Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (287)

Search Parameters:
Keywords = 28 GHz

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3191 KiB  
Article
Optimizing Graphene Ring Modulators: A Comparative Study of Straight, Bent, and Racetrack Geometries
by Pawan Kumar Dubey, Ashraful Islam Raju, Rasuole Lukose, Christian Wenger and Mindaugas Lukosius
Nanomaterials 2025, 15(15), 1158; https://doi.org/10.3390/nano15151158 - 27 Jul 2025
Viewed by 317
Abstract
Graphene-based micro-ring modulators are promising candidates for next-generation optical interconnects, offering compact footprints, broadband operation, and CMOS compatibility. However, most demonstrations to date have relied on conventional straight bus coupling geometries, which limit design flexibility and require extremely small coupling gaps to reach [...] Read more.
Graphene-based micro-ring modulators are promising candidates for next-generation optical interconnects, offering compact footprints, broadband operation, and CMOS compatibility. However, most demonstrations to date have relied on conventional straight bus coupling geometries, which limit design flexibility and require extremely small coupling gaps to reach critical coupling. This work presents a comprehensive comparative analysis of straight, bent, and racetrack bus geometries in graphene-on-silicon nitride (Si3N4) micro-ring modulators operating near 1.31 µm. Based on finite-difference time-domain simulation results, a proposed racetrack-based modulator structure demonstrates that extending the coupling region enables critical coupling at larger gaps—up to 300 nm—while preserving high modulation efficiency. With only 6–12% graphene coverage, this geometry achieves extinction ratios of up to 28 dB and supports electrical bandwidths approaching 90 GHz. Findings from this work highlight a new co-design framework for coupling geometry and graphene coverage, offering a pathway to high-speed and high-modulation-depth graphene photonic modulators suitable for scalable integration in next-generation photonic interconnects devices. Full article
(This article belongs to the Special Issue 2D Materials for High-Performance Optoelectronics)
Show Figures

Figure 1

19 pages, 3810 KiB  
Article
Compact and High-Efficiency Linear Six-Element mm-Wave Antenna Array with Integrated Power Divider for 5G Wireless Communication
by Muhammad Asfar Saeed, Augustine O. Nwajana and Muneeb Ahmad
Electronics 2025, 14(15), 2933; https://doi.org/10.3390/electronics14152933 - 23 Jul 2025
Viewed by 274
Abstract
Millimeter-wave frequencies are crucial for meeting the high-capacity, low-latency demands of 5G communication systems, thereby driving the need for compact, high-gain antenna arrays capable of efficient beamforming. This paper presents the design, simulation, fabrication, and experimental validation of a compact, high-efficiency 1 × [...] Read more.
Millimeter-wave frequencies are crucial for meeting the high-capacity, low-latency demands of 5G communication systems, thereby driving the need for compact, high-gain antenna arrays capable of efficient beamforming. This paper presents the design, simulation, fabrication, and experimental validation of a compact, high-efficiency 1 × 6 linear series-fed microstrip patch antenna array for 5G millimeter-wave communication operating at 28 GHz. The proposed antenna is fabricated on a low-loss Rogers RO3003 substrate and incorporates an integrated symmetric two-way microstrip power divider to ensure balanced feeding and phase uniformity across elements. The antenna achieves a simulated peak gain of 11.5 dBi and a broad simulated impedance bandwidth of 30.21%, with measured results confirming strong impedance matching and a return loss better than −20 dB. The far-field radiation patterns demonstrate a narrow, highly directive beam in the E-plane, and the H-plane results reveal beam tilting behavior, validating the antenna’s capability for passive beam steering through feedline geometry and element spacing (~0.5λ). Surface current distribution analysis confirms uniform excitation and efficient radiation, further validating the design’s stability. The fabricated prototype shows excellent agreement with the simulation, with minor discrepancies attributed to fabrication tolerances. These results establish the proposed antenna as a promising candidate for applications requiring compact, high-gain, and beam-steerable solutions, such as 5G mm-wave wireless communication systems, point-to-point wireless backhaul, and automotive radar sensing. Full article
(This article belongs to the Special Issue Advances in MIMO Systems)
Show Figures

