Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (126)

Search Parameters:
Keywords = ASFV p72

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3834 KB  
Article
Temporal Dynamics of Cytokine, Leukocyte, and Whole Blood Transcriptome Profiles of Pigs Infected with African Swine Fever Virus
by Daniel W. Madden, Bianca Libanori Artiaga, Jessie D. Trujillo, Patricia Assato, Chester D. McDowell, Isaac Fitz, Taeyong Kwon, Konner Cool, Yonghai Li, Natasha N. Gaudreault, Igor Morozov and Juergen A. Richt
Pathogens 2025, 14(10), 992; https://doi.org/10.3390/pathogens14100992 - 1 Oct 2025
Viewed by 326
Abstract
African swine fever virus (ASFV) is an important transboundary animal pathogen with significant impacts on the global swine industry. Overwhelming proinflammatory responses are a major virulence mechanism for ASFV, but the dynamics of these changes during clinical disease are not completely understood. We [...] Read more.
African swine fever virus (ASFV) is an important transboundary animal pathogen with significant impacts on the global swine industry. Overwhelming proinflammatory responses are a major virulence mechanism for ASFV, but the dynamics of these changes during clinical disease are not completely understood. We constructed a detailed portrait of the innate immune responses during acute African swine fever (ASF) at the cellular, transcriptomic, and cytokine levels. Samples serially obtained from infected piglets show that progression of acute ASF is characterized by rapid increases in plasma type I interferons, TNF-α, IL-12p40, and IL-10, which coincide with the manifestation of clinical disease and viral DNAemia. Lymphocytes and natural killer (NK) cells progressively declined, with fluctuations in B cell, CD8+ T cell, and CD4+/CD8+ T cell populations. Blood monocytes and macrophages were highly variable throughout infection, with an abrupt spike in CD203+ mature macrophages immediately prior to death. Transcriptomic analysis of blood showed downregulation of cellular translation as early as 1 day post-challenge (DPC) and significant upregulation of antiviral immune processes at 5 DPC and 7 DPC, which overlapped with the onset of clinical disease. Together, these results present a detailed delineation of fatal ASF which involves an initial infection and damage of susceptible myeloid cells prior to symptomatic disease characterized by pro-inflammatory immune responses, lymphoid depletion, and clinical deterioration. Full article
(This article belongs to the Special Issue Emergence and Control of African Swine Fever: Second Edition)
Show Figures

Figure 1

15 pages, 2570 KB  
Article
Antibody-Dependent Cellular Cytotoxicity Elicited by the Antibodies Against the E120R Protein of African Swine Fever Virus
by Shengmei Chen, Jing Lan, Zhanhao Lu, Jia Li, Caoyuan Ma, Rui Luo, Qiang Fu, Yuan Sun, Tao Wang and Hua-Ji Qiu
Vaccines 2025, 13(9), 934; https://doi.org/10.3390/vaccines13090934 - 1 Sep 2025
Viewed by 727
Abstract
Background/Objectives: African swine fever (ASF) is a disease of domestic pigs and wild boar caused by African swine fever virus (ASFV), in which infection often leads to high morbidity and mortality. Although subunit and mRNA vaccines based on protective antigens have been explored [...] Read more.
Background/Objectives: African swine fever (ASF) is a disease of domestic pigs and wild boar caused by African swine fever virus (ASFV), in which infection often leads to high morbidity and mortality. Although subunit and mRNA vaccines based on protective antigens have been explored for ASFV, their protective efficacy remains insufficient for practical ASF control, highlighting the need to identify new potential antigens capable of inducing more potent and broadly protective immune responses. Previously, we found that the antibodies against the ASFV E120R protein (pE120R) could significantly inhibit virus replication in primary porcine alveolar macrophages (PAMs). However, it is not yet known whether anti-pE120R antibodies can induce antibody-dependent cellular cytotoxicity (ADCC). Methods: In this study, we analyzed the conservation and immunogenic features of pE120R and established an HEK293T cell line with stable expression of pE120R as target cells (HEK293T-pE120R). Additionally, a co-culture system comprising target cells and peripheral blood mononuclear cells (PBMCs) was established to evaluate the ability of the anti-pE120R antibodies to induce ADCC as measured by lactate dehydrogenase (LDH) release assays. Results: The results showed that pE120R is highly conserved among different ASFV genotypes and contains multiple B-cell and T-cell epitopes. Importantly, LDH release assays demonstrated that anti-pE120R antibodies triggered NK cell-mediated ADCC. Notably, ASFV replication in HEK293T-pE120R cells was not promoted. Conclusions: In summary, pE120R was associated with antibody production in a cytotoxicity assay. The ability of this antigen to induce protective immunity, if any, requires further evaluation in vivo. Full article
(This article belongs to the Special Issue Swine Vaccines and Vaccination)
Show Figures

