Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (893)

Search Parameters:
Keywords = Ab initio calculation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1657 KiB  
Article
How Do the Surroundings of the C-NO2 Fragment Affect the Mechanical Sensitivity of Trinitroaromatic Molecules? Evidence from Crystal Structures and Ab Initio Calculations
by Danijela S. Kretić, Aleksandra B. Đunović, Dragan B. Ninković and Dušan Ž. Veljković
Crystals 2025, 15(8), 692; https://doi.org/10.3390/cryst15080692 - 30 Jul 2025
Viewed by 125
Abstract
The dissociation of the C-NO2 bond is the initial step in the process of the detonation of nitroaromatic explosives. The strength of the C-NO2 bond is significantly influenced by the relative position of the nitro group with respect to the aromatic [...] Read more.
The dissociation of the C-NO2 bond is the initial step in the process of the detonation of nitroaromatic explosives. The strength of the C-NO2 bond is significantly influenced by the relative position of the nitro group with respect to the aromatic ring plane since the planar arrangement enables the delocalization of electron density, which strengthens this bond. In this study, we have combined a statistical analysis of geometrical parameters extracted from crystal structures of trinitroaromatic molecules with ab initio calculations of non-covalent index plots and Wiberg bond index values for selected trinitroaromatic molecules to elucidate the influence of nearby substituents on the relative position of nitro groups with respect to the aromatic ring plane. The results of the analysis showed that neighboring substituents have a significant impact on the geometry of nitro groups. The results also showed that this influence arises from the repulsive interaction of voluminous substituents, attractive non-covalent contacts, and the electronic effects of substituents. Full article
(This article belongs to the Section Organic Crystalline Materials)
Show Figures

Figure 1

22 pages, 5743 KiB  
Article
Effect of Grain Boundary Characteristics on Mechanical Properties and Irradiation Response in 3C-SiC: A Molecular Dynamics Simulation Study
by Wenying Liu, Fugen Deng, Jiajie Yu, Lin Chen, Yuyang Zhou, Yulu Zhou and Yifang Ouyang
Materials 2025, 18(15), 3545; https://doi.org/10.3390/ma18153545 - 29 Jul 2025
Viewed by 170
Abstract
Molecular dynamics (MD) simulations have been performed on the energetics, mechanical properties, and irradiation response of seventy-three 3C-SiC symmetric tilt grain boundaries (STGBs) with three tilt axes (<100>, <110> and <111>). The effect of GB characteristics on the STGB properties has been investigated. [...] Read more.
Molecular dynamics (MD) simulations have been performed on the energetics, mechanical properties, and irradiation response of seventy-three 3C-SiC symmetric tilt grain boundaries (STGBs) with three tilt axes (<100>, <110> and <111>). The effect of GB characteristics on the STGB properties has been investigated. The GB energy is positively and linearly correlated with the excess volume, but the linearity in SiC is not as good as in metals, which stems from the inhomogeneous structural relaxation near GBs induced by orientation-sensitive covalent bonding. For <110>STGBs, the shear strength exhibits symmetry with respect to the misorientation angle of 90°, which is consistent with ab initio calculations for Al in similar shear orientations. Cascades are performed with 8 keV silicon as the primary knock-on atom (PKA). No direct correlation is found between the sink efficiency of GBs for defects and GB characteristics, which comes from the complexity of the diatomic system during the recovery phase. For GBs with smaller values of Σ, the GBs exhibit a weaker blocking effect on the penetration of irradiated defects, resulting in a lower number of defects in GBs and a higher number of total surviving defects. In particular, it is seen that the percentage decrease in tensile strength after irradiation is positively correlated with the Σ value. Taken together, these results help to elucidate the impact of GB behavior on the mechanical properties of as well as the primary irradiation damage in SiC and provide a reference for creating improved materials through GB engineering. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

