Sci. Total Environ. 2020, 701, 134466. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Lv, J. Integrated receptor models and multivariate geostatistical simulation for source apportionment of potentially toxic elements in soils. Catena 2020, 194, 104638. [Google Scholar] [CrossRef]
- Yadav, I.C.; Devi, N.L.; Singh, V.K.; Li, J.; Zhang, G. Spatial distribution, source analysis, and health risk assessment of heavy metals contamination in house dust and surface soil from four major cities of Nepal. Chemosphere 2019, 218, 1100–1113. [Google Scholar] [CrossRef]
- Zhao, K.; Fu, W.; Qiu, Q.; Ye, Z.; Li, Y.; Tunney, H.; Dou, C.; Zhou, K.; Qian, X. Spatial patterns of potentially hazardous metals in paddy soils in a typical electrical waste dismantling area and their pollution characteristics. Geoderma 2019, 337, 453–462. [Google Scholar] [CrossRef]
- Radomirović, M.; Ćirović, Ž.; Maksin, D.; Bakić, T.; Lukić, J.; Stanković, S.; Onjia, A. Ecological risk assessment of heavy metals in the soil at a former painting industry facility. Front. Environ. Sci. 2020, 8, 560415. [Google Scholar] [CrossRef]
- Chen, B.; Liu, K.; Liu, Y.; Qin, J.; Peng, Z. Source identification, spatial distribution pattern, risk assessment and influencing factors for soil heavy metal pollution in a high-tech industrial development zone in Central China. Hum. Ecol. Risk Assess. 2021, 27, 560–574. [Google Scholar] [CrossRef]
- Dahmardeh Behrooz, R.; Kaskaoutis, D.G.; Grivas, G.; Mihalopoulos, N. Human health risk assessment for toxic elements in the extreme ambient dust conditions observed in Sistan, Iran. Chemosphere 2021, 262, 127835. [Google Scholar] [CrossRef]
- Falahi-Ardakani, A. Contamination of environment with heavy metals emitted from automotives. Ecotoxicol. Environ. Saf. 1984, 8, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Hulskotte, J.H.J.; Roskam, G.D.; Denier van der Gon, H.A.C. Elemental composition of current automotive braking materials and derived air emission factors. Atmos. Environ. 2014, 99, 436–445. [Google Scholar] [CrossRef]
- Proshad, R.; Dey, H.C.; Ritu, S.A.; Baroi, A.; Khan, M.S.U.; Islam, M.; Idris, A.M. A review on toxic metal pollution and source-oriented risk apportionment in road dust of a highly polluted megacity in Bangladesh. Environ. Geochem. Health 2023, 45, 2729–2762. [Google Scholar] [CrossRef] [PubMed]
- Javed, S.A.; Al-Bratty, M.; Al-Rajab, A.J.; Alhazmi, H.A.; Ahsan, W.; Abdelwahab, S.I.; Thangavel, N. Risk-based exposure assessment for multiple toxic elements encountered by children in school playgrounds and parks in the southwest region of Saudi Arabia. Environ. Monit. Assess. 2019, 191, 549. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Walker, T.R.; Wang, Y.; Luo, Q.; Wu, H.; Wang, X. Distribution characteristics, chemical speciation and human health risk assessment of metals in surface dust in Shenyang City, China. Appl. Geochem. 2021, 131, 105031. [Google Scholar] [CrossRef]