Figure 1

16 pages, 7630 KB  
Article
African Swine Fever Virus MGF 360-2L Disrupts Host Antiviral Immunity Based on Transcriptomic Analysis
by Taoqing Zhang, Xiaodong Qin, Sujie Dong, Yuanshu Wu, Xiaolan Qi, Jingjing Ren, Yuan Wen, Zhengwang Shi, Tao Feng, Bingjie Sun, Changying Wang and Haixue Zheng
Vaccines 2025, 13(9), 918; https://doi.org/10.3390/vaccines13090918 - 28 Aug 2025
Viewed by 580
Abstract
Background/Objectives: The African swine fever virus (ASFV) multi-gene family (MGF) 360 proteins play critical roles in immune evasion, replication regulation, and virulence determination. Despite substantial advances in this field, the functional roles of many members within this gene family remain to be fully [...] Read more.
Background/Objectives: The African swine fever virus (ASFV) multi-gene family (MGF) 360 proteins play critical roles in immune evasion, replication regulation, and virulence determination. Despite substantial advances in this field, the functional roles of many members within this gene family remain to be fully characterized. Methods: In this study, Transcriptional kinetics analysis indicated that the expression profile of MGF 360-2L was consistent with that of the late marker gene B646L (p72). Transcriptomic profiling identified 13 and 171 differentially expressed genes (DEGs) at 12 and 24 h post-infection (hpi) with ΔMGF 360-2L, respectively. Results: Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that these DEGs were predominantly enriched in Type I interferon (IFN-I) signaling pathways. It is noteworthy that transcriptome analysis further demonstrates that the absence of MGF 360-2L specifically results in the dysregulation of expression of the replication-essential genes E199L and E301R. These findings indicate that MG F360-2L is essential for maintaining the stable expression of these proteins. Conclusions:MGF 360-2L is a late gene that contributes to the precise regulation of viral protein expression and modulates the host immune response during infection. Full article
(This article belongs to the Special Issue African Swine Fever Virus Immunotherapies and Vaccine Development)
Show Figures

Figure 1

11 pages, 761 KB  
Communication
First Report of Triple Viral Co-Infection (PPV, PCV2, PCMV) in Wild Boars in the Western Balkans
by Dimitrije Glišić, Sofija Šolaja, Kukilo Stevan, Vesna Milićević, Miloš Vučićević, Jelena Aleksić and Dajana Davitkov
Pathogens 2025, 14(7), 710; https://doi.org/10.3390/pathogens14070710 - 18 Jul 2025
Viewed by 845
Abstract
Wild boars are recognized reservoirs of numerous viral pathogens, posing a significant risk to domestic pig populations, particularly in areas with poor biosecurity. This study assessed the prevalence and co-infection patterns of porcine circovirus type 2 (PCV2), porcine parvovirus (PPV), porcine cytomegalovirus (PCMV), [...] Read more.
Wild boars are recognized reservoirs of numerous viral pathogens, posing a significant risk to domestic pig populations, particularly in areas with poor biosecurity. This study assessed the prevalence and co-infection patterns of porcine circovirus type 2 (PCV2), porcine parvovirus (PPV), porcine cytomegalovirus (PCMV), African swine fever virus (ASFV), classical swine fever virus (CSFV), and pseudorabies virus (PRV) in wild boars from western Serbia and the Republic of Srpska (Bosnia and Herzegovina). Sixty-six spleen samples from legally hunted wild boars were analyzed by qPCR. All animals were negative for ASFV, CSFV, and PRV. The cumulative prevalence of infection with at least one of the other three viruses was 86.4% (95% CI: 76.2–92.8%). PCMV was detected in 74.2% of samples, PCV2 in 50%, and PPV in 28.8%. Co-infections were common: 42.4% of animals were positive for two viruses, and 12.1% for all three. A statistically significant association was observed between triple co-infection and sex, with higher rates in males. Subadult wild boars showed the highest PCV2 + PCMV co-infection rate (p = 0.0547). These findings highlight the need to expand molecular surveillance, particularly for PCMV, in both wild and domestic pigs, especially in regions reliant on low-biosecurity backyard farming. Full article
(This article belongs to the Special Issue Current Challenges in Veterinary Virology)
Show Figures

