Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,595)

Search Parameters:
Keywords = A630-420H steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4891 KiB  
Article
Electrochemical Behavior of Thermomechanically Processed UNS S41003 Steel in Acidic Chloride Media: Assessing Martensitic Transformation Effects
by Carlos H. B. Queiroz, Davi A. Marques, Otílio B. F. Diógenes, Daniel de C. Girão, Roberta B. Vasques, Adolfo K. do N. Viana, Gemma Fargas, Mauro A. C. Florez and Walney S. Araújo
Metals 2025, 15(8), 880; https://doi.org/10.3390/met15080880 - 7 Aug 2025
Abstract
UNS S41003 is a low-cost, low-carbon ferritic stainless steel that exhibits moderate corrosion resistance but limited mechanical performance. This study evaluates the electrochemical behavior of untreated and thermomechanically treated UNS S41003 samples. Corrosion tests were conducted in acidic electrolytes with varying pH to [...] Read more.
UNS S41003 is a low-cost, low-carbon ferritic stainless steel that exhibits moderate corrosion resistance but limited mechanical performance. This study evaluates the electrochemical behavior of untreated and thermomechanically treated UNS S41003 samples. Corrosion tests were conducted in acidic electrolytes with varying pH to simulate aggressive environments relevant to industrial and structural applications where exposure to acidic media and corrosive pollutants occurs. Potentiodynamic polarization curves for all samples displayed passive regions typically associated with protective oxide film formation; however, localized pitting corrosion was detected post-test. Electrochemical impedance spectroscopy indicated a marked decrease in corrosion resistance as pH decreased. The corrosion resistance of the treated alloy remained comparable to that of the untreated condition, indicating that thermomechanical processing did not detrimentally affect passivity or corrosion performance under the tested conditions. The literature suggests that the applied treatment enhances mechanical properties, supporting the potential use of this alloy in structural components subjected to acidic environments requiring a balance of mechanical strength and corrosion resistance. Full article
(This article belongs to the Special Issue Corrosion Behavior of Alloys in Water Environments)
Show Figures

Figure 1

14 pages, 4458 KiB  
Article
The Effect of Crevice Structure on Corrosion Behavior of P110 Carbon Steel in a Carbonated Simulated Concrete Environment
by Fanghai Ling, Chen Li, Hailin Guo and Yong Xiang
Coatings 2025, 15(8), 919; https://doi.org/10.3390/coatings15080919 - 6 Aug 2025
Abstract
This study systematically investigated the corrosion behavior of P110 pipeline steel in simulated carbonated concrete environments through a combination of electrochemical testing and multiphysics simulation, with particular focus on revealing the evolution mechanisms of corrosion product deposition and ion concentration distribution under half [...] Read more.
This study systematically investigated the corrosion behavior of P110 pipeline steel in simulated carbonated concrete environments through a combination of electrochemical testing and multiphysics simulation, with particular focus on revealing the evolution mechanisms of corrosion product deposition and ion concentration distribution under half crevice structures, providing new insights into localized corrosion in concealed areas. Experimental results showed that no significant corrosion occurred on the P110 steel surface in uncarbonated simulated pore solution. Conversely, the half crevice structure significantly promoted the development of localized corrosion in carbonated simulated pore solution, with the most severe corrosion and substantial accumulation of corrosion products observed at the crevice mouth region. COMSOL Multiphysics simulations demonstrated that this phenomenon was primarily attributed to local enrichment of Cl and H+ ions, leading to peak corrosion current density, and directional migration of Fe2+ ions toward the crevice mouth, causing preferential deposition of corrosion products at this location. This “electrochemical acceleration-corrosion product deposition” multiphysics coupling analysis of corrosion product deposition patterns within crevices represents a new perspective not captured by traditional crevice corrosion models. The established ion migration-corrosion product deposition model provides new theoretical foundations for understanding crevice corrosion mechanisms and predicting the service life of buried concrete pipelines. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Graphical abstract