Figure 1

21 pages, 6045 KiB  
Article
Frequency-Bounded Matching Strategy for Wideband LNA Design Utilising a Relaxed SSNM Approach
by Vanya Sharma, Patrick E. Longhi, Walter Ciccognani, Sergio Colangeli, Antonio Serino, Swati Sharma and Ernesto Limiti
Appl. Sci. 2025, 15(15), 8148; https://doi.org/10.3390/app15158148 - 22 Jul 2025
Viewed by 173
Abstract
This paper proposes relaxed Simultaneous Signal and Noise Matching (SSNM) conditions to address limitations in selecting source degeneration inductors for multistage LNA design, achieved by introducing controlled mismatches at the external ports. Additionally, a novel frequency-bounded mismatch envelope is introduced to guide load [...] Read more.
This paper proposes relaxed Simultaneous Signal and Noise Matching (SSNM) conditions to address limitations in selecting source degeneration inductors for multistage LNA design, achieved by introducing controlled mismatches at the external ports. Additionally, a novel frequency-bounded mismatch envelope is introduced to guide load termination selection based on desired IM-OM (input mismatch-output mismatch) characteristics across the operating band. Building on these concepts, a systematic, easy-to-follow strategy is presented for implementing wideband multistage low-noise amplifiers (LNAs), significantly reducing reliance on blind CAD-based optimisation. This approach is validated through a three-stage MMIC LNA prototype, fabricated using a 0.15 μm GaAs process and operating from 28 to 34 GHz. The measured results closely match the simulation, demonstrating a stable gain of 23 ± 1 dB and a noise figure of 2–2.5 dB, confirming the practical effectiveness of the proposed design approach for wideband amplifiers. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

14 pages, 1583 KiB  
Article
Impact of Anthropomorphic Shape and Skin Stratification on Absorbed Power Density in mmWaves Exposure Scenarios
by Silvia Gallucci, Martina Benini, Marta Bonato, Valentina Galletta, Emma Chiaramello, Serena Fiocchi, Gabriella Tognola and Marta Parazzini
Sensors 2025, 25(14), 4461; https://doi.org/10.3390/s25144461 - 17 Jul 2025
Viewed by 272
Abstract
As data exchange demands increase also in widespread wearable technologies, transitioning to higher bandwidths and mmWave frequencies (30–300 GHz) is essential. This shift raises concerns about RF exposure. At such high frequencies, the most crucial human tissue for RF power absorption is the [...] Read more.
As data exchange demands increase also in widespread wearable technologies, transitioning to higher bandwidths and mmWave frequencies (30–300 GHz) is essential. This shift raises concerns about RF exposure. At such high frequencies, the most crucial human tissue for RF power absorption is the skin, since EMF penetration is superficial. It becomes thus very important to assess how the model used to represent the skin in numerical dosimetry studies affects the estimated level of absorbed power. The present study, for the first time, assesses the absorbed power density (APD) using FDTD simulations on two realistic human models in which: (i) the skin has a two-layer structure made of the stratum corneum and the viable epidermis and dermis layers, and (ii) the skin is modelled as a homogeneous dermis stratum. These results were compared with ones using flat phantom models, with and without the stratified skin. The exposure assessment study was performed with two sources (a wearable patch antenna and a plane wave) tuned to 28 GHz. For the wearable antenna, the results evidence that the exposure levels obtained when using the homogeneous version of the models are always lower than the levels in the stratified skin version with percentage differences from 16% to 30%. This trend is more noticeable with the female model. In the case of plane wave exposure, these differences were less pronounced and lower than 11%. Full article
(This article belongs to the Special Issue Design and Measurement of Millimeter-Wave Antennas)
Show Figures