- Mugosa, B.; Djurovic, D.; Pirnat, A.; Bulat, Z.; Barjaktarovic-Labovic, S. Children’s health risk assessment based on the content of toxic metals Pb, Cd, Cu and Zn in urban soil samples of Podgorica, Montenegro. Vojnosanit. Pregl. 2015, 72, 807–812. [Google Scholar] [CrossRef]
- Kishore, S.; Kumari, M.; Panda, I.; Gupta, S.; Priya, S.; Mondal, S.; Malik, S.; Lata, S. Health Effects of Heavy Metals Contamination in Children. In Advances in Environmental Engineering and Green Technologies Book Series; IGI Global Scientific Publishing: Hershey, PA, USA, 2024; pp. 254–275. [Google Scholar] [CrossRef]
- Haque, R.; Chisti, M.J.; Rahman, M.; Islam, M.d.S.; Moniruzzaman, M.; Rahman, S.M.; Raqib, R. Assessing the Effect of Heavy Metal Exposures on Pediatric Tuberculosis. In Proceedings of the ISEE 2022: 34th Annual Conference of the International Society of Environmental Epidemiology, Athens, Greece, 18–21 September 2022; ISEE Conference Abstracts. Volume 2022. [Google Scholar] [CrossRef]
- Gong, C.; Lu, H.; Zhang, Z.; Wang, L.; Xia, X.; Wang, L.; Xiang, Z.; Shuai, L.; Ding, Y.; Chen, Y.; et al. Spatial distribution characteristics of heavy metal(loid)s health risk in soil at scale on town level. Sci. Rep. 2022, 12, 19195. [Google Scholar] [CrossRef]
- She, W.; Guo, L.; Gao, J.; Zhang, C.; Wu, S.; Jiao, Y.; Zhu, G. Spatial Distribution of Soil Heavy Metals and Associated Environmental Risks near Major Roads in Southern Tibet, China. Int. J. Environ. Res. Public Health 2022, 19, 8380. [Google Scholar] [CrossRef]
- Wang, B.; Gao, F.; Li, Y.; Lin, C.; Cheng, H.; Duan, X. Assessment of Children’s Metal Exposure via Hand Wipe, Outdoor Soil and Indoor Dust and Their Associations with Blood Biomarkers. Int. J. Envrion. Res. Public Health 2022, 19, 14614. [Google Scholar] [CrossRef]
Elements | RfD Oral (mg/kg/day) | References | RfD Dermal (mg/kg/day) | References | RfD Inhalation (mg/kg/day) | References |
---|---|---|---|---|---|---|
Al | 1 | [46] | 1 | [47] | 5.00 10−3 | [46] |
As | 3.00 10−4 | [46] | 3.00 10−4 | [47] | 1.50 10−5 | [46] |
Cd | 1.00 10−4 | [46] | 1.25 10−5 | [47] | 1.00 10−5 | [46] |
Co | 3.00 10−4 | [46] | 3.00 10−4 | [47] | 6.00 10−6 | [46] |
Cr | 1.5 | [46] | 1.95 10−2 | [47] | 2.86 10−5 | [48] |
Cu | 0.04 | [46] | 0.04 | [47] | 0.04 | [8] |
Fe | 0.7 | [46] | 0.7 | [47] | ND | --- |
Mg | ND | --- | ND | --- | ND | --- |
Mn | 0.24 | [46] | 9.60 10−4 | [47] | 5.00 10−5 | [46] |