15 pages, 921 KiB  
Article
Structural, Thermophysical, and Magnetic Properties of the γ-Fe4N System: Density Functional Theory and Experimental Study
by Guillermo A. Muñoz Medina, Azucena M. Mudarra Navarro, Crispulo E. Deluque Toro and Arles V. Gil Rebaza
Processes 2025, 13(8), 2402; https://doi.org/10.3390/pr13082402 - 28 Jul 2025
Viewed by 204
Abstract
The γ-Fe4N system has a high technological relevance due to its multiple applications in the field of surface treatment against wear and corrosion of iron in steel parts, as well as in the manufacturing of high-density magnetic recording devices, [...] Read more.
The γ-Fe4N system has a high technological relevance due to its multiple applications in the field of surface treatment against wear and corrosion of iron in steel parts, as well as in the manufacturing of high-density magnetic recording devices, and so on. In the present work, we present a wide research of the structural, elastic, magnetic, vibrational, and thermophysical properties by means of the phonon analysis. For these purposes, we have compared theoretical and experimental results. The theoretical data were obtained by employing ab initio electronic structure calculations in the framework of density functional theory (DFT), and different experimental measurements, such as X-ray diffraction, magnetization measurements, and calorimetric techniques, were used to characterize the γ-Fe4N system. The resulting comparison showed an excellent agreement between the theoretical and experimental data reported. Full article
Show Figures

Figure 1

17 pages, 1725 KiB  
Article
Ring Opening upon Valence Shell Excitation in β-Butyrolactone: Experimental and Theoretical Methods
by Pedro A. S. Randi, Márcio H. F. Bettega, Nykola C. Jones, Søren V. Hoffmann, Małgorzata A. Śmiałek and Paulo Limão-Vieira
Molecules 2025, 30(15), 3137; https://doi.org/10.3390/molecules30153137 (registering DOI) - 26 Jul 2025
Viewed by 220
Abstract
The valence-shell electronic state spectroscopy of β-butyrolactone (CH3CHCH2CO2) is comprehensively investigated by employing experimental and theoretical methods. We report a novel vacuum ultraviolet (VUV) absorption spectrum in the photon wavelength range from 115 to 320 nm (3.9–10.8 [...] Read more.
The valence-shell electronic state spectroscopy of β-butyrolactone (CH3CHCH2CO2) is comprehensively investigated by employing experimental and theoretical methods. We report a novel vacuum ultraviolet (VUV) absorption spectrum in the photon wavelength range from 115 to 320 nm (3.9–10.8 eV), together with ab initio quantum chemical calculations at the time-dependent density functional (TD-DFT) level of theory. The dominant electronic excitations are assigned to mixed valence-Rydberg and Rydberg transitions. The fine structure in the CH3CHCH2CO2 photoabsorption spectrum has been assigned to C=O stretching, v7a, CH2 wagging, v14a, C–O stretching, v22a, and C=O bending, v26a modes. Photolysis lifetimes in the Earth’s atmosphere from 0 km up to 50 km altitude have been estimated, showing to be a non-relevant sink mechanism compared to reactions with the OH radical. The nuclear dynamics along the C=O and C–C–C coordinates have been investigated at the TD-DFT level of theory, where, upon electronic excitation, the potential energy curves show important carbonyl bond breaking and ring opening, respectively. Within such an intricate molecular landscape, the higher-lying excited electronic states may keep their original Rydberg character or may undergo Rydberg-to-valence conversion, with vibronic coupling as an important mechanism contributing to the spectrum. Full article
(This article belongs to the Special Issue Advances in Density Functional Theory (DFT) Calculation)
Show Figures

Figure 1

19 pages, 2243 KiB  
Article
Theoretical Calculation of Ground and Electronically Excited States of MgRb+ and SrRb+ Molecular Ions: Electronic Structure and Prospects of Photo-Association
by Mohamed Farjallah, Hela Ladjimi, Wissem Zrafi and Hamid Berriche
Atoms 2025, 13(8), 69; https://doi.org/10.3390/atoms13080069 - 25 Jul 2025
Viewed by 269
Abstract
In this work, a comprehensive theoretical investigation is carried out to explore the electronic and spectroscopic properties of selected diatomic molecular ions MgRb+ and SrRb+. Using high-level ab initio calculations based on a pseudopotential approach, along with large Gaussian basis [...] Read more.
In this work, a comprehensive theoretical investigation is carried out to explore the electronic and spectroscopic properties of selected diatomic molecular ions MgRb+ and SrRb+. Using high-level ab initio calculations based on a pseudopotential approach, along with large Gaussian basis sets and full valence configuration interaction (FCI), we accurately determine adiabatic potential energy curves, spectroscopic constants, transition dipole moments (TDMs), and permanent electric dipole moments (PDMs). To deepen our understanding of these systems, we calculate radiative lifetimes for vibrational levels in both ground and low-lying excited electronic states. This includes evaluating spontaneous and stimulated emission rates, as well as the effects of blackbody radiation. We also compute Franck–Condon factors and analyze photoassociation processes for both ions. Furthermore, to explore low-energy collisional dynamics, we investigate elastic scattering in the first excited states (21Σ+) describing the collision between the Ra atom and Mg+ or Sr+ ions. Our findings provide detailed insights into the theoretical electronic structure of these molecular ions, paving the way for future experimental studies in the field of cold and ultracold molecular ion physics. Full article
Show Figures