Figure 1

11 pages, 4024 KiB  
Article
Launch Experiment of Microwave Rocket Equipped with Six-Staged Reed Valve Air-Breathing System
by Kosuke Irie, Ayuto Manabe, Tomonori Nakatani, Tatsuki Kinoshita, Toshinobu Nomura, Matthias Weiand, Kimiya Komurasaki, Takahiro Shinya, Ryosuke Ikeda, Keito Ishita, Taku Nakai, Ken Kajiwara and Yasuhisa Oda
Aerospace 2025, 12(7), 577; https://doi.org/10.3390/aerospace12070577 - 25 Jun 2025
Viewed by 407
Abstract
Millimeter-wave-supported detonation (MSD) is a unique detonation phenomenon driven by a supersonically propagating ionization front, sustained by intense millimeter-wave beams. Microwave Rocket, which utilizes MSD to generate thrust from atmospheric air in a pulse detonation engine (PDE) cycle, is a promising low-cost alternative [...] Read more.
Millimeter-wave-supported detonation (MSD) is a unique detonation phenomenon driven by a supersonically propagating ionization front, sustained by intense millimeter-wave beams. Microwave Rocket, which utilizes MSD to generate thrust from atmospheric air in a pulse detonation engine (PDE) cycle, is a promising low-cost alternative to conventional chemical propulsion systems for space transportation. However, insufficient air intake during repetitive PDE cycles has limited achievable thrust performance. To address this issue, a model equipped with a six-stage reed valve system (36 valves in total) was developed to ensure sufficient air intake, which measured 500 mm in length, 28 mm in radius, and 539 g in weight. Launch demonstration experiments were conducted using a 170 GHz, 550 kW gyrotron developed at the National Institutes for Quantum Science and Technology (QST). Continuous thrust was successfully generated by irradiating up to 50 pulses per experiment at each frequency between 75 and 150 Hz, in 25 Hz increments, corresponding duty cycles ranging from 0.09 to 0.18. A maximum thrust of 9.56 N and a momentum coupling coefficient Cm of 116 N/MW were obtained. These values represent a fourfold increase compared to previous launch experiments without reed valves, thereby demonstrating the effectiveness of the reed valve configuration in enhancing thrust performance. Full article
(This article belongs to the Special Issue Advances in Detonative Propulsion (2nd Edition))
Show Figures

Figure 1

15 pages, 5094 KiB  
Article
Design and Realization of a Multi-Band, High-Gain, and High-Isolation MIMO Antenna for 5G mmWave Communications
by Nabeel Alsaab and Mahmoud Shaban
Appl. Sci. 2025, 15(12), 6857; https://doi.org/10.3390/app15126857 - 18 Jun 2025
Viewed by 475
Abstract
This research introduces a novel, high-performance multiple-input–multiple-output (MIMO) antenna designed to operate in allocated millimeter-wave (mmWave) 5G wireless communications. Operating in the tri-band, 28, 35, and 38 GHz, the four-port MIMO antenna possesses a compact size—measuring just 50 × 50 × 0.787 mm [...] Read more.
This research introduces a novel, high-performance multiple-input–multiple-output (MIMO) antenna designed to operate in allocated millimeter-wave (mmWave) 5G wireless communications. Operating in the tri-band, 28, 35, and 38 GHz, the four-port MIMO antenna possesses a compact size—measuring just 50 × 50 × 0.787 mm3 (4.67λo × 4.67λo × 0.73λo). The antenna delivers a remarkable performance, achieving peak gains of 9.6, 7.8, and 13.7 dBi in the tri-band, respectively. The realized bandwidths are 1.1, 2.2, and 3.7 GHz, at the tri-band frequencies. The antenna’s performance was significantly improved by carefully spacing the elements and employing a decoupling technique using metamaterial cells. This minimized interference between the antenna elements, resulting in efficient MIMO operation with a low envelope correlation coefficient of 0.00015 and a high diversity gain approaching 10 dB, and high isolation of 34.5, 22, and 30 dB, in the tri-band. This proposed design is confirmed with experimental measurements and offers a promising candidate for multi-band use of mmWave communication systems. Full article
(This article belongs to the Special Issue Multi-Band/Broadband Antenna Design, Optimization and Measurement)
Show Figures