12 pages, 4963 KiB  
Article
Effect of Bias Voltage and Cr/Al Content on the Mechanical and Scratch Resistance Properties of CrAlN Coatings Deposited by DC Magnetron Sputtering
by Shahnawaz Alam, Zuhair M. Gasem, Nestor K. Ankah and Akbar Niaz
J. Manuf. Mater. Process. 2025, 9(8), 264; https://doi.org/10.3390/jmmp9080264 - 6 Aug 2025
Abstract
Chromium–aluminum nitride (CrAlN) coatings were deposited on polished H13 tool steel substrates using direct current (DC) magnetron sputtering. The Cr/Al composition in the target was varied by inserting either four or eight chromium (Cr) plugs into cavities machined into an aluminum (Al) plate [...] Read more.
Chromium–aluminum nitride (CrAlN) coatings were deposited on polished H13 tool steel substrates using direct current (DC) magnetron sputtering. The Cr/Al composition in the target was varied by inserting either four or eight chromium (Cr) plugs into cavities machined into an aluminum (Al) plate target. Nitrogen was introduced as a reactive gas to facilitate the formation of the nitride phase. Coatings were deposited at substrate bias voltages of −30 V, −50 V, and −60 V to study the combined effects of composition and ion energy on coating properties. Compositional analysis of coatings deposited at a −50 V bias revealed Cr/Al ratios of approximately 0.8 and 1.7 for the 4- and 8-plug configurations, respectively. This increase in the Cr/Al ratio led to a 2.6-fold improvement in coating hardness. Coatings produced using the eight-Cr-plug target exhibited a nearly linear increase in hardness with increasing substrate bias voltage. Cross-sectional scanning electron microscopy revealed a uniform bilayer structure consisting of an approximately 0.5 µm metal interlayer beneath a 2–3 µm CrAlN coating. Surface morphology analysis indicated the presence of coarse microdroplets in coatings with the lower Cr/Al ratio. These microdroplets were significantly suppressed in coatings with higher Cr/Al content, especially at increased bias voltages. This suppression is likely due to enhanced ion bombardment associated with the increased Cr content, attributed to Cr’s relatively higher atomic mass compared to Al. Coatings with lower hardness exhibited greater scratch resistance, likely due to the influence of residual compressive stresses. The findings highlight the critical role of both Cr/Al content and substrate bias in tailoring the tribo-mechanical performance of PVD CrAlN coatings for wear-resistant applications. Full article
Show Figures

Figure 1

10 pages, 782 KiB  
Article
Color Stability of Digital and Conventional Maxillofacial Silicone Elastomers Mixed with Nano-Sized Antimicrobials: An In Vitro Study
by Muhanad M. Hatamleh
Prosthesis 2025, 7(4), 96; https://doi.org/10.3390/prosthesis7040096 - 5 Aug 2025
Viewed by 49
Abstract
Background/Objectives: Maxillofacial silicone prostheses’ long-term color stability remains a challenge. This study aimed to evaluate and compare the color stability of conventional and digital maxillofacial silicone elastomers mixed with nano-sized antimicrobial additives (ZnO nanoparticles and chlorhexidine salt-CHX) at various concentrations over a [...] Read more.
Background/Objectives: Maxillofacial silicone prostheses’ long-term color stability remains a challenge. This study aimed to evaluate and compare the color stability of conventional and digital maxillofacial silicone elastomers mixed with nano-sized antimicrobial additives (ZnO nanoparticles and chlorhexidine salt-CHX) at various concentrations over a 10-week period. Methods: A total of nine groups (n = 10) of maxillofacial silicone elastomers were prepared. These included a control group (no additives), conventionally pigmented silicone, digitally pigmented silicone (Spectromatch system), and silicone mixed with ZnO or CHX at 1%, 3%, and 5% by weight. Specimens were fabricated in steel molds and cured at 100 °C for 1 h. Color measurements were performed at baseline and after 1, 4, 6, and 10 weeks using a Minolta Chroma Meter (CIELAB system, ΔE00 formula). Data were analyzed using two-way ANOVA and Tukey HSD post hoc tests (α = 0.05). Results: Color changes (ΔE00) ranged from 0.74 to 2.83 across all groups. The conventional pigmented silicone group showed the highest color difference (ΔE00 = 2.83), while the lowest was observed in the ZnO 1% group (ΔE00 = 0.74). Digital silicone and all antimicrobial-modified groups exhibited acceptable color stability (ΔE00 < 3.1). Time significantly affected color difference, with the largest change occurring during the first four weeks (p < 0.05), followed by stabilization. Regression analysis confirmed high color stability over time for all groups except the conventional pigmented group. Conclusions: This is one of the first studies to directly compare digital and conventional pigmentation methods combined with nano-antimicrobials in maxillofacial silicones. Maxillofacial silicone elastomers mixed with up to 5% ZnO or CHX maintained acceptable color stability over 10 weeks. Digital pigmentation is similar to conventional methods. The incorporation of nano-antimicrobials offers significant microbial resistance and improved color retention. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Figure 1