Figure 1

20 pages, 2267 KiB  
Review
Multiscale Simulation of Nanowear-Resistant Coatings
by Xiaoming Liu, Kun Gao, Peng Chen, Lijun Yin and Jing Yang
Materials 2025, 18(14), 3334; https://doi.org/10.3390/ma18143334 - 16 Jul 2025
Viewed by 378
Abstract
Nanowear-resistant coatings are critical for extending the service life of mechanical components, yet their performance optimization remains challenging due to the complex interplay between atomic-scale defects and macroscopic wear behavior. While experimental characterization struggles to resolve transient interfacial phenomena, multiscale simulations, integrating ab [...] Read more.
Nanowear-resistant coatings are critical for extending the service life of mechanical components, yet their performance optimization remains challenging due to the complex interplay between atomic-scale defects and macroscopic wear behavior. While experimental characterization struggles to resolve transient interfacial phenomena, multiscale simulations, integrating ab initio calculations, molecular dynamics, and continuum mechanics, have emerged as a powerful tool to decode structure–property relationships. This review systematically compares mainstream computational methods and analyzes their coupling strategies. Through case studies on metal alloy nanocoatings, we demonstrate how machine learning-accelerated simulations enable the targeted design of layered architectures with 30% improved wear resistance. Finally, we propose a protocol combining high-throughput simulation and topology optimization to guide future coating development. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

38 pages, 4803 KiB  
Review
Charge Density Waves in Solids—From First Concepts to Modern Insights
by Danko Radić
Symmetry 2025, 17(7), 1135; https://doi.org/10.3390/sym17071135 - 15 Jul 2025
Viewed by 435
Abstract
We present a brief overview of the field of charge density waves (CDW) in condensed systems with focus set to the underlying mechanisms behind the CDW ground state. Our intention in this short review is not to count all related facts from the [...] Read more.
We present a brief overview of the field of charge density waves (CDW) in condensed systems with focus set to the underlying mechanisms behind the CDW ground state. Our intention in this short review is not to count all related facts from the vast volume of literature about this decades-old and still developing field, but rather to pinpoint the most important, mostly theoretical ones, presenting the development of the field. Starting from the “early days”, mainly based on weakly coupled, chain-like quasi-1D systems and Peierls instability, in which the Fermi surface nesting has been the predominant and practically paradigmatic mechanism of the CDW ground state stabilisation, we track the change in paradigms while entering the field of layered quasi-2D systems, with Fermi surface far away from the nesting regime, in which rather strong, essentially momentum-dependent interactions and particular reconstructions of the Fermi surface become essential. Examples of real quasi-1D materials, such as organic and inorganic conductors like Bechgaard salts or transition metal trichalcogenides and bronzes, in which experiment and theory have been extremely successful in providing detailed understanding, are contrasted to layered quasi-2D materials, such as high-Tc superconducting cuprates, intercalated graphite compounds or transition metal dichalcogenides, for which the theory explaining an onset of the CDWs constitutes a frontier of this fast-evolving field, strongly boosted by development of modern ab initio calculation methods. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