Figure 1

18 pages, 10378 KiB  
Article
A Compact Monopole Wideband Antenna Based on DGS
by Assefa Tsegaye, Xian-Qi Lin, Hao Liu and Hassan Sani Abubakar
Electronics 2025, 14(12), 2311; https://doi.org/10.3390/electronics14122311 - 6 Jun 2025
Viewed by 2817
Abstract
This paper presents a compact monopole wideband antenna based on DGS. The ultimate geometry of the designed antenna is obtained after many design modifications and optimizations. A commercially available Taconic TLY substrate with a dielectric constant (εr) = 2.2, loss tangent [...] Read more.
This paper presents a compact monopole wideband antenna based on DGS. The ultimate geometry of the designed antenna is obtained after many design modifications and optimizations. A commercially available Taconic TLY substrate with a dielectric constant (εr) = 2.2, loss tangent (tan δ) = 0.0009, and thickness (h) of 1.524 mm is used. The dimension of the substrate is 34 mm × 28 mm. A 50Ω microstrip transmission line of size 12 mm × 3 mm is used to feed the antenna. Simulation results demonstrate a bandwidth from 4.08 to 18.92 GHz, a percentage bandwidth of 129% for S11 < −10 dB, and a peak gain of 7.4 dB. The DGS slots are embedded into the ground plane to enhance the antenna’s bandwidth, impedance matching, gain, and efficiency. For verification, the proposed antenna is fabricated and measured. Good agreement between measured and simulated results is observed. Thus, this antenna is appropriate for various modern wireless communication systems. Full article
Show Figures

Figure 1

24 pages, 5732 KiB  
Article
Performance Analysis of Reconfigurable Intelligent Surface-Assisted Millimeter Wave Massive MIMO System Under 3GPP 5G Channels
by Vishnu Vardhan Gudla, Vinoth Babu Kumaravelu, Agbotiname Lucky Imoize, Francisco R. Castillo Soria, Anjana Babu Sujatha, Helen Sheeba John Kennedy, Hindavi Kishor Jadhav, Arthi Murugadass and Samarendra Nath Sur
Information 2025, 16(5), 396; https://doi.org/10.3390/info16050396 - 12 May 2025
Viewed by 910
Abstract
Reconfigurable intelligent surfaces (RIS) and massive multiple input and multiple output (M-MIMO) are the two major enabling technologies for next-generation networks, capable of providing spectral efficiency (SE), energy efficiency (EE), array gain, spatial multiplexing, and reliability. This work introduces an RIS-assisted millimeter wave [...] Read more.
Reconfigurable intelligent surfaces (RIS) and massive multiple input and multiple output (M-MIMO) are the two major enabling technologies for next-generation networks, capable of providing spectral efficiency (SE), energy efficiency (EE), array gain, spatial multiplexing, and reliability. This work introduces an RIS-assisted millimeter wave (mmWave) M-MIMO system to harvest the advantages of RIS and mmWave M-MIMO systems that are required for beyond fifth-generation (B5G) systems. The performance of the proposed system is evaluated under 3GPP TR 38.901 V16.1.0 5G channel models. Specifically, we considered indoor hotspot (InH)—indoor office and urban microcellular (UMi)—street canyon channel environments for 28 GHz and 73 GHz mmWave frequencies. Using the SimRIS channel simulator, the channel matrices were generated for the required number of realizations. Monte Carlo simulations were executed extensively to evaluate the proposed system’s average bit error rate (ABER) and sum rate performances, and it was observed that increasing the number of transmit antennas from 4 to 64 resulted in a better performance gain of ∼10 dB for both InH—indoor office and UMi—street canyon channel environments. The improvement of the number of RIS elements from 64 to 1024 resulted in ∼7 dB performance gain. It was also observed that ABER performance at 28 GHz was better compared to 73 GHz by at least ∼5 dB for the considered channels. The impact of finite resolution RIS on the considered 5G channel models was also evaluated. ABER performance degraded for 2-bit finite resolution RIS compared to ideal infinite resolution RIS by ∼6 dB. Full article
(This article belongs to the Special Issue Advances in Telecommunication Networks and Wireless Technology)
Show Figures

