Ab Initio Elucidation of the Nature of the Bonding of Tetrahedral Nitrides (BN, AlN, GaN, and InN), Hexagonal BN, and Graphene
Abstract
1. Introduction
2. Calculation Procedure
3. Results
3.1. Tetrahedral Nitrides
3.2. The Hexagonal Boron Nitride
4. The Graphene
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, C.; Janzen, E.; He, M.; Li, C.; Zettl, A.; Caldwell, J.D.; Edgar, J.H.; Aharonovich, I. Fundamentals and emerging optical applications of hexagonal boron nitride: A tutorial. Adv. Optics Photon. 2024, 16, 232. [Google Scholar] [CrossRef]
- Yoshiasa, A.; Murai, Y.; Ohtaka, O.; Katsura, T. Detailed Structures of Hexagonal Diamond, (lonsdaleite) and Wurtzite-type BN. Jpn. J. Appl. Phys. 2003, 42, 1694. [Google Scholar] [CrossRef]
- Engler, M.; Lesniak, C.; Damash, R.; Ruisinger, B. Hexagonal Boron Nitride, (hBN)—Applications form Metallurgy to Cosmetics. Ceram. Forum Int. 2007, 84, E49. [Google Scholar]
- Fan, W.; Ji, W.; Wang, L.; Zhang, L.; Wang, Y. A review on cutting technology in machiningof Ni-based superalloys. Int. J. Adv. Manufact. Technol. 2020, 110, 2863. [Google Scholar] [CrossRef]
- Caldwell, J.A.; Aharonovich, I.; Cassabois, G.; Edgar, J.H.; Gil, B.; Basov, D.N. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 2019, 4, 552. [Google Scholar] [CrossRef]
- Angerer, H.; Brunner, D.; Freudenberg, F.; Ambacher, O.; Stutzmann, M.; Höpler, R.; Metzger, T.; Born, E.; Dollinger, G.; Bergmaier, A.; et al. Determination of the Al Mole Fraction and the Band Gap Bowing of Epitaxial AlxGa1-xN Films. Appl. Phys. Lett. 1997, 71, 1504. [Google Scholar] [CrossRef]
- Leszczynski, M.; Teisseyre, H.; Suski, T.; Grzegory, I.; Bockowski, M.; Jun, J.; Porowski, S.; Pakula, K.; Baranowski, J.M.; Foxon, C.T.; et al. Lattice parameters of gallium nitride. Appl. Phys. Lett. 1996, 69, 73. [Google Scholar] [CrossRef]
- Paszkowicz, W.; Adamczyk, J.; Krukowski, S.; Leszczynski, M.; Porowski, S.; Sokołowski, J.A.; Michalec, M.; Lasocha, W. Lattice parameters, density and thermal expansion of InN microcrystals grown by the reaction of nitrogen plasma with liquid indium. Phil. Mag. A 1999, 79, 1145. [Google Scholar] [CrossRef]
- Moustakas, T.D.; Paiella, B. Optoelectronic device physics and technology of nitride semiconductors from the UV to terahertz. Rep. Prog. Phys. 2017, 80, 106501. [Google Scholar] [CrossRef]
- Skierbiszewski, C.; Wasilewski, Z.R.; Grzegory, I.; Porowski, S. Nitride-based laser diodes by plasma-assisted MBE- from violet to green emission. J. Cryst. Growth 2008, 311, 1632–1639. [Google Scholar] [CrossRef]
- Taki, T.; Strassburg, M. Visible LEDs: More than Efficient Light. ECS J. Solid State Sci. Technol. 2020, 9, 015017. [Google Scholar] [CrossRef]
- Kneissl, M.; Seong, T.Y.; Han, J.; Amano, H. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics 2019, 13, 233–244. [Google Scholar] [CrossRef]
- Watson, I.M. Metal organic vapour phase epitaxy of AlN, GaN, InN and their alloys: A key chemical technology for advanced device applications. Coord. Chem. Rev. 2013, 257, 2120. [Google Scholar] [CrossRef]
- Akasaki, I.; Amano, H.; Nakamura, S. Nobel Prize 2014. Available online: https://www.nobelprize.org/prizes/physics/2014/summary/ (accessed on 6 June 2025).