30 pages, 11919 KiB  
Article
Unveiling Vibrational Couplings in Model Peptides in Solution by a Theoretical Approach
by Federico Coppola, Fulvio Perrella, Alessio Petrone, Greta Donati, Luciana Marinelli and Nadia Rega
Molecules 2025, 30(13), 2854; https://doi.org/10.3390/molecules30132854 - 4 Jul 2025
Viewed by 432
Abstract
Vibrational analysis of peptides in solution and the theoretical determination of the effects of the microenvironment on infrared and Raman spectra are of key importance in many fields of chemical interest. In this work, we present a computational study combining static quantum mechanical [...] Read more.
Vibrational analysis of peptides in solution and the theoretical determination of the effects of the microenvironment on infrared and Raman spectra are of key importance in many fields of chemical interest. In this work, we present a computational study combining static quantum mechanical calculations with ab initio molecular dynamics simulations to investigate the vibrational behavior of three peptide models in both the gas phase and in explicit water, under non-periodic boundary conditions. The vibrational spectra of the main amide bands, namely amide I-III and A, were analyzed using a time–frequency approach based on the wavelet transform, which allows the resolution of transient frequency shifts and mode couplings along the trajectories. This combined approach enabled us to perform a time-resolved vibrational analysis revealing how vibrational frequencies, especially of the C=O and N–H stretching modes, evolve over time due to dynamical microsolvation. These fluctuations modulate vibrational couplings and lead to spectral broadening and frequency shifts that correlate with the local structuring of the solvent. In conclusion, our results highlight how the proposed protocol allows for the direct connection between vibrational modes and local structural changes, providing a link from the spectroscopic observable to the structure, the peptide backbone, and its microenvironment. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

22 pages, 3862 KiB  
Article
Composition-Dependent Structural, Phonon, and Thermodynamical Characteristics of Zinc-Blende BeZnO
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(13), 3101; https://doi.org/10.3390/ma18133101 - 1 Jul 2025
Viewed by 276
Abstract
Both ZnO and BeO semiconductors crystallize in the hexagonal wurtzite (wz), cubic rock salt (rs), and zinc-blende (zb) phases, depending upon their growth conditions. Low-dimensional heterostructures ZnO/BexZn1-xO and BexZn1-xO ternary alloy-based devices have recently gained [...] Read more.
Both ZnO and BeO semiconductors crystallize in the hexagonal wurtzite (wz), cubic rock salt (rs), and zinc-blende (zb) phases, depending upon their growth conditions. Low-dimensional heterostructures ZnO/BexZn1-xO and BexZn1-xO ternary alloy-based devices have recently gained substantial interest to design/improve the operations of highly efficient and flexible nano- and micro-electronics. Attempts are being made to engineer different electronic devices to cover light emission over a wide range of wavelengths to meet the growing industrial needs in photonics, energy harvesting, and biomedical applications. For zb materials, both experimental and theoretical studies of lattice dynamics ωjq have played crucial roles for understanding their optical and electronic properties. Except for zb ZnO, inelastic neutron scattering measurement of ωjq for BeO is still lacking. For the BexZn1-xO ternary alloys, no experimental and/or theoretical studies exist for comprehending their structural, vibrational, and thermodynamical traits (e.g., Debye temperature ΘDT; specific heat CvT). By adopting a realistic rigid-ion model, we have meticulously simulated the results of lattice dynamics, and thermodynamic properties for both the binary zb ZnO, BeO and ternary BexZn1-xO alloys. The theoretical results are compared/contrasted against the limited experimental data and/or ab initio calculations. We strongly feel that the phonon/thermodynamic features reported here will encourage spectroscopists to perform similar measurements and check our theoretical conjectures. Full article
(This article belongs to the Special Issue Advanced Additive Manufacturing Processing of Ceramic Materials)
Show Figures