Figure 1

17 pages, 2320 KiB  
Article
Insight into Optimally Noise- and Signal-Matched Three-Stage LNAs and Effect of Inter-Stage Mismatch
by Fida Abdalrahman, Patrick E. Longhi, Sergio Colangeli, Walter Ciccognani, Antonio Serino and Ernesto Limiti
Electronics 2025, 14(10), 1967; https://doi.org/10.3390/electronics14101967 - 12 May 2025
Cited by 2 | Viewed by 514
Abstract
This manuscript provides insight into optimally noise-matched three-stage Low-Noise Amplifiers (LNAs) by proposing a novel chart that illustrates the relationship between the gain of a three-stage LNA and inter-stage mismatch levels. Under certain conditions, the chart also indicates the required feedback inductor values [...] Read more.
This manuscript provides insight into optimally noise-matched three-stage Low-Noise Amplifiers (LNAs) by proposing a novel chart that illustrates the relationship between the gain of a three-stage LNA and inter-stage mismatch levels. Under certain conditions, the chart also indicates the required feedback inductor values for all transistors. It is demonstrated that, under the specific assumption of optimal noise and signal matching, the LNA gain depends on the levels of two inter-stage mismatches. Contrary to common belief, the results show that the LNA gain increases as the inter-stage mismatch levels rise. This finding is supported through the discussion of two LNA designs, one with lower and one with higher inter-stage mismatch levels, achieving gains of 24 dB and 26 dB, respectively, with a Noise Figure of 1.7 dB at the center design frequency of 28 GHz. Subsequently, one LNA topology is validated in a Monolithic Microwave Integrated Circuit (MMIC) implementation using WIN Foundry’s PIH1-10 GaAs E-mode technology. The MMIC characterization aligns with the simulated behavior, accounting for the unavoidable losses in the matching networks. Full article
(This article belongs to the Special Issue Advances in RF, Analog, and Mixed Signal Circuits)
Show Figures

Figure 1

14 pages, 4752 KiB  
Article
An Ultra-Wideband Low-Noise Amplifier with a New Cross-Coupling Noise-Canceling Technique for 28 nm CMOS Technology
by Yuanping Cui, Kaixue Ma and Kejie Hu
Electronics 2025, 14(10), 1904; https://doi.org/10.3390/electronics14101904 - 8 May 2025
Viewed by 788
Abstract
This paper presents an ultra-wideband low-noise amplifier (LNA) with a new cross-coupling noise-canceling technique for 28 nm CMOS technology. The entire LNA contains two stages. The first stage employs inductively coupled Gm-boosted technology, while the second stage is a novel asymmetric cross-coupling noise-canceling [...] Read more.
This paper presents an ultra-wideband low-noise amplifier (LNA) with a new cross-coupling noise-canceling technique for 28 nm CMOS technology. The entire LNA contains two stages. The first stage employs inductively coupled Gm-boosted technology, while the second stage is a novel asymmetric cross-coupling noise-canceling structure (ACCNCS). Through the introduction of these two key techniques, the LNA achieves balanced performance across a relative bandwidth of 56%. Input/output/inter-stage impedance matching uses a transformer-based network with series-parallel combinations of inductors and capacitors. The LNA is designed in a 28 nm CMOS process with a chip core area of 335 × 665 µm2. The operating frequency range is 26–46 GHz. Post-layout simulation results show that the peak gain of the LNA is 12.6 dB, and the noise figure is between 2.9 and 4.2 dB across the wideband range. At a center frequency of 36 GHz with a supply voltage (VDD) of 0.9 V, the input 1 dB compression point (IP1dB) is −7.6 dBm, while the power consumption is 22 mW. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