Figure 1

12 pages, 3967 KB  
Article
Development and Application of a Multiplex Real-Time TaqMan qPCR Assay for the Simultaneous Detection of African Swine Fever Virus, Classical Swine Fever Virus, Porcine Reproductive and Respiratory Syndrome Virus, Pseudorabies Virus, and Porcine Circovirus Type 2
by Dongdong Yin, Shuangshuang Xu, Yayun Liu, Hao Guo, Mengdie Lan, Lei Yin, Jieru Wang, Yin Dai, Xuehuai Shen, Kai Zhan and Xiaocheng Pan
Microorganisms 2025, 13(7), 1573; https://doi.org/10.3390/microorganisms13071573 - 3 Jul 2025
Viewed by 777
Abstract
Since its emergence in China in 2018, African swine fever virus (ASFV) has posed a severe threat to the pig farming industry due to its high transmissibility and mortality rate. The clinical signs of ASFV infection often overlap with those caused by other [...] Read more.
Since its emergence in China in 2018, African swine fever virus (ASFV) has posed a severe threat to the pig farming industry due to its high transmissibility and mortality rate. The clinical signs of ASFV infection often overlap with those caused by other swine viruses such as classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV), pseudorabies virus (PRV), and porcine circovirus type 2 (PCV2), making timely and precise diagnosis a considerable challenge. To address this, we established a TaqMan-based multiplex real-time quantitative PCR (qPCR) assay capable of simultaneously detecting ASFV, CSFV, PRRSV, PRV, and PCV2. Specific primer-probe sets were developed targeting conserved genomic regions: the ASFV P72 gene, CSFV 5’UTR region, PRRSV ORF6, PCV2 cap gene, and PRV gB gene. After thorough optimization, the assay demonstrated robust analytical performance, exhibiting strong target specificity with no cross-detection of non-target pathogens. The detection threshold was determined to be 10 copies/μL per virus, indicating high assay sensitivity. Repeatability analysis revealed low variability, with intra- and inter-assay coefficient of variation values remaining below 2.3%. When applied to 95 clinical samples, the multiplex assay yielded results that were fully consistent with those obtained using commercially available singleplex qPCR kits. In conclusion, the multiplex TaqMan qPCR method developed in this study is characterized by high specificity, sensitivity, and reproducibility. It provides a reliable and efficient diagnostic tool for the simultaneous detection and differential diagnosis of ASFV and other clinically similar viral infections in swine, thereby offering robust technical support for swine disease surveillance and control. Full article
(This article belongs to the Special Issue Viral Infection on Swine: Pathogenesis, Diagnosis and Control)
Show Figures