Figure 1

11 pages, 3150 KiB  
Article
Calorimetric Studies of the Mg-Pt System
by Adam Dębski, Magda Pęska, Sylwia Terlicka, Julita Dworecka-Wójcik, Władysław Gąsior, Wojciech Gierlotka, Andrzej Budziak and Marek Polański
Materials 2025, 18(13), 3075; https://doi.org/10.3390/ma18133075 - 28 Jun 2025
Viewed by 312
Abstract
This study presents the limiting partial enthalpy of a solution of Pt in liquid Sn and Al baths, as well as, for the first time, the standard enthalpies of the formation of intermetallic phases and alloys of the Mg–Pt system, obtained using solution [...] Read more.
This study presents the limiting partial enthalpy of a solution of Pt in liquid Sn and Al baths, as well as, for the first time, the standard enthalpies of the formation of intermetallic phases and alloys of the Mg–Pt system, obtained using solution calorimetry. The alloys were prepared via mechanical alloying and subsequently examined via X-ray diffraction (XRD) and scanning electron microscopy (SEM). The limiting partial enthalpy of a solution of Pt in liquid baths was measured at 931 K and 1033 K in the Sn bath and at 1036 K in the Al bath. The measured values are negative and equal to −126.0 ± 3.4 kJ/mol and −126.3 ± 3.5 kJ/mol at 931 K and 1033 K, respectively, in the Sn bath and −217.9 ± 1.2 kJ/mol in the Al bath. Subsequently, the measured heat effects were used to calculate the standard enthalpies of the formation of the intermetallic phases. The resulting values are as follows: −29.5 ± 1.8 kJ/mol·at. for Mg6Pt, −53.9 ± 1.6 kJ/mol·at. for Mg3Pt, −65.2 ± 0.4 kJ/mol·at. for Mg2Pt, −78.7 ± 2.1 kJ/mol·at. for MgPt, −44.5 ± 0.4 kJ/mol·at. for MgPt3, and −26.4 ± 1.0 kJ/mol·at. for MgPt7. These values of the standard enthalpies of the formation of the intermetallic phases were compared with available ab initio data and those calculated using Miedema’s model. The data obtained using Miedema’s model were the least exothermic compared to the data obtained from calorimetric measurements and other theoretical calculations. Full article
Show Figures

Graphical abstract

16 pages, 3258 KiB  
Article
Breaking the Efficiency–Quality Tradeoff via Temperature–Velocity Co-Optimization: Multiscale Calculations and Experimental Study of Epitaxial Growth of Iridium on MgO(100)
by Yang Wang, Junhao Chen, Shilin Yang and Jiaqi Zhu
Crystals 2025, 15(6), 580; https://doi.org/10.3390/cryst15060580 - 19 Jun 2025
Viewed by 257
Abstract
The precise control of thermal–kinetic parameters governs epitaxial perfection in functional oxide heterostructures. Herein, using Iridium/MgO(100) as a model system, the traditional “low-speed/high-temperature” paradigm is revolutionized through the combination of ab initio calculations, multiscale simulations, and subsequent deposition experiments. First-principles modeling reveals the [...] Read more.
The precise control of thermal–kinetic parameters governs epitaxial perfection in functional oxide heterostructures. Herein, using Iridium/MgO(100) as a model system, the traditional “low-speed/high-temperature” paradigm is revolutionized through the combination of ab initio calculations, multiscale simulations, and subsequent deposition experiments. First-principles modeling reveals the mechanisms of Volmer–Weber (VW, island growth mode) nucleation at low coverage and Stranski–Krastanov (SK, layer-plus-island growth) transitions driven by interface metallization, stress release, and energy reduction, which facilitates coherent monolayer formation by lowering the energy barrier by ~34%. Molecular dynamics simulations demonstrate that the strategic co-optimization of substrate temperature (Tsub) and deposition rate (Vdep) induces an abrupt cliff-like drop in mosaic spread. Experimental validations confirm that this T-V synergy achieves unprecedented interfacial coherence, whereby AFM roughness reaches 0.34 nm (RMS) and the XRC-FWHM of 0.13° approaches single-crystal benchmarks. Notably, our novel “accelerated heteroepitaxy” protocol reduces growth time without compromising quality, addressing the efficiency–quality paradox in industrial-scale diamond substrate fabrication. These findings establish universal thermal–kinetic design principles applicable to refractory metal/oxide heterostructures for next-generation quantum sensors and high-power electronic devices. Full article
(This article belongs to the Special Issue Crystallization Process and Simulation Calculation, Third Edition)
Show Figures