17 pages, 127269 KiB  
Article
A Novel 28-GHz Meta-Window for Millimeter-Wave Indoor Coverage
by Chun Yang, Chuanchuan Yang, Cheng Zhang and Hongbin Li
Electronics 2025, 14(9), 1893; https://doi.org/10.3390/electronics14091893 - 7 May 2025
Viewed by 658
Abstract
Millimeter-wave signals experience substantial path loss when penetrating common building materials, hindering seamless indoor coverage from outdoor networks. To address this limitation, we present the 28-GHz “Meta-Window”, a mass-producible, visible transparent device designed to enhance millimeter-wave signal focusing. Fabricated via metal sputtering and [...] Read more.
Millimeter-wave signals experience substantial path loss when penetrating common building materials, hindering seamless indoor coverage from outdoor networks. To address this limitation, we present the 28-GHz “Meta-Window”, a mass-producible, visible transparent device designed to enhance millimeter-wave signal focusing. Fabricated via metal sputtering and etching on a standard soda-lime glass substrate, the meta-window incorporates subwavelength metallic structures arranged in a rotating pattern based on the Pancharatnam–Berry phase principle, enabling 0–360° phase control within the 25–32 GHz frequency band. A 210 mm × 210 mm prototype operating at 28 GHz was constructed using a 69 × 69 array of metasurface unit cells, leveraging planar electromagnetic lens principles. Experimental results demonstrate that the meta-window achieves greater than 20 dB signal focusing gain between 26 and 30 GHz, consistent with full-wave electromagnetic simulations, while maintaining up to 74.93% visible transmittance. This dual transparency—for both visible light and millimeter-wave frequencies—was further validated by a communication prototype system exhibiting a greater than 20 dB signal-to-noise ratio improvement and successful demodulation of a 64-QAM single-carrier signal (1 GHz bandwidth, 28 GHz) with an error vector magnitude of 4.11%. Moreover, cascading the meta-window with a reconfigurable reflecting metasurface antenna array facilitates large-angle beam steering; stable demodulation (error vector magnitude within 6.32%) was achieved within a ±40° range using the same signal parameters. Compared to conventional transmissive metasurfaces, this approach leverages established glass manufacturing techniques and offers potential for direct building integration, providing a promising solution for improving millimeter-wave indoor penetration and coverage. Full article
Show Figures

Figure 1

12 pages, 3129 KiB  
Article
Development of Low-Dielectric Modified Polyimide with Low-Temperature Radical Curing for High-Frequency Flexible Printed Circuit Boards
by Seonwoo Kim, Suin Chae, Mirae Seo, Yubin Kim, Soobin Park, Sehoon Park and Hyunjin Nam
Micro 2025, 5(2), 23; https://doi.org/10.3390/micro5020023 - 3 May 2025
Viewed by 882
Abstract
This study presents the development of a modified polyimide (MPI) with low dielectric properties and low-temperature curing capability for high-frequency flexible printed circuit boards (FPCBs). MPI was cured using dicumyl peroxide (DCP) at 80–140 °C through a radical process optimized via DSC analysis, [...] Read more.
This study presents the development of a modified polyimide (MPI) with low dielectric properties and low-temperature curing capability for high-frequency flexible printed circuit boards (FPCBs). MPI was cured using dicumyl peroxide (DCP) at 80–140 °C through a radical process optimized via DSC analysis, while Fourier-transform infrared (FT-IR) confirmed the elimination of C=C bonds and the formation of imide structures. The MPI film exhibited low dielectric constants (Dk) of 1.759 at 20 GHz and 1.734 at 28 GHz, with ultra-low dissipation factors (Df) of 0.00165 and 0.00157. High-frequency S-parameter evaluations showed an excellent performance, with S11 of −32.92 dB and S21 of approximately −1 dB. Mechanical reliability tests demonstrated a strong peel strength of 0.8–1.2 kgf/mm (IPC TM-650 2.4.8 standard) and stable electrical resistance during bending to ~6 mm radius, with full recovery after severe deformation. These results highlight MPI’s potential as a high-performance dielectric material for next-generation FPCBs, combining superior electrical performance, mechanical flexibility, and compatibility with low-temperature processing. Full article
(This article belongs to the Section Microscale Engineering)
Show Figures

Figure 1

18 pages, 7762 KiB  
Article
Miniaturized Patch Array Antenna Using CSRR Structures for 5G Millimeter-Wave Communication Systems
by Abderraoufe Zerrouk, Mohamed Lamine Tounsi, Tan Phu Vuong, Nicolas Corrao and Mustapha C. E. Yagoub
Electronics 2025, 14(9), 1834; https://doi.org/10.3390/electronics14091834 - 29 Apr 2025
Cited by 1 | Viewed by 587
Abstract
This paper presents a novel design of a 28 GHz miniaturized 1 × 4 patch antenna array with a low profile configuration based on Complementary Split Ring Resonators (CSRRs). Along with a return loss of 45 dB and a bandwidth of 1.5 GHz, [...] Read more.
This paper presents a novel design of a 28 GHz miniaturized 1 × 4 patch antenna array with a low profile configuration based on Complementary Split Ring Resonators (CSRRs). Along with a return loss of 45 dB and a bandwidth of 1.5 GHz, the proposed structure exhibits low side lobes with a high gain of 13.7 dBi and an efficiency of 97%, as well as a beamwidth of 20° and 49° in the E and H-planes, respectively. With a compact size of 27 × 13 × 0.787 mm3, the good agreement between measured and simulated data makes the proposed array suitable for 5G millimeter-wave communication systems. Full article
(This article belongs to the Special Issue Advanced RF/Microwave Circuits and System for New Applications)
Show Figures