Figure 1

17 pages, 6059 KB  
Article
Parallel and Visual Detections of ASFV by CRISPR-Cas12a and CRISPR-Cas13a Systems Targeting the Viral S273R Gene
by Hongjian Han, Desheng Zhang, Weilin Hao, Anjing Liu, Nengwen Xia, Meng Cui, Jia Luo, Sen Jiang, Wanglong Zheng, Nanhua Chen, Jinguo Gu, Jianfa Bai and Jianzhong Zhu
Animals 2025, 15(13), 1902; https://doi.org/10.3390/ani15131902 - 27 Jun 2025
Viewed by 646
Abstract
African swine fever virus (ASFV) causes a highly contagious and lethal hemorrhagic disease and significantly threatens the pig industry. There is no commercially effective vaccine available currently, making the detection of ASFV critical for control and prevention. Previously, we established the CRISPR-LbCas12a and [...] Read more.
African swine fever virus (ASFV) causes a highly contagious and lethal hemorrhagic disease and significantly threatens the pig industry. There is no commercially effective vaccine available currently, making the detection of ASFV critical for control and prevention. Previously, we established the CRISPR-LbCas12a and LwCRSIRP-Cas13a visual detections of ASFV, separately, targeting the structural p17 gene D117L. In this study, we performed the parallel detections of ASFV based on the conserved viral protease gene S273R using CRISPR-LbCas12a and CRISPR-LbuCas13a systems. Our results showed that both systems are able to specifically detect ASFV as low as two copies of the S273R gene, and effectively detect clinical samples with minimal DNA purification. The work promotes CRISPR-Cas systems for the application of on-site detection in the field. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

16 pages, 1065 KB  
Article
First Serologic Analysis of Antibodies Against African Swine Fever Virus Detected in Domestic Pig Farms in South Korea from 2019 to 2024
by Seong-Keun Hong, Mugyeom Moon, Ki-Hyun Cho, Hae-Eun Kang, Jong-Soo Lee and Yeon-Hee Kim
Pathogens 2025, 14(6), 581; https://doi.org/10.3390/pathogens14060581 - 11 Jun 2025
Viewed by 1932
Abstract
Background: African swine fever (ASF) is a crucial socioeconomic setback to South Korea’s swine industry. This study aimed to determine seropositivity for ASF virus (ASFV) in pigs that appeared to be infected on farms with reported ASF outbreaks. Methods: A total of 2232 [...] Read more.
Background: African swine fever (ASF) is a crucial socioeconomic setback to South Korea’s swine industry. This study aimed to determine seropositivity for ASF virus (ASFV) in pigs that appeared to be infected on farms with reported ASF outbreaks. Methods: A total of 2232 sera from ASF outbreaks (2019–2024) in South Korea were collected. Two enzyme-linked immunosorbent assay (ELISA) kits were used to detect ASFV antibodies, and an immunoperoxidase test (IPT) was used as a confirmatory test following the method recommended by the World Organisation for Animal Health in the Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Also, spatial clustering was identified using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) model to understand ASF hotspots in the wild boar population and assess the spatial relationship between the hotspots and ASF antibody-positive domestic pig farms. Results: Antibodies were first detected in Hwacheon in 2020, but by 2024, only 1.43% of pigs had detectable antibodies against ASFV. Although this percentage is still low, the number of antibody-positive pigs is gradually increasing. Additionally, 32 positive samples were found from nine pig farms with outbreaks, and these samples were confirmed positive in both the two ELISA tests and the IPT. The highest seropositivity was recorded at the finishing stage of pig production. When compared to the confirmatory IPT, both blocking and competition ELISA demonstrated high diagnostic sensitivities. The statistical association between ASF antibody-positive farms and wild boars were analyzed using Fisher’s exact test, yielding a significant p-value of 0.007. This indicates a strong correlation, as eight out of nine ASF-seropositive farms were located within hotspots that were significantly associated. Conclusions: Our findings provide valuable insights into ASFV antibody detection in South Korea and demonstrate a statistical association between farms housing pigs with ASFV antibodies and hotspots of ASFV-infected wild boars. Confirmatory tests, such as the IPT, are needed. These insights will contribute to the improvement of surveillance and biosecurity measures for swine farms. Full article
(This article belongs to the Special Issue Diagnostics of Emerging and Re-Emerging Pathogens)
Show Figures