Mo | 5.00 10−3 | [46] | 5.00 10−3 | [47] | 2.00 10−3 | [46] |
Ni | 1.10 10−2 | [46] | 5.40 10−3 | [49] | 2.00 10−5 | [46] |
P | 2.00 10−5 | [46] | ND | --- | ND | --- |
Se | ND | --- | 5.00 10−3 | [47] | 0.02 | [46] |
Pb | 3.50 10−3 | [49] | 0.04 | [47] | 2.00 10−4 | [50] |
Zn | 0.3 | [46] | 0.3 | [47] | 0.3 | [8] |
Elements | CSForal | CSFinh | CSFderm |
---|---|---|---|
As | 1.5 [51] | 1.5 [52] | 1.5 [53] |
Cd | 3.0 10−1 [51] | 5.0 10−1 [54] | 3.0 10−1 [54] |
Cr | 5.0 10−1 [51] | 4.2 [51] | 1.5 [54] |
Ni | 8.4 10−1 [55] | 8.4 10−1 [56] | 8.4 10−1 [57] |
Pb | 8.5 10−3 [51] | 4.2 10−2 [58] | 8.5 10−3 [53] |
Elements | Anhanduí EP (mg/kg) | Águas do Prosa EP (mg/kg) | Sóter EP (mg/kg) | Lago do Amor EP (mg/kg) | Conama/ Brazil [33] (mg/kg) | Canadian Soil Quality Guidelines [65] (mg/kg) | USEPA, 2003 [64] (mg/kg) |
---|---|---|---|---|---|---|---|
Al | 5.46 ± 0.40 | 24.37 ± 1.59 | 4.09 ± 0.20 | 8.42 ± 0.36 | * | ** | 32,933.0 |
As | 10.12 ± 0.43 | 7.19 ± 0.64 | 3.13 ± 0.17 | 12.79 ± 0.87 | 15 | 12 | 9.6 |
Cd | 1.19 ± 0.14 | 0.76 ± 0.09 | 1.44 ± 0.48 | 2.39 ± 0.35 | 1.3 | 10 | 0.4 |
Co | 10.53 ± 0.15 | 5.38 ± 0.44 | 4.30 ± 0.29 | 6.39 ± 0.13 | 35 | ** | 9.9 |
Cr | 29.48 ± 0.83 | 29.98 ± 2.39 | 20.79 ± 0.96 | 38.82 ± 0.78 | * | 64 | 37.3 |
Cu | 91.01 ± 0.27 | 190.38 ± 1.05 | 84.0 ± 2.60 | 205.11 ± 4.98 | 200 | 63 | 23.0 |
Fe | 125.33 ± 4.69 | 141.859 ± 1.13 | 77.64 ± 1.94 | 198.54 ± 1.59 | * | ** | *** |
Mg | 210.29 ± 0.80 | 193.27 ± 5.87 | 173.31 ± 5.87 | 237.51 ± 5.58 | * | ** | *** |
Mn | 217.97 ± 0.49 | 81.67 ± 1.80 | 183.12 ± 2.11 | 200.63 ± 0.96 | * | ** | 447.0 |
Mo | 31.27 ± 1.41 | 15.59 ± 0.89 | 22.28 ± 0.31 | 34.44 ± 0.25 | 30 | 10 | *** |
Ni | 12.59 ± 0.037 | 15.71 ± 0.49 | 14.14 ± 0.16 | 35.71 ± 0.61 | 30 | 50 | 23.0 |
P | 12.34 ± 2.54 | 15.54 ± 0.69 | 7.54 ± 1.18 | 5.49 ± 0.81 | * | ** | *** |
Pb | 25.54 ± 0.64 | 5.64 ± 0.45 | 10.56 ± 0.28 | 30.87 ± 0.09 | 72 | 140 | 16.0 |
Se | 13.78 ± 0.59 | 11.26 ± 1.24 | 9.643 ± 0.325 | 13.26 ± 1.55 | * | 1 | 0.4 |
Zn | 208.32 ± 17.30 | 152.09± 2.84 | 189.63 ± 1.31 | 172.99 ± 2.68 | 30 | 200 | 51.0 |
Element | Anhanduí EP | Águas do Prosa EP | Sóter EP | Lago do Amor EP |
---|---|---|---|---|
As | 0.703 | 0.522 | 0.220 | 0.911 |
Cd | 1.018 | 0.648 | 1.474 | 2.108 |
Co | 0.427 | 0.233 | 0.183 | 0.261 |
Cr | 0.404 | 0.432 | 0.290 | 0.528 |
Mo | 1.089 | 0.549 | 0.753 | 1.157 |
Ni | 0.421 | 0.540 | 0.477 | 1.211 |
Se | 2.874 | 2.500 | 1.994 | 2.961 |
Pb | 0.364 | 0.085 | 0.151 | 0.430 |
Elements | Anhanduí EP | Águas do Prosa EP | Sóter EP | Lago do Amor EP |
---|---|---|---|---|
As | −1.094 | −1.524 | −2.769 | −0.720 |
Cd | −0.560 | −1.210 | −0.025 | 0.491 |