Figure 1

19 pages, 8428 KiB  
Article
Cascadable Complementary SSF-Based Biquads with 8 GHz Cutoff Frequency and Very Low Power Consumption
by Matteo Lombardo, Francesco Centurelli, Pietro Monsurrò and Alessandro Trifiletti
Electronics 2025, 14(8), 1668; https://doi.org/10.3390/electronics14081668 - 20 Apr 2025
Viewed by 273
Abstract
Low-pass filters with bandwidths larger than several GHz are required in many applications, such as anti-aliasing filters in high-speed ADCs and pulse-shaping filters in high-speed DACs. In highly integrated applications, low area occupation and power consumption are key specifications, so inductor-less implementations are [...] Read more.
Low-pass filters with bandwidths larger than several GHz are required in many applications, such as anti-aliasing filters in high-speed ADCs and pulse-shaping filters in high-speed DACs. In highly integrated applications, low area occupation and power consumption are key specifications, so inductor-less implementations are to be preferred. Furthermore, full CMOS implementations provide an advantage in terms of technology availability and cost. In this paper, we present an inductor-less CMOS biquad stage based on the super source follower topology that provides an 8 GHz cutoff frequency and a low power consumption of 0.42 mW per pole, showing remarkable performance also in terms of bandwidth and dynamic range. The availability of two separate current sources allows independent tuning of natural frequency and quality factor. The stage can be implemented in two complementary ways, exploiting NMOS and PMOS input devices, respectively, thus simplifying cascadability. The two complementary biquads have been implemented in the STMicroelectronics FDSOI 28 nm CMOS process and extensively simulated and provide stable performance under PVT variations and mismatches. The area occupation is about 387.5 μm2 per biquad, one of the lowest in the literature. The figures-of-merit are remarkable, as the filters achieve excellent power efficiency, very low area occupation, and good dynamic range. Full article
(This article belongs to the Special Issue Advances in RF, Analog, and Mixed Signal Circuits)
Show Figures

Figure 1

13 pages, 2978 KiB  
Article
Compact Beam-Scanning Reflectarray Antenna with SLL Reduction Using In-Plane Panel Translations
by Andrés Gómez-Álvarez, Sérgio A. Matos, Manuel Arrebola, Marcos R. Pino and Carlos A. Fernandes
Appl. Sci. 2025, 15(8), 4244; https://doi.org/10.3390/app15084244 - 11 Apr 2025
Viewed by 378
Abstract
A mechanical beam-scanning reflectarray (RA) antenna is presented for Ka band. The 1D steering of the beam is achieved through linear in-plane panel translations, which can be implemented at low cost using a rail-mounted moving RA panel. Compared to related works, a highly [...] Read more.
A mechanical beam-scanning reflectarray (RA) antenna is presented for Ka band. The 1D steering of the beam is achieved through linear in-plane panel translations, which can be implemented at low cost using a rail-mounted moving RA panel. Compared to related works, a highly uniform beam level is achieved with a remarkably compact antenna profile. A new technique is also proposed to mitigate the high side lobes caused by the compact antenna optics, achieving an estimated 2.3 dB reduction in maximum SLL. The manufactured prototype has a panel size of 256.4 by 187.2 mm with 2898 elements, and an F/D of only 0.47. A measured scan loss of 1.1 dB is achieved over a 45-degree scanning range. The measured gain is 31.6 dBi and the aperture efficiency is 24.7% at the design frequency of 29.5 GHz, with SLL between −9.4 and −17.5 dB. In-band measurements show a 1 dB bandwidth from 28 to over 32 GHz (11.9%). Full article
(This article belongs to the Special Issue Recent Advances in Reflectarray and Transmitarray Antennas)
Show Figures

Figure 1

Back to TopTop