Figure 1

11 pages, 4768 KB  
Article
Identification of a Conserved Linear Epitope on the p54 Protein of African Swine Fever Virus
by Kuijing He, Yue Wu, Zhipeng Su, Yue Zeng, Guishan Ye, Qi Wu, Long Li and Anding Zhang
Viruses 2025, 17(6), 823; https://doi.org/10.3390/v17060823 - 7 Jun 2025
Viewed by 872
Abstract
African swine fever virus (ASFV) is a highly virulent pathogen that causes nearly 100% mortality in acute infections and poses persistent risks. Effective containment of ASFV outbreaks requires rapid and reliable diagnostic tools. The p54 protein, a key structural component of ASFV, has [...] Read more.
African swine fever virus (ASFV) is a highly virulent pathogen that causes nearly 100% mortality in acute infections and poses persistent risks. Effective containment of ASFV outbreaks requires rapid and reliable diagnostic tools. The p54 protein, a key structural component of ASFV, has emerged as an important target for serological detection. Herein, the recombinant p54 protein (amino acids 53–184) was expressed in Escherichia coli, and three mouse monoclonal antibodies (mAbs) (IgG1/kappa subtype) were developed. Among these mAbs, the mAb 1F9 specifically recognized the B-cell epitope 66IQFINPYQDQQ76, which is conserved across different genotypes of ASFV, suggesting that the epitope may serve as a valuable target for serological detection of ASFV. Structural modeling analysis revealed that this epitope is surface-exposed on the p54 protein, with 67Gln and 68Phe identified as critical residues for 1F9 binding. Moreover, a blocking ELISA based on the mAb 1F9 was established for detecting ASFV-specific antibodies in clinical serum samples, achieving a coincidence rate exceeding 95%. These findings demonstrate that mAb 1F9, targeting a conserved and accessible region of p54, represents a valuable tool for ASFV serodiagnosis, surveillance, and outbreak management. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

18 pages, 2849 KB  
Article
A Multiepitope Nanovaccine Candidate Adjuvanted with Porcine Ferritin Scaffold for African Swine Fever Virus
by Lidan Sun, Yuping Ding, Jingqi Niu, Yingjun Li and Zeliang Chen
Vaccines 2025, 13(6), 585; https://doi.org/10.3390/vaccines13060585 - 30 May 2025
Cited by 1 | Viewed by 767
Abstract
Background: African swine fever (ASF) is a highly contagious acute febrile disease with a near 100% mortality rate. There are currently no safe and effective vaccines for this disease. Cellular immunity plays an important role in the process of anti-viral, activating an [...] Read more.
Background: African swine fever (ASF) is a highly contagious acute febrile disease with a near 100% mortality rate. There are currently no safe and effective vaccines for this disease. Cellular immunity plays an important role in the process of anti-viral, activating an effective cellular immune response is a prerequisite for the effectiveness of the vaccine. Methods: To effectively activate cellular immune responses, 133 immunodominant T cell epitopes (TEPs) were identified and synthesized into ten recombinant multi-epitope proteins (MEPs). These MEPs were subsequently conjugated to porcine ferritin (pFTH1) to generate MEPs-pFTH1 nanoparticles. Animal experiments were conducted to evaluate their immunogenicity and biocompatibility. Results: Animal experiments demonstrated that both MEPs and MEPs-pFTH1 nanoparticles induced significant humoral and cellular immune responses. Compared to MEPs monomers, the MEPs-pFTH1 nanoparticles induced a 10- to 100-fold increase in IgG and IgG2a antibody titers (p < 0.05), as well as a significantly higher number of IFN-γ+ cells. Serum from pigs immunized with MEPs-pFTH1 nanoparticles can significantly inhibit ASFV replication. Conclusions: Our novel self-assembled porcine ferritin nanovaccine candidate can induce strong humoral and cellular immune responses in swine and mice that effectively inhibit ASFV replication. Therefore, the nanovaccine is a highly biocompatible and safe candidate vaccine for ASF that warrants further investigation, such as conducting animal challenge experiments to evaluate the effectiveness of the vaccine. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