11 pages, 1539 KiB  
Article
Heat Exchange and Flow Resistance in a Heat Exchanger Based on a Minimal Surface of the Gyroid Type—Results of Experimental Studies
by Krzysztof Dutkowski, Marcin Kruzel and Marcin Walczak
Energies 2025, 18(15), 4134; https://doi.org/10.3390/en18154134 - 4 Aug 2025
Viewed by 112
Abstract
The gyroid minimal surface is one type of triply periodic minimal surface (TPMS). TPMS is a minimal surface replicated in the three main directions of the Cartesian coordinate system. The minimal surface is a surface stretched between two objects, known as the smallest [...] Read more.
The gyroid minimal surface is one type of triply periodic minimal surface (TPMS). TPMS is a minimal surface replicated in the three main directions of the Cartesian coordinate system. The minimal surface is a surface stretched between two objects, known as the smallest possible area (e.g., a soap bubble with a saddle shape stretched between two parallel circles). The complicated shape of the TPMS makes its production possible only by additive methods (3D printing). This article presents the results of experimental studies on heat transfer and flow resistance in a heat exchanger made of stainless steel. The heat exchange surface, a TPMS gyroid, separates two working media: hot and cold water. The water flow rate was varied in the range from 8 kg/h to 25 kg/h (Re = 246–1171). The water temperature at the inlet to the exchanger was maintained at a constant level of 8.8 ± 0.3 °C and 49.5 ± 0.5 °C for cold and hot water, respectively. The effect of water flow rate on the change in its temperature, the heat output of the exchanger, the average heat transfer coefficient, pressure drop, and overall resistance factor was presented. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

20 pages, 7843 KiB  
Article
Effect of Ageing on a Novel Cobalt-Free Precipitation-Hardenable Martensitic Alloy Produced by SLM: Mechanical, Tribological and Corrosion Behaviour
by Inés Pérez-Gonzalo, Florentino Alvarez-Antolin, Alejandro González-Pociño and Luis Borja Peral-Martinez
J. Manuf. Mater. Process. 2025, 9(8), 261; https://doi.org/10.3390/jmmp9080261 - 4 Aug 2025
Viewed by 220
Abstract
This study investigates the mechanical, tribological, and electrochemical behaviour of a novel precipitation-hardenable martensitic alloy produced by selective laser melting (SLM). The alloy was specifically engineered with an optimised composition, free from cobalt and molybdenum, and featuring reduced nickel content (7 wt.%) and [...] Read more.
This study investigates the mechanical, tribological, and electrochemical behaviour of a novel precipitation-hardenable martensitic alloy produced by selective laser melting (SLM). The alloy was specifically engineered with an optimised composition, free from cobalt and molybdenum, and featuring reduced nickel content (7 wt.%) and 8 wt.% chromium. It has been developed as a cost-effective and sustainable alternative to conventional maraging steels, while maintaining high mechanical strength and a refined microstructure tailored to the steep thermal gradients inherent to the SLM process. Several ageing heat treatments were assessed to evaluate their influence on microstructure, hardness, tensile strength, retained austenite content, dislocation density, as well as wear behaviour (pin-on-disc test) and corrosion resistance (polarisation curves in 3.5%NaCl). The results indicate that ageing at 540 °C for 2 h offers an optimal combination of hardness (550–560 HV), tensile strength (~1700 MPa), microstructural stability, and wear resistance, with a 90% improvement compared to the as-built condition. In contrast, ageing at 600 °C for 1 h enhances ductility and corrosion resistance (Rp = 462.2 kΩ; Ecorr = –111.8 mV), at the expense of a higher fraction of reverted austenite (~34%) and reduced hardness (450 HV). This study demonstrates that the mechanical, surface, and electrochemical performance of this novel SLM-produced alloy can be effectively tailored through controlled thermal treatments, offering promising opportunities for demanding applications requiring a customised balance of strength, durability, and corrosion behaviour. Full article
Show Figures