Co | −1.813 | −2.686 | −3.033 | −2.524 |
Cr | −1.892 | −1.797 | −2.371 | −1.506 |
Mo | −0.462 | −1.449 | −0.995 | −0.375 |
Ni | −1.833 | −1.474 | −1.654 | −0.309 |
Se | 0.938 | 0.737 | 0.410 | 0.981 |
Pb | −2.044 | −4.148 | −3.314 | −1.802 |
Element | Anhanduí EP | Águas do Prosa EP | Sóter EP | Lago do Amor EP | ||||
---|---|---|---|---|---|---|---|---|
Children | Adults | Children | Adults | Children | Adults | Children | Adults | |
As | 3.01 10−4 | 2.18 10−5 | 2.23 10−4 | 1.61 10−5 | 9.41 10−5 | 6.81 10−6 | 3.89 10−4 | 2.82 10−5 |
Cd | 9.56 10−6 | 6.92 10−7 | 6.09 10−6 | 4.41 10−7 | 1.38 10−5 | 1.00 10−6 | 1.98 10−5 | 1.43 10−6 |
Cr | 2.88 10−4 | 2.09 10−5 | 3.08 10−4 | 2.23 10−5 | 2.07 10−4 | 1.50 10−5 | 3.76 10−4 | 2.72 10−5 |
Ni | 2.02 10−4 | 1.46 10−5 | 2.59 10−4 | 1.87 10−5 | 2.28 10−4 | 1.65 10−5 | 5.80 10−4 | 4.20 10−5 |
Pb | 4.23 10−6 | 3.06 10−7 | 9.84 10−7 | 7.12 10−8 | 1.75 10−6 | 1.27 10−7 | 5.00 10−6 | 3.62 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paula, F.G.d.; Souza, I.D.d.; Melo, E.S.d.P.; Ancel, M.A.P.; Garcia, D.A.Z.; Bogo, D.; Guimarães, R.d.C.A.; Gielow, K.d.C.F.; Oliveira, R.J.; Sanches, G.M.; et al. Assessment of Metal(loid)s and Nonmetals Contamination in Soils of Urban Ecological Parks in Brazil: Implications for Ecological Risk and Human Health. Urban Sci. 2025, 9, 193. https://doi.org/10.3390/urbansci9060193
Paula FGd, Souza IDd, Melo ESdP, Ancel MAP, Garcia DAZ, Bogo D, Guimarães RdCA, Gielow KdCF, Oliveira RJ, Sanches GM, et al. Assessment of Metal(loid)s and Nonmetals Contamination in Soils of Urban Ecological Parks in Brazil: Implications for Ecological Risk and Human Health. Urban Science. 2025; 9(6):193. https://doi.org/10.3390/urbansci9060193
Chicago/Turabian StylePaula, Fernanda Guerreiro de, Igor Domingos de Souza, Elaine Silva de Pádua Melo, Marta Aratuza Pereira Ancel, Diego Azevedo Zoccal Garcia, Danielle Bogo, Rita de Cássia Avellaneda Guimarães, Karine de Cássia Freitas Gielow, Rodrigo Juliano Oliveira, Gisele Melo Sanches, and et al. 2025. "Assessment of Metal(loid)s and Nonmetals Contamination in Soils of Urban Ecological Parks in Brazil: Implications for Ecological Risk and Human Health" Urban Science 9, no. 6: 193. https://doi.org/10.3390/urbansci9060193
APA StylePaula, F. G. d., Souza, I. D. d., Melo, E. S. d. P., Ancel, M. A. P., Garcia, D. A. Z., Bogo, D., Guimarães, R. d. C. A., Gielow, K. d. C. F., Oliveira, R. J., Sanches, G. M., Hiane, P. A., & Nascimento, V. A. d. (2025). Assessment of Metal(loid)s and Nonmetals Contamination in Soils of Urban Ecological Parks in Brazil: Implications for Ecological Risk and Human Health. Urban Science, 9(6), 193. https://doi.org/10.3390/urbansci9060193