23 pages, 3848 KB  
Article
Cloning and Expression of a Truncated Form of the p72 Protein of the African Swine Fever Virus (ASFV) for Application in an Efficient Indirect ELISA System
by Julieta Sandra Cuevas-Romero, Perla Lucero Zavala-Ocampo, Sonia Pina-Pedrero, Llilianne Ganges, Adriana Muñoz-Aguilera, José Bryan García-Cambrón, Fernando Rodriguez, Aruna Ambagala and José Luis Cerriteño-Sánchez
Pathogens 2025, 14(6), 542; https://doi.org/10.3390/pathogens14060542 - 29 May 2025
Viewed by 1429
Abstract
African swine fever (ASF) is a disease that affects both domestic and wild swine. It was recently reported in the Dominican Republic and Haiti (2021), representing a substantial risk to America. The goal of this study was to produce a truncated form of [...] Read more.
African swine fever (ASF) is a disease that affects both domestic and wild swine. It was recently reported in the Dominican Republic and Haiti (2021), representing a substantial risk to America. The goal of this study was to produce a truncated form of the ASF-p72 recombinant protein based on the ASF strain genotype II (Georgia 2017) as well as to develop and validate a sensitive and specific ASF indirect-ELISA (iELISA) for early detection of ASF. The truncated ASF-p72 recombinant protein was successfully expressed in E. coli BL21/DE3 cells using the pET-SUMO plasmid. Bioinformatics analysis showed 100% homology among the new isolates of ASFV from genotype II. The ASF-p72-truncated protein was used to develop an iELISA, which had a high sensitivity (88%) and strong specificity (97%); the concordance index kappa was K = 0.872, indicating nearly perfect agreement compared to the WOAH confirmatory immunoperoxidase test. The validation results utilizing the reference sera panel from the OIE-ASF Reference Laboratory show the excellent detection capabilities of ASF antibodies up to a 1:1000 serum dilution. The inter-assay coefficient of variation (CV 10.4%) and intra-assay CV (2.8%) data show that the assay is precise and reproducible. This biotechnology advancement can be used to conduct future epidemiological research for ASF surveillance in ASF-free American countries. Full article
Show Figures

Graphical abstract

15 pages, 10062 KB  
Article
A Practical Framework for ASFV Disinfectant Evaluation: Differentiating Cytopathic Effects from Cytotoxicity via Integrated Analytical Methods
by Sok Song, Kyu-Sik Shin, Su-Jeong Kim, Yong Yi Joo, Bokhee Han, So-Hee Park, Hyun-Ok Ku, Wooseog Jeong and Choi-Kyu Park
Pathogens 2025, 14(5), 451; https://doi.org/10.3390/pathogens14050451 - 4 May 2025
Viewed by 1239
Abstract
African swine fever virus (ASFV) is a highly virulent DNA virus that has spread globally since its introduction into Georgia in 2007, causing substantial economic losses in the swine industry. In the absence of an effective vaccine, chemical disinfection remains a key strategy [...] Read more.
African swine fever virus (ASFV) is a highly virulent DNA virus that has spread globally since its introduction into Georgia in 2007, causing substantial economic losses in the swine industry. In the absence of an effective vaccine, chemical disinfection remains a key strategy for disease control. However, in cell-based disinfectant efficacy testing, distinguishing between disinfectant-induced cytotoxicity and virus-induced cytopathic effects (CPEs) remains a major challenge, leading to the potential misinterpretation of results. To address this, we developed a multi-step analytical framework to differentiate CPEs from cytotoxicity using a Vero cell-adapted ASFV strain. Virkon® S was tested at three dilutions—375×, 275× (manufacturer-recommended), and 175×—and evaluated through CPE observation, lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and antigen detection via lateral flow immunoassay (p30) and immunofluorescence (p54). Notably, the 375× dilution achieved effective viral inactivation with significantly lower cytotoxicity, demonstrating that this framework can facilitate a more refined determination of disinfectant working dilutions. Furthermore, increased p30 signals after disinfection and the observation of lower cytotoxicity in virus-plus-disinfectant groups compared to disinfectant-only groups highlight the complexity of virus-disinfectant interactions and the potential for misinterpretation. This study provides a standardized and interpretable strategy for assessing ASFV disinfectant efficacy and offers a practical basis for evaluating other enveloped viruses in future disinfection studies. Full article
Show Figures