Graphical abstract

25 pages, 15569 KiB  
Article
Studies on the Chemical Etching and Corrosion Resistance of Ultrathin Laminated Alumina/Titania Coatings
by Ivan Netšipailo, Lauri Aarik, Jekaterina Kozlova, Aivar Tarre, Maido Merisalu, Kaisa Aab, Hugo Mändar, Peeter Ritslaid and Väino Sammelselg
Corros. Mater. Degrad. 2025, 6(3), 36; https://doi.org/10.3390/cmd6030036 - 2 Aug 2025
Viewed by 245
Abstract
We investigated the protective properties of ultrathin laminated coatings, comprising three pairs of Al2O3 and TiO2 sublayers with coating thicknesses < 150 nm, deposited on AISI 310 stainless steel (SS) and Si (100) substrates at 80–500 °C by atomic [...] Read more.
We investigated the protective properties of ultrathin laminated coatings, comprising three pairs of Al2O3 and TiO2 sublayers with coating thicknesses < 150 nm, deposited on AISI 310 stainless steel (SS) and Si (100) substrates at 80–500 °C by atomic layer deposition. The coatings were chemically etched and subjected to corrosion, ultrasound, and thermal shock tests. The coating etching resistance efficiency (Re) was determined by measuring via XRF the change in the coating sublayer mass thickness after etching in hot 80% H2SO4. The maximum Re values of ≥98% for both alumina and titania sublayers were obtained for the laminates deposited at 250–400 °C on both substrates. In these coatings, the titania sublayers were crystalline. The lowest Re values of 15% and 50% for the alumina and titania sublayers, respectively, were measured for laminate grown at 80 °C on silicon. The coatings deposited at 160–200 °C demonstrated a delay in the increase of Re values, attributed to the changes in the titania sublayers before full crystallization. Coatings grown at higher temperatures were also more resistant to ultrasound and liquid nitrogen treatments. In contrast, coatings deposited at 125 °C on SS had better corrosion protection, as demonstrated via electrochemical impedance spectroscopy and a standard immersion test in FeCl3 solution. Full article
Show Figures