- Nakamura, S.; Fasol, G.; Pearton, S.J. The Blue Laser Diode: The Complete Story; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Geim, A.; Novoselov, K. Nobel Prize 2010. Available online: https://www.nobelprize.org/prizes/physics/2010/summary/ (accessed on 6 June 2025).
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K. The rise of graphene. Nat. Mater. 2007, 6, 183. [Google Scholar] [CrossRef]
- Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487. [Google Scholar] [CrossRef]
- Kady, M.E.; Strong, V.; Dubin, S.; Kaner, R.B. Laser Scribing of High-Performance and Flexible Graphene-Based Elecrochemical Capacitors. Science 2012, 335, 1326. [Google Scholar] [CrossRef]
- Harrison, W. Electronic Structure and the Properties of Solids; Freeman: San Francisco, CA, USA, 1980. [Google Scholar]
- Yu, P.Y.; Cardona, M. Fundamentals of Semiconductors; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Magnuson, M.; Mattesini, F.; Hoglund, C.; Birch, J.; Hultman, L. Electronic structure and bonding anisotropy investigation of wurtzite AlN. Phys. Rev. B 2009, 80, 155105. [Google Scholar] [CrossRef]
- Magnuson, M.; Mattesini, F.; Hoglund, C.; Birch, J.; Hultman, L. Electronic structure of GaN and Ga investigated by soft x-ray spectroscopy and first-principles methods. Phys. Rev. B 2010, 82, 085125. [Google Scholar] [CrossRef]
- Ptasinska, M.; Sołtys, J.; Piechota, J.; Krukowski, S. Electronic properties on GaN(0001) surface—ab initio investigation. Vacuum 2013, 99, 166. [Google Scholar] [CrossRef]
- García, A.; Papior, N.; Akhtar, A.; Artacho, E.; Blum, V.; Bosoni, E.; Brandimarte, P.; Brandbyge, M.; Cerdá, J.I.; Corsetti, F.; et al. SIESTA: Recent developments and applications. J. Chem. Phys. 2020, 152, 204108. [Google Scholar] [CrossRef] [PubMed]
- Junquera, J.; Paz, O.; Sanchez-Portal, D.; Artacho, E. Numerical atomic orbitals for linear-scaling calculations. Phys. Rev. B 2001, 64, 235111. [Google Scholar] [CrossRef]
- Anglada, E.; Soler, J.M.; Junquera, J.; Artacho, E. Systematic generation of finite-range atomic basis sets for linear-scaling calculations. Phys. Rev. B 2002, 66, 205101. [Google Scholar] [CrossRef]
- Troullier, N.; Martins, J.L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993–2006. [Google Scholar] [CrossRef]
- Troullier, N.; Martins, J.L. Efficient pseudopotentials for plane-wave calculations. II. Operators for fast iterative diagonalization. Phys. Rev. B 1991, 43, 8861–8869. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Pedroza, L.S.; da Silva, A.J.R.; Capelle, K. Gradient-dependent density functionals of the Perdew-Burke-Ernzerhof type for atoms, molecules, and solids. Phys. Rev. B 2009, 79, 201106(R). [Google Scholar] [CrossRef]
- Odashima, M.M.; Capelle, K.; Trickey, S.B. Tightened Lieb-Oxford Bound for Systems of Fixed Particle Number. J. Chem. Theory Comput. 2009, 5, 798–807. [Google Scholar] [CrossRef]