Figure 1

15 pages, 4274 KB  
Article
The Novel Antigenic Epitopes of African Swine Fever Virus Inner Membrane p54 Protein Revealed by Monoclonal Antibodies
by Jiajia Zhang, Kaili Zhang, Shaohua Sun, Ping He, Dafu Deng, Hanrong Lv, Mingwang Xie, Pingping Zhang, Wanglong Zheng, Nanhua Chen, Jianfa Bai and Jianzhong Zhu
Animals 2025, 15(9), 1296; https://doi.org/10.3390/ani15091296 - 30 Apr 2025
Cited by 1 | Viewed by 835
Abstract
African swine fever (ASF) is caused by the African swine fever virus (ASFV); infection in domestic pigs and wild boars leads to a highly contagious, hemorrhagic disease. The p54 protein is encoded by the ASFV E183L gene and is an important structural protein [...] Read more.
African swine fever (ASF) is caused by the African swine fever virus (ASFV); infection in domestic pigs and wild boars leads to a highly contagious, hemorrhagic disease. The p54 protein is encoded by the ASFV E183L gene and is an important structural protein located on the inner envelope of the virus. It is involved in processes of virus assembly, apoptosis induction, and neutralizing antibody production. In this study, three specific monoclonal antibodies (mAbs) against ASFV p54 protein were generated, namely 6B11, 3E3, and 3C10, from mice who were immunized with recombinant prokaryotic p54-truncated protein. Three novel linear B cell epitopes, recognized by the mAbs, were revealed: 60AAIEEEDIQFINP72, 128MATGGPAAAPAAASAPAHPAE148, and 163MSAIENLRQRNTY175. The epitopes 60AAIEEEDIQFINP72 and 163MSAIENLRQRNTY175 were highly conserved in genotype I and II ASFV strains. In addition, the epitope peptide ELISA can be used for the detection of ASFV antibodies. Our work provides new insights for p54 antigenicity and an alternative tool for serological diagnosis of ASF. Full article
Show Figures

Figure 1

19 pages, 3320 KB  
Article
Generation of Chimeric African Swine Fever Viruses Through In Vitro and In Vivo Intergenotypic Gene Complementation
by Tomoya Kitamura, Kentaro Masujin, Mitsutaka Ikezawa, Aruna Ambagala and Takehiro Kokuho
Vaccines 2025, 13(5), 462; https://doi.org/10.3390/vaccines13050462 - 25 Apr 2025
Viewed by 1233
Abstract
Background/Objectives: African swine fever (ASF), a fatal febrile hemorrhagic disease in domestic pigs and Eurasian wild boars, is caused by ASF virus (ASFV). ASF continues to spread across the globe, causing a significant impact on the world’s pig industry. Recently, highly virulent [...] Read more.
Background/Objectives: African swine fever (ASF), a fatal febrile hemorrhagic disease in domestic pigs and Eurasian wild boars, is caused by ASF virus (ASFV). ASF continues to spread across the globe, causing a significant impact on the world’s pig industry. Recently, highly virulent chimeric ASFV (chASFV) strains with recombined genomes of the p72 genotype I and II viruses have been reported in China, Vietnam and Russia. Methods: In order to understand the propensity of ASFV genome for recombination, we attempted to experimentally generate chASFVs both in vitro and in vivo employing two distinct attenuated ASFV strains: OUR T88/3 (genotype I) and AQSΔB119L (genotype II). Results: When IPKM cells were co-infected with ASFV OUR T88/3 and AQSΔB119L strains, three genetically distinct chASFV emerged. When pigs were inoculated with the individual chASFV isolates, all pigs developed acute ASF. When four pigs were co-infected with ASFV OUR T88/3 and AQSΔB119L, all of them developed acute ASF and died or were euthanized. Three chASFV strains were successfully isolated from splenic homogenates from each pig. Conclusions: Our research indicates that genotype I and II chASFV with diverse genomes can be easily generated experimentally both in vitro and in vivo. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