Graphical abstract

25 pages, 19715 KiB  
Article
Microstructure, Mechanical Properties, and Magnetic Properties of 430 Stainless Steel: Effect of Critical Cold Working Rate and Heat Treatment Atmosphere
by Che-Wei Lu, Fei-Yi Hung and Tsung-Wei Chang
Metals 2025, 15(8), 868; https://doi.org/10.3390/met15080868 - 2 Aug 2025
Viewed by 206
Abstract
430 stainless steel exhibits soft magnetic properties, excellent formability, and corrosion resistance, making it widely used in industrial applications. This study investigates the effects of different cold working rates on the properties of 430 stainless steel subjected to various magnetic annealing atmospheres (F-1.5Si, [...] Read more.
430 stainless steel exhibits soft magnetic properties, excellent formability, and corrosion resistance, making it widely used in industrial applications. This study investigates the effects of different cold working rates on the properties of 430 stainless steel subjected to various magnetic annealing atmospheres (F-1.5Si, F-1.5Si-10%, F-1.5Si-40%, F-1.5Si-10% (MA), F-1.5Si-40% (MA), F-1.5Si-10% (H2), and F-1.5Si-40% (H2)). The results indicate that increasing the cold working rate improves the material’s mechanical properties; however, it negatively impacts its magnetic and corrosion resistance properties. Additionally, the magnetic annealing process improves the mechanical properties, while atmospheric magnetic annealing optimizes the overall magnetic performance. In contrast, magnetic annealing in a hydrogen atmosphere does not enhance the magnetic properties as effectively as atmospheric magnetic annealing. Still, it promotes the formation of a protective layer, preserving the mechanical properties and providing better corrosion resistance. Furthermore, regardless of whether magnetic annealing is conducted in an atmospheric or hydrogen environment, materials with 10% cold work rate (F-1.5Si-10% (MA) and F-1.5Si-10% (H2)) exhibit the lowest coercive force (286 and 293 A/m in the 10 Hz test condition), making them ideal for electromagnetic applications. Full article
(This article belongs to the Special Issue Heat Treatment and Mechanical Behavior of Steels and Alloys)
Show Figures

Graphical abstract

23 pages, 6377 KiB  
Article
Experimental and Numerical Study on the Restitution Coefficient and the Corresponding Elastic Collision Recovery Mechanism of Rapeseed
by Chuandong Liu, Haoping Zhang, Zebao Li, Zhiheng Zeng, Xuefeng Zhang, Lian Gong and Bin Li
Agronomy 2025, 15(8), 1872; https://doi.org/10.3390/agronomy15081872 - 1 Aug 2025
Viewed by 166
Abstract
In this study, we aimed to address the lack of systematic research on key collision dynamics parameters (elastic restitution coefficient) in the full mechanization of rapeseed operations, which hinders the development of precision agriculture. In this present work, the restitution coefficient of rapeseed [...] Read more.
In this study, we aimed to address the lack of systematic research on key collision dynamics parameters (elastic restitution coefficient) in the full mechanization of rapeseed operations, which hinders the development of precision agriculture. In this present work, the restitution coefficient of rapeseed was systematically investigated, and a predictive model (R2 = 0.959) was also established by using Box–Behnken design response surface methodology (BBD-RSM). The results show that the collision restitution coefficient varies in the range of 0.539–0.649, with the key influencing factors ranked as follows: moisture content (Mc) > material layer thickness (L) > drop height (H). The EDEM simulation methodology was adopted to validate the experimental results, and the results show that there is a minimal relative error (−1% < δ < 1%) between the measured and simulated rebound heights, indicating that the established model shows a reliable prediction performance. Moreover, by comprehensively analyzing stress, strain, and energy during the collision process between rapeseed and Q235 steel, it can be concluded that the process can be divided into five stages—free fall, collision compression, collision recovery, rebound oscillation, and rebound stabilization. The maximum stress (1.19 × 10−2 MPa) and strain (6.43 × 10−6 mm) were observed at the beginning of the collision recovery stage, which can provide some theoretical and practical basis for optimizing and designing rapeseed machines, thus achieving the goals of precise control, harvest loss reduction, and increased yields. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