- Paszkowicz, W.; Pelka, J.B.; Knapp, M.; Szyszko, T.; Podsiadlo, S. Lattice parameters and anisotropic thermal expansion of hexagonal boron nitrides in the 10–297.5 K temperature range. Appl. Phys. A 2002, 75, 431. [Google Scholar] [CrossRef]
- Wang, Y.C.; Scheerschmidt, K.; Gosele, U. Theoretical investigations of bond properties in graphite and graphitic silicon. Phys. Rev. B 2000, 61, 12864. [Google Scholar] [CrossRef]
- Cao, D.; Cheng, X.; Xie, Y.-H.; Zheng, L.; Wang, Z.; Yu, X.; Wang, J.; Shen, D.; Yu, Y. Effects of rapid thermal annealing on the properties of AlN films deposited by PLEAD on AlGaN/GaN heterostructures. RSC Adv. 2015, 5, 37881. [Google Scholar] [CrossRef]
- Dallaev, R.; Sobola, D.; Tofel, P.; Škvarenina, L.; Sedlak, P. Aluminum Nitride nanofilms by Atomic Layer Deposition Using Alternative Precursors Hydrazinum Chloride and Triisobutylatuminum. Coatings 2020, 10, 954. [Google Scholar] [CrossRef]
- Ferreira, L.G.; Marques, M.; Teles, L.K. Approximation to density functional theory for the calculation of band gaps of semiconductors. Phys. Rev. B 2008, 78, 125116. [Google Scholar] [CrossRef]
- Ribeiro, M.; Fonseca, L.R.C.; Ferreira, L.G. Accurate prediction of the Si/SiO2 interface band offset using the self-consistent ab initio DFT/LDA-1/2 method. Phys. Rev. B 2009, 79, 241312. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Q.; Zhang, W.; Zhang, H.; Zheng, F.; Zhang, M.; Hu, P.; Wang, M.; Tian, Z.; Li, Y.; et al. Phase transition and bandgap engineering in B1-xAlxN alloys: DFT calculations and experiments. Appl. Surf. Sci. 2022, 575, 151641. [Google Scholar] [CrossRef]
- Silveira, E.; Freitas, J.A.; Schujman, S.B.; Schowalter, L.J. AlN bandgap temperature dependence from its optical properties. J. Cryst. Growth 2008, 310, 4007. [Google Scholar] [CrossRef]
- Monemar, B.; Bergman, J.P.; Buyanova, I.A.; Amano, H.; Akasaki, I.; Detchprohm, T.; Hiramatsu, K.; Sawaki, N. The excitonic bandgap of GaN: Dependence on substrate. Solid State Electron. 1997, 41, 239. [Google Scholar] [CrossRef]
- Yeo, Y.C.; Chong, T.C.; Li, M.F. Electronic band structures and effective-mass parameters of wurtzite GaN and InN. J. Appl. Phys. 1997, 83, 1429. [Google Scholar] [CrossRef]
- Wu, J.; Walukiewicz, W.; Yu, K.M.; Ager, J.W.; Haller, E.E.; Lu, H.; Schaff, W.J.; Saito, Y.; Nanishi, Y. Unusual properties of the fundamental band gap of InN. Appl. Phys. Lett. 2002, 80, 3967. [Google Scholar] [CrossRef]
- Matsuoka, T.; Okamoto, H.; Nakao, M.; Harima, H.; Kurimoto, E. Optical bandgap of wurtzite InN. Appl. Phys. Lett. 2002, 81, 1246. [Google Scholar] [CrossRef]
- Wu, J.; Walukiewicz, W. Band gaps of InN and group III nitride alloys. Superlatt. Microstr. 2003, 34, 63. [Google Scholar] [CrossRef]
- Krukowski, S.; Kempisty, P.; Strak, P. Quantum effects in charge control of semiconductor surfaces as elucidated by ab initio calculations—A review. arXiv 2025, arXiv:2502.16966. [Google Scholar]
- Doan, T.C.; Li, J.; Lin, J.Y.; Jiang, H.X. Bandgap and exciton binding energies of hexagonal boron nitride probed by photocurrent excitation spectroscopy. Appl. Phys. Lett. 2016, 109, 122101. [Google Scholar] [CrossRef]