Figure 1

19 pages, 5063 KiB  
Article
Ab Initio Elucidation of the Nature of the Bonding of Tetrahedral Nitrides (BN, AlN, GaN, and InN), Hexagonal BN, and Graphene
by Pawel Strak, Konrad Sakowski, Pawel Kempisty, Izabella Grzegory, Agata Kaminska and Stanislaw Krukowski
Materials 2025, 18(12), 2875; https://doi.org/10.3390/ma18122875 - 18 Jun 2025
Viewed by 315
Abstract
Recent measurements of the band properties of AlN and GaN by fluorescence yield absorption and soft X-ray emission spectroscopies revealed that their valence band (VB) is composed of two separate subbands. The upper VB subband of GaN is composed of gallium sp and [...] Read more.
Recent measurements of the band properties of AlN and GaN by fluorescence yield absorption and soft X-ray emission spectroscopies revealed that their valence band (VB) is composed of two separate subbands. The upper VB subband of GaN is composed of gallium sp and nitrogen p orbitals; the lower subband consists of metal d and nitrogen s orbitals. These findings were confirmed by extensive ab initio simulations. These results are not consistent with the standard tetrahedrally coordinated semiconductors, which are bonded by sp3-hybridized orbitals of metal and nonmetal atoms. The new analysis techniques and ab initio simulations create a new picture, allowing the calculation of overlap integrals to determine the bond order in these crystals. According to these results, bonding occurs between resonant p-states of nitrogen and sp3-hybridized metal orbitals in tetrahedral nitrides, allowing tetrahedral symmetry to be maintained. A similar resonant bonding mechanism is observed in hexagonal BN, where the p orbitals of nitrogen create three resonant states necessary for maintaining the planar symmetry of the lattice. In addition, nonresonant π-type bonds in BN are created by the overlap of pz orbitals of boron and nitrogen. BN bonding differs from that in graphene, where carbon states are fully sp2-hybridized. Additionally, π-type bonds in graphene have no ionic contributions, which leads to the formation of Dirac states with linear dispersion close to the K point, closing the band gap. Full article
(This article belongs to the Special Issue Ab Initio Modeling of 2D Semiconductors and Semimetals)
Show Figures

Figure 1

14 pages, 2451 KiB  
Article
Mechanical and Electronic Properties of Fe(II) Doped Calcite: Ab Initio Calculations
by Zhangci Wu, Xiao Zhi, Fujie Jia, Jiayuan Ye and Neng Li
Crystals 2025, 15(6), 566; https://doi.org/10.3390/cryst15060566 - 16 Jun 2025
Viewed by 288
Abstract
Calcite (CaCO3), a widely used mineral in materials science and environmental engineering, exhibits excellent stability but has limited mechanical strength and a wide electronic band gap, restricting its broader functional applications. To address these limitations, we systematically investigated the effects of [...] Read more.
Calcite (CaCO3), a widely used mineral in materials science and environmental engineering, exhibits excellent stability but has limited mechanical strength and a wide electronic band gap, restricting its broader functional applications. To address these limitations, we systematically investigated the effects of Fe(II) doping on the electronic and mechanical properties of calcite using density functional theory calculations. The results reveal that Fe atoms preferentially form a layered distribution within the lattice and significantly alter the electronic structure, notably reducing the band gap through the introduction of Fe 3d-derived states near the Fermi level. Concurrently, the incorporation of Fe strengthens the elastic constants and enhances the shear resistance, especially in directions aligned with the dopant layering. These improvements are attributed to the strong Fe-O bonding and localized lattice distortions. Furthermore, the interplay between the dopant distribution and magnetic ordering suggests that spin polarization could serve as a potential handle for property tuning. This study highlights Fe-doped calcite as a promising candidate for functional mineral-based materials and provides theoretical insights into the magnetic and structural design of carbonate systems. Full article
(This article belongs to the Special Issue Design and Synthesis of Functional Crystal Materials)
Show Figures