29 pages, 5040 KiB  
Article
The Investigation of a Biocide-Free Antifouling Coating on Naval Steels Under Both Simulated and Actual Seawater Conditions
by Polyxeni Vourna, Pinelopi P. Falara and Nikolaos D. Papadopoulos
Processes 2025, 13(8), 2448; https://doi.org/10.3390/pr13082448 - 1 Aug 2025
Viewed by 385
Abstract
This study developed a water-soluble antifouling coating to protect ship hulls against corrosion and fouling without the usage of a primer. The coating retains its adhesion to the steel substrate and reduces corrosion rates compared to those for uncoated specimens. The coating’s protective [...] Read more.
This study developed a water-soluble antifouling coating to protect ship hulls against corrosion and fouling without the usage of a primer. The coating retains its adhesion to the steel substrate and reduces corrosion rates compared to those for uncoated specimens. The coating’s protective properties rely on the interaction of conductive polyaniline (PAni) nanorods, magnetite (Fe3O4) nanoparticles, and graphene oxide (GO) sheets modified with titanium dioxide (TiO2) nanoparticles. The PAni/Fe3O4 nanocomposite improves the antifouling layer’s out-of-plane conductivity, whereas GO increases its in-plane conductivity. The anisotropy in the conductivity distribution reduces the electrostatic attraction and limits primary bacterial and pathogen adsorption. TiO2 augments the conductivity of the PAni nanorods, enabling visible light to generate H2O2. The latter decomposes into H2O and O2, rendering the coating environmentally benign. The coating acts as an effective barrier with limited permeability to the steel surface, demonstrating outstanding durability for naval steel over extended periods. Full article
(This article belongs to the Special Issue Metal Material, Coating and Electrochemistry Technology)
Show Figures

Figure 1

20 pages, 15301 KiB  
Article
Application of CH241 Stainless Steel with High Concentration of Mn and Mo: Microstructure, Mechanical Properties, and Tensile Fatigue Life
by Ping-Yu Hsieh, Bo-Ding Wu and Fei-Yi Hung
Metals 2025, 15(8), 863; https://doi.org/10.3390/met15080863 - 1 Aug 2025
Viewed by 203
Abstract
A novel stainless steel with high Mn and Mo content (much higher than traditional stainless steel), designated CH241SS, was developed as a potential replacement for Cr-Mo-V alloy steel in the cold forging applications of precision industry. Through carbon reduction in an environmentally friendly [...] Read more.
A novel stainless steel with high Mn and Mo content (much higher than traditional stainless steel), designated CH241SS, was developed as a potential replacement for Cr-Mo-V alloy steel in the cold forging applications of precision industry. Through carbon reduction in an environmentally friendly manner and a two-stage heat treatment process, the hardness of as-cast CH241 was tailored from HRC 37 to HRC 29, thereby meeting the industrial specifications of cold-forged steel (≤HRC 30). X-ray diffraction analysis of the as-cast microstructure revealed the presence of a small amount of ferrite, martensite, austenite, and alloy carbides. After heat treatment, CH241 exhibited a dual-phase microstructure consisting of ferrite and martensite with dispersed Cr(Ni-Mo) alloy carbides. The CH241 alloy demonstrated excellent high-temperature stability. No noticeable softening occurred after 72 h for the second-stage heat treatment. Based on the mechanical and room-temperature tensile fatigue properties of CH241-F (forging material) and CH241-ST (soft-tough heat treatment), it was demonstrated that the CH241 stainless steel was superior to the traditional stainless steel 4xx in terms of strength and fatigue life. Therefore, CH241 stainless steel can be introduced into cold forging and can be used in precision fatigue application. The relevant data include composition design and heat treatment properties. This study is an important milestone in assisting the upgrading of the vehicle and aerospace industries. Full article
(This article belongs to the Special Issue Advanced High Strength Steels: Properties and Applications)
Show Figures