- Dronskowski, R.; Bloechl, P.E. Crystal orbital Hamilton populations, (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 1993, 97, 8617. [Google Scholar] [CrossRef]
- Deringer, V.L.; Tchougreeff, A.L.; Dronskowski, R. Crystal Orbital Hamilton Population, (COHP) Analysis as Projected from Plane-Wave Basis Sets. J. Phys. Chem. 2011, 115, 5461. [Google Scholar] [CrossRef]
- Kekule, F.A. Untersuchungen uber aromatische Verbindungen. Liebigs Ann. Der Chem. Und Pharm. 1866, 137, 129. (In German) [Google Scholar] [CrossRef]
- Schultz, P.A.; Messmer, R.P. Are There π Bonds in Benzene? Phys. Rev. Lett. 1987, 58, 2416. [Google Scholar] [CrossRef]
- Ryan, R.R.; Eller, P.G. A Bonding Model for Transition Metal-Sulfur Dioxide Complexes. Inorg. Chem. 1975, 15, 494. [Google Scholar] [CrossRef]
- Glezakou, V.-A.; Elbert, S.T.; Xantheas, S.S.; Ruedenberg, K. Analysis of Bonding Patterns in the Valence Isoelectronic Series O3, S3, SO2, and OS2 in Terms of Oriented Quasi Atomic Molecular Orbitals. J. Phys. Chem. A 2010, 114, 8923. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, T.T.; Lindqvist, B.A.; Dunning, T.H. Insight into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Bonding in O3 and SO2. J. Phys. Chem. A 2015, 119, 7683. [Google Scholar] [CrossRef] [PubMed]
- Jana, I.; Nandi, D. Kinematic study of—Ion formation from dissociative electron attachment to SO2. Phys. Rev. A 2018, 97, 042706. [Google Scholar] [CrossRef]
- Grabowski, S.; Luger, P.; Buschmann, J.; Schneider, T.; Schirmaister, T.; Sobolev, A.N.; Jayatilaka, D. The Significance of Ionic Bonding in Sulfur Dioxide: Bond Orders from X-ray Diffraction Data. Angew. Chi. Int. Ed. 2012, 51, 6776. [Google Scholar] [CrossRef]
- Anderson, P.W. The Resonating Bond State in LA2CuO4 and Superconductivity. Science 1987, 235, 1196. [Google Scholar] [CrossRef] [PubMed]
- Weber, C. Variational Study of Strongly Correlated Electronic Models. Ph.D. Thesis, EPFL, Lausanne, Switzerland, 2007. [Google Scholar]
- Strak, P.; Sobczak, C.; Krukowski, S. Quantum effects in surface diffusion: Application to diffusion of nitrogen adatoms over GaN(0001) surface. arXiv 2025, arXiv:2501.19079. [Google Scholar] [CrossRef]
- Chadi, D.J. Atomic structure of GaAs(100)-(2x1) and, (2x4) reconstructed surfaces. J. Vac. Sci. Technol. A 1987, 5, 834. [Google Scholar] [CrossRef]
- Pashley, M.D. Electron counting model and its application to island structures on molecular-beam epitaxy grown GaAs(001) and ZnSe(001). Phys. Rev. B 1989, 40, 10481–10487. [Google Scholar] [CrossRef]
- Goddard, W.A. III Improved Quantum Theory of many-Electron Systems. II The Basic method. Phys. Rev. 1967, 157, 81. [Google Scholar] [CrossRef]
- Kane, E.O. Band Structure of Indium Antimonide. J. Pjys. Chem. Solids 1957, 1, 249. [Google Scholar] [CrossRef]
- Mann, J.B. Atomic Structure Calculations, I: Hartree-Fock Energy Results for Elements Hydrogen to Lawrencium; National Technical Information Service: Springfield, VA, USA, 1967.