Figure 1

12 pages, 1752 KiB  
Proceeding Paper
Ab Initio Life-Cycle Analysis Assisting the Selection of Eco-Friendly Additives in Bio-Based Coatings
by Pieter Samyn, Patrick Cosemans and Thomas Vandenhaute
Eng. Proc. 2025, 87(1), 76; https://doi.org/10.3390/engproc2025087076 - 11 Jun 2025
Viewed by 372
Abstract
The formulation of eco-friendly coatings with protective properties against corrosion and/or mechanical degradation requires the selection of appropriate bio-based binders and functional additives. Although the concentration of additives remains limited, the replacement of fossil-based additives with bio-based additives may deliver an important contribution [...] Read more.
The formulation of eco-friendly coatings with protective properties against corrosion and/or mechanical degradation requires the selection of appropriate bio-based binders and functional additives. Although the concentration of additives remains limited, the replacement of fossil-based additives with bio-based additives may deliver an important contribution to improving the carbon footprint of a coating, in parallel with their influences on coating performance, lifetime, and processing. However, the role of bio-based additives in life-cycle analysis (LCA) is often neglected and minorly considered in current literature. Reasons for this include the complexity of the full system, together with a lack of data, methodological inconveniences, and appropriate design of realistic scenarios. Within this work, an approach of simplified LCA is followed by ab initio cradle-to-gate analysis of coating formulations focusing on the replacement of specific fossil additives (e.g., carbon black, silicates, and calcium carbonate) with bio-based additives (e.g., biochar, bio-based wax, recovered calcium carbonate, and nanocellulose). The different environmental impact parameters (human health, eco-toxicity, resource scarcity, and carbon footprint) for bio-based additives and coating formulations are calculated from eco-cost analysis (Idemat 2024 v2.2 database), indicating a 15 to 30% gain in carbon footprint for coatings with bio-based additives. In a particular case study for improving coating performance by substituting cellulosic additives into nanocellulose from different sources, the reduction in environmental impact parameters is positively associated with their high performance at low concentration. The need for intermediate processing of bio-based additives is a main parameter contributing to their environmental impact, but environmental benefits are abundantly compensated by their carbon storage credit and performance improvement. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

16 pages, 2229 KiB  
Article
Investigation of the Effect of Molecules Containing Sulfonamide Moiety Adsorbed on the FAPbI3 Perovskite Surface: A First-Principles Study
by Shiyan Yang, Yu Zhuang, Youbo Dou, Jianjun Wang, Hongwen Zhang, Wenjing Lu, Qiuli Zhang, Xihua Zhang, Yuan Wu and Xianfeng Jiang
Molecules 2025, 30(11), 2463; https://doi.org/10.3390/molecules30112463 - 4 Jun 2025
Viewed by 518
Abstract
First-principles calculations were conducted to examine the impact of three sulfonamide-containing molecules (H4N2O2S, CH8N4O3S, and C2H2N6O4S) adsorbed on the FAPbI3(001) perovskite [...] Read more.
First-principles calculations were conducted to examine the impact of three sulfonamide-containing molecules (H4N2O2S, CH8N4O3S, and C2H2N6O4S) adsorbed on the FAPbI3(001) perovskite surface, aiming to establish a significant positive correlation between the molecular structures and their regulatory effects on the perovskite surface. A systematic comparison was conducted to evaluate the adsorption stability of the three molecules on the two distinct surface terminations. The results show that all three molecules exhibit strong adsorption on the FAPbI3(001) surface, with C2H12N6O4S demonstrating the most favorable binding stability due to its extended frameworks and multiple electron-donating/withdrawing groups. Simpler molecules lacking carbon skeletons exhibit weaker adsorption and less dependence on surface termination. Ab initio molecular dynamics simulations (AIMD) further corroborated the thermal stability of the stable adsorption configurations at elevated temperatures. Electronic structure analysis reveals that molecular adsorption significantly reconstructs the density of states (DOS) on the PbI2-terminated surface, inducing shifts in band-edge states and enhancing energy-level coupling between molecular orbitals and surface states. In contrast, the FAI-terminated surface shows weaker interactions. Charge density difference (CDD) analysis indicates that the molecules form multiple coordination bonds (e.g., Pb–O, Pb–S, and Pb–N) with uncoordinated Pb atoms, facilitated by –SO2–NH2 groups. Bader charge and work function analyses indicate that the PbI2-terminated surface exhibits more pronounced electronic coupling and interfacial charge transfer. The C2H12N6O4S adsorption system demonstrates the most substantial reduction in work function. Optical property calculations show a distinct red-shift in the absorption edge along both the XX and YY directions for all adsorption systems, accompanied by enhanced absorption intensity and broadened spectral range. These findings suggest that sulfonamide-containing molecules, particularly C2H12N6O4S with extended carbon skeletons, can effectively stabilize the perovskite interface, optimize charge transport pathways, and enhance light-harvesting performance. Full article
Show Figures

Figure 1

Back to TopTop