Graphical abstract

17 pages, 4598 KiB  
Article
Efficient Tetracycline Hydrochloride Degradation by Urchin-Like Structured MoS2@CoFe2O4 Derived from Steel Pickling Sludge via Peroxymonosulfate Activation
by Jin Qi, Kai Zhu, Ming Li, Yucan Liu, Pingzhou Duan and Lihua Huang
Molecules 2025, 30(15), 3194; https://doi.org/10.3390/molecules30153194 - 30 Jul 2025
Viewed by 179
Abstract
Steel pickling sludge serves as a valuable iron source for synthesizing Fe-based catalysts in heterogeneous advanced oxidation processes (AOPs). Here, MoS2@CoFe2O4 catalyst derived from steel pickling sludge was prepared via a facile solvothermal approach and utilized to activate [...] Read more.
Steel pickling sludge serves as a valuable iron source for synthesizing Fe-based catalysts in heterogeneous advanced oxidation processes (AOPs). Here, MoS2@CoFe2O4 catalyst derived from steel pickling sludge was prepared via a facile solvothermal approach and utilized to activate peroxymonosulfate (PMS) for tetracycline hydrochloride (TCH) degradation. Comprehensive characterization using scanning electron microscopy (SEM)-energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) confirmed the supported microstructure, composition, and crystalline structure of the catalyst. Key operational parameters—including catalyst dosage, PMS concentration, and initial solution pH—were systematically optimized, achieving 81% degradation efficiency within 30 min. Quenching experiments and electron paramagnetic resonance (EPR) analysis revealed SO4∙− as the primary oxidative species, while the catalyst maintained high stability and reusability across cycles. TCH degradation primarily occurs through hydroxylation, decarbonylation, ring-opening, and oxidation reactions. This study presents a cost-effective strategy for transforming steel pickling sludge into a high-performance Fe-based catalyst, demonstrating its potential for practical AOP applications. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Graphical abstract

23 pages, 2300 KiB  
Article
Electrodegradation of Selected Water Contaminants: Efficacy and Transformation Products
by Borislav N. Malinović, Tatjana Botić, Tijana Đuričić, Aleksandra Borković, Katarina Čubej, Ivan Mitevski, Jasmin Račić and Helena Prosen
Appl. Sci. 2025, 15(15), 8434; https://doi.org/10.3390/app15158434 - 29 Jul 2025
Viewed by 250
Abstract
The electrooxidation (EO) of three important environmental contaminants, anticorrosive 1H-benzotriazole (BTA), plasticizer dibutyl phthalate (DBP), and non-ionic surfactant Triton X-100 (tert-octylphenoxy[poly(ethoxy)] ethanol, t-OPPE), was studied as a possible means to improve their elimination from wastewaters, which are an important [...] Read more.
The electrooxidation (EO) of three important environmental contaminants, anticorrosive 1H-benzotriazole (BTA), plasticizer dibutyl phthalate (DBP), and non-ionic surfactant Triton X-100 (tert-octylphenoxy[poly(ethoxy)] ethanol, t-OPPE), was studied as a possible means to improve their elimination from wastewaters, which are an important emission source. EO was performed in a batch reactor with a boron-doped diamond (BDD) anode and a stainless steel cathode. Different supporting electrolytes were tested: NaCl, H2SO4, and Na2SO4. Results were analysed from the point of their efficacy in terms of degradation rate, kinetics, energy consumption, and transformation products. The highest degradation rate, shortest half-life, and lowest energy consumption was observed in the electrolyte H2SO4, followed by Na2SO4 with only slightly less favourable characteristics. In both cases, degradation was probably due to the formation of persulphate or sulphate radicals. Transformation products (TPs) were studied mainly in the sulphate media and several oxidation products were identified with all three contaminants, while some evidence of progressive degradation, e.g., ring-opening products, was observed only with t-OPPE. The possible reasons for the lack of further degradation in BTA and DBP are too short of an EO treatment time and perhaps a lack of detection due to unsuitable analytical methods for more polar TPs. Results demonstrate that BDD-based EO is a robust method for the efficient removal of structurally diverse organic contaminants, making it a promising candidate for advanced water treatment technologies. Full article
Show Figures