16 pages, 4900 KB  
Article
Genetic Profiles of Ten African Swine Fever Virus Strains from Outbreaks in Select Provinces of Luzon, Visayas, and Mindanao, Philippines, Between 2021 and 2023
by Andrew D. Montecillo, Zyne K. Baybay, Jimwel Bryan Christopher Ferrer, Wreahlen Cariaso, Airish Pantua, John Paulo Jose, Rachel Madera, Jishu Shi, Karla Cristine Doysabas, Alan Dargantes, Kassey Alsylle T. Dargantes, Anna Rochelle A. Boongaling, Alfredo P. Manglicmot, Lucille C. Villegas and Homer D. Pantua
Viruses 2025, 17(4), 588; https://doi.org/10.3390/v17040588 - 21 Apr 2025
Viewed by 1762
Abstract
An African Swine Fever (ASF) outbreak was first recorded in the Philippines in July 2019. Since then, the disease has spread across provinces in Luzon, Visayas, and Mindanao, causing severe economic consequences for the country’s swine industry. Here, we report the genome sequencing [...] Read more.
An African Swine Fever (ASF) outbreak was first recorded in the Philippines in July 2019. Since then, the disease has spread across provinces in Luzon, Visayas, and Mindanao, causing severe economic consequences for the country’s swine industry. Here, we report the genome sequencing of ASF virus strains from outbreaks in several provinces of the Philippines between 2021 and 2023, using a long-read tiled amplicon sequencing approach. The coding-complete genomes generated ranged from 187,609 to 189,540 bp in length, with GC contents of 38.4% to 38.5%. Notably, a strain from the Bataan province had a 1.9 kb deletion at the 5′-end, affecting several coding regions. The strains were characterized using 13 genes and regions; namely the B646L gene, the CD2v serogroup, the central variable region (CVR) of the B602L gene, the intergenic region (IGR) between the I73R and I329L genes, the IGR between A179L and A137R, O174L, K145R, Bt/Sj, J268L, and ECO2, the multigene family (MGF) 505-5R, and the MGF 505-9R and 10R regions. The ASFV strains were mostly related to Asian and European p72 genotype II strains. Genetic profiling provides valuable information on the diversity of local strains of ASFV in the Philippines, which are useful for epidemiology, diagnostics, and vaccine development. Full article
(This article belongs to the Collection African Swine Fever Virus (ASFV))
Show Figures

Figure 1

18 pages, 1968 KB  
Article
A Novel Prototype African Swine Fever Virus DIVA (Differentiation Between Infected and Vaccinated Animals) Serological Assay Based on the Detection of Antibodies Against the pEP153R, eGFP, and p72 Proteins
by Gabriela González-García, Carmina Gallardo, Mercedes Montón, Sandra Barroso-Arévalo, Nadia Casado, José Ángel Barasona, José Manuel Sánchez-Vizcaíno, Ángel Venteo, Patricia Sastre and Paloma Rueda
Vaccines 2025, 13(3), 211; https://doi.org/10.3390/vaccines13030211 - 20 Feb 2025
Cited by 1 | Viewed by 1560
Abstract
Background/Objectives: African Swine Fever (ASF) is one of the most significant infectious diseases affecting both domestic pig and wild boar populations, leading to substantial economic and biosanitary consequences. In Europe, disease management relies on stringent biosecurity measures and surveillance through diagnosis, highlighting the [...] Read more.
Background/Objectives: African Swine Fever (ASF) is one of the most significant infectious diseases affecting both domestic pig and wild boar populations, leading to substantial economic and biosanitary consequences. In Europe, disease management relies on stringent biosecurity measures and surveillance through diagnosis, highlighting the urgent need for an effective and safe vaccine for ASF control. In this context, the VACDIVA project has generated several promising vaccine candidates, including those with the EP153R gene deleted and replaced by the eGFP reporter gene. Methods: In this study, pEP153R and eGFP proteins were produced using recombinant technology and demonstrated their antigenicity and DIVA capability through indirect ELISA. Additionally, a prototype serological DIVA test was designed and developed. The assay is based on the detection of antibodies against both DIVA antigens and the well-established immunogenic p72 protein. Results: This preliminary DIVA diagnostic assay complements vaccine candidates based on a genotype II ASFV strain, featuring the deletion of the EP153R gene and/or the insertion of the eGFP reporter gene, exemplified by the Lv17/WB/Rie1-∆CD vaccine candidate. Conclusions: This approach could potentially improve surveillance during prospective vaccination campaigns. Full article
(This article belongs to the Special Issue Vaccine Development for Swine Viral Pathogens)
Show Figures

Figure 1

Back to TopTop