- Harrison, W.A.; Kraut, E.A. Energies of substitutions and solution in semiconductors. Phys. Rev. B 1988, 37, 8244. [Google Scholar] [CrossRef]
- Bechstedt, F.; Harrison, W.A. Lattice relaxation around substitutional defects in semiconductors. Phys. Rev. B. 1989, 39, 5041. [Google Scholar] [CrossRef]
- Wood, C.; Jena, D. Polarization Effects in Semiconductors; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Strak, P.; Kempisty, P.; Sakowski, K.; Piechota, J.; Grzegory, I.; Monroy, E.; Kaminska, A.; Krukowski, S. Polarization spontaneous and piezo vs polar surfaces: Fundamentals and ab initio calculations. Materials 2025, 18, 1489. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, C.E.; Janotti, A.; Van de Walle, C.G.; Vanderbilt, D. Correct Implementation of Polarization Constant in Wurtzite Materials and Impact on III-Nitrides. Phys. Rev. X 2016, 6, 021038. [Google Scholar] [CrossRef]
- Castro-Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. [Google Scholar] [CrossRef]
- Borysiuk, J.; Soltys, J.; Piechota, J. Stacking sequence dependence of graphene layers on SiC(000)—Experimental and theoretical investigation. J. Appl. Phys. 2011, 109, 093523. [Google Scholar] [CrossRef]
Atoms | |||
---|---|---|---|
N-Al1 | 1.753 | −0.057 | 1.867 |
N-Al2 | 1.707 | −0.018 | 1.743 |
N-Al3 | 1.685 | −0.038 | 1.761 |
N-Al4 | 1.691 | −0.053 | 1.796 |
Atoms | Bond Order—Assessed | Bond Order—Calculated | |
---|---|---|---|
N-Al1 | 0.75 | 0.704 | 1.896 |
N-Al2 | 0.75 | 0.735 | 1.896 |
N-Al3 | 0.75 | 0.718 | 1.896 |
N-Al4 | 0.75 | 0.706 | 1.910 |
Atoms | |||
---|---|---|---|
N-B1 | 1.545 | −0.321 | 2.188 |
N-B2 | 1.409 | −0.468 | 2.346 |
N-B3 | 1.693 | −0.189 | 2.072 |
Atoms | Bond Order—Assessed | Bond Order—Calculated | |
---|---|---|---|
N-B1 | 0.66 | 0.530 | 1.451 |
N-B2 | 0.66 | 0.613 | 1.451 |
N-B3 | 0.66 | 0.450 | 1.451 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strak, P.; Sakowski, K.; Kempisty, P.; Grzegory, I.; Kaminska, A.; Krukowski, S. Ab Initio Elucidation of the Nature of the Bonding of Tetrahedral Nitrides (BN, AlN, GaN, and InN), Hexagonal BN, and Graphene. Materials 2025, 18, 2875. https://doi.org/10.3390/ma18122875
Strak P, Sakowski K, Kempisty P, Grzegory I, Kaminska A, Krukowski S. Ab Initio Elucidation of the Nature of the Bonding of Tetrahedral Nitrides (BN, AlN, GaN, and InN), Hexagonal BN, and Graphene. Materials. 2025; 18(12):2875. https://doi.org/10.3390/ma18122875
Chicago/Turabian StyleStrak, Pawel, Konrad Sakowski, Pawel Kempisty, Izabella Grzegory, Agata Kaminska, and Stanislaw Krukowski. 2025. "Ab Initio Elucidation of the Nature of the Bonding of Tetrahedral Nitrides (BN, AlN, GaN, and InN), Hexagonal BN, and Graphene" Materials 18, no. 12: 2875. https://doi.org/10.3390/ma18122875
APA StyleStrak, P., Sakowski, K., Kempisty, P., Grzegory, I., Kaminska, A., & Krukowski, S. (2025). Ab Initio Elucidation of the Nature of the Bonding of Tetrahedral Nitrides (BN, AlN, GaN, and InN), Hexagonal BN, and Graphene. Materials, 18(12), 2875. https://doi.org/10.3390/ma18122875