Figure 1

20 pages, 5053 KiB  
Article
Physics-Informed Neural Networks for Depth-Dependent Constitutive Relationships of Gradient Nanostructured 316L Stainless Steel
by Huashu Li, Yang Cheng, Zheheng Wang and Xiaogui Wang
Materials 2025, 18(15), 3532; https://doi.org/10.3390/ma18153532 - 28 Jul 2025
Viewed by 350
Abstract
The structural units with different characteristic scales in gradient nanostructured (GS) 316L stainless steel act synergistically to achieve the matching of strength and plasticity, and the intrinsic plasticity of nanoscale and ultrafine grains is fully demonstrated. The macroscopic stress–strain responses of each material [...] Read more.
The structural units with different characteristic scales in gradient nanostructured (GS) 316L stainless steel act synergistically to achieve the matching of strength and plasticity, and the intrinsic plasticity of nanoscale and ultrafine grains is fully demonstrated. The macroscopic stress–strain responses of each material unit in the GS surface layer can be measured directly by tension or compression tests on microspecimens. However, the experimental results based on microspecimens do not reflect either the extraordinary strengthening effect caused by non-uniform deformation or the intrinsic plasticity of nanoscale and ultrafine grains. In this paper, a method for constructing depth-dependent constitutive relationships of GS materials was proposed, which combines strain hardening parameter (hardness) with physics-informed neural networks (PINNs). First, the microhardness distribution on the specimen cross-sections was measured after stretching to different strains, and the hardness–strain–force test data were used to construct the depth-dependent PINNs model for the true strain–hardness relationship (PINNs_εH). Hardness–strain–force test data from specimens with uniform coarse grains were used to pre-train the PINNs model for hardness and true stress (PINNs_Hσ), on the basis of which the depth-dependent PINNs_Hσ model for GS materials was constructed by transfer learning. The PINNs_εσ model, which characterizes the depth-dependent constitutive relationships of GS materials, was then constructed using hardness as an intermediate variable. Finally, the accuracy and validation of the PINNs_εσ model were verified by a three-point flexure test and finite element simulation. The modeling method proposed in this study can be used to determine the position-dependent constitutive relationships of heterogeneous materials. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

20 pages, 5070 KiB  
Article
Electrochemical Noise Analysis in Passivated Martensitic Precipitation-Hardening Stainless Steels in H2SO4 and NaCl Solutions
by Facundo Almeraya-Calderon, Miguel Villegas-Tovar, Erick Maldonado-Bandala, Demetrio Nieves-Mendoza, Ce Tochtli Méndez-Ramírez, Miguel Angel Baltazar-Zamora, Javier Olguín-Coca, Luis Daimir Lopez-Leon, Griselda Santiago-Hurtado, Verónica Almaguer-Cantu, Jesus Manuel Jaquez-Muñoz and Citlalli Gaona-Tiburcio
Metals 2025, 15(8), 837; https://doi.org/10.3390/met15080837 - 26 Jul 2025
Viewed by 322
Abstract
Precipitation-hardenable stainless steels (PHSS) are widely used in various applications in the aeronautical industry such in as landing gear supports, actuators, and fasteners, among others. This research aims to study the pitting corrosion behavior of passivated martensitic precipitation-hardening stainless steel, which underwent passivation [...] Read more.
Precipitation-hardenable stainless steels (PHSS) are widely used in various applications in the aeronautical industry such in as landing gear supports, actuators, and fasteners, among others. This research aims to study the pitting corrosion behavior of passivated martensitic precipitation-hardening stainless steel, which underwent passivation for 120 min at 25 °C and 50 °C in citric and nitric acid baths before being immersed in solutions containing 1 wt.% sulfuric acid (H2SO4) and 5 wt.% sodium chloride (NaCl). Electrochemical characterization was realized employing electrochemical noise (EN), while microstructural analysis employed scanning electron microscopy (SEM). The result indicates that EN reflects localized pitting corrosion mechanisms. Samples exposed to H2SO4 revealed activation–passivation behavior, whereas those immersed in NaCl exhibited pseudo-passivation, indicative of an unstable oxide film. Current densities in both solutions ranged from 10−3 to 10−5 mA/cm2, confirming susceptibility to localized pitting corrosion in all test conditions. The susceptibility to localized attack is associated with the generation of secondary oxides on the surface. Full article
(This article belongs to the Special Issue Recent Advances in High-Performance Steel)
Show Figures

Figure 1

Back to TopTop