Compact and High-Efficiency Linear Six-Element mm-Wave Antenna Array with Integrated Power Divider for 5G Wireless Communication
Abstract
1. Introduction
- High gain (~9.9 dBi);
- Wide impedance bandwidth (30.21%);
- A simple and compact design;
- Superior cross-polarization levels in both E and H planes.
2. Design Methodology
3. Design and Methodology of the Power Divider
4. Simulation Results and Analysis
4.1. Return Loss
4.2. Gain Performance
4.3. Radiation Pattern
4.3.1. E-Plane
4.3.2. H-Plane
4.3.3. Far-Field 3D Radiation Pattern
4.4. Current Distribution
4.5. Impedance Matching
5. Prototype Fabrication and Measurement Result
5.1. Measured Results
5.2. Measured Setup
5.3. Practical Implementation
6. Possible Future Work
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hussain, N.; Awan, W.A.; Ali, W.; Naqvi, S.I.; Zaidi, A.; Le, T.T. Compact wideband patch antenna and its MIMO configuration for 28 GHz applications. AEU-Int. J. Electron. Commun. 2021, 132, 153612. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.P. 28 GHz compact planar phased array antenna with electronically steerable beams for 5G applications. IEEE Trans. Antennas Propag. 2020, 68, 4308–4313. [Google Scholar]
- Uddin, M.N.; Tarek, M.N.A.; Islam, M.K.; Alwan, E.A. A reconfigurable beamsteering antenna array at 28 ghz using a corporate-fed 3-bit phase shifter. IEEE Open J. Antennas Propag. 2023, 4, 126–140. [Google Scholar] [CrossRef]
- Mohamed, B.T.; Ammor, H. A 16-elements Corporate-series Feed Rectangular Patch Antenna Array at 28 GHz, for future 5G applications. In Proceedings of the 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), Fez, Morocco, 3–4 April 2019; pp. 1–4. [Google Scholar]
- Parthasarathy, R.; Chandrasekar, A.; Ramesh, P.V. Design of linear 2 × 2 array using substrate-integrated-waveguide patch antenna for 28 GHz mm-wave applications. In Proceedings of the 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW), Tiruchirappalli, India, 22–24 May 2019; pp. 44–49. [Google Scholar]
- Li, M.; Chen, S.L.; Liu, Y.; Guo, Y.J. Wide-angle beam scanning phased array antennas: A review. IEEE Open J. Antennas Propag. 2023, 4, 695–712. [Google Scholar] [CrossRef]
- Chaimool, S.; Prasert, N.; Rakluea, C. Low-Cost FR-4 Metasurface-Enhanced Microstrip Patch Antenna Array for Wideband 5G millimeter-Wave Applications. In Proceedings of the 2024 IEEE International Workshop on Antenna Technology (iWAT), Sendai, Japan, 15–18 April 2024; pp. 118–121. [Google Scholar]
- Kothari, N.; Sharma, S. A 28-GHz U-slot microstrip patch antenna for 5G applications. Int. J. Eng. Dev. Res. 2018, 6, 363–368. [Google Scholar]
- Yu, B.; Yang, K.; Yang, G. A novel 28 GHz beam steering array for 5G mobile devices with metallic casing application. IEEE Trans. Antennas Propag. 2017, 66, 462–466. [Google Scholar] [CrossRef]
- Elsharkawy, R.R.; Hussein, K.F.; Farahat, A.E. Circularly polarized 28-GHz antenna for next generations of communication systems. Sci. Rep. 2025, 15, 5745. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.S.G.; Lancaster, M.J. Microstrip Filters for RF/Microwave Applications; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Da Xu, K.; Zhu, J.; Liao, S.; Xue, Q. Wideband patch antenna using multiple parasitic patches and its array application with mutual coupling reduction. IEEE Access 2018, 6, 42497–42506. [Google Scholar] [CrossRef]
- Askarzadeh, R.; Farahbakhsh, A.; Zarifi, D.; Zaman, A.U. Wideband High Efficiency Slot Array Antenna Based on Gap Waveguide Single-Layer Feeding Network. IEEE Antennas Wirel. Propag. Lett. 2024, 24, 519–523. [Google Scholar] [CrossRef]
- Wang, S.; Wang, W.; Zheng, Y. Dual-Functional Quasi-Uniform Beam-Scanning Antenna Array with Endfire Radiation Capability for Integrated Sensing and Communication Applications. IEEE Trans. Veh. Technol. 2025. [Google Scholar] [CrossRef]
- Saeed, M.A.; Nwajana, A.O. A review of beamforming microstrip patch antenna array for future 5G/6G networks. Front. Mech. Eng. 2024, 9, 1288171. [Google Scholar] [CrossRef]
- Saeed, M.A.; Obi, E.R.; Nwajana, A.O. A compact linear microstrip patch beamformer antenna array for millimeter-wave future communication. Sensors 2024, 24, 4068. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.A.; Nwajana, A.O. Design of a Rectangular Linear Microstrip Patch Antenna Array for 5G Communication. In Proceedings of the 2024 IEEE International Symposium on Phased Array Systems and Technology (ARRAY), Boston, MA, USA, 15–18 October 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Saeed, M.A.; Nwajana, A. A novel beamforming antenna array for 5G and beyond applications. In Proceedings of the 2022 International Conference on Engineering and Emerging Technologies (ICEET), Kuala Lumpur, Malaysia, 27–28 October 2022; pp. 1–4. [Google Scholar]
- Balanis, C.A. For minimal reflection, the characteristic impedance of the transmission line feeding the antenna or junction must match the input impedance of the load (antenna or sub-network). In Antenna Theory: Analysis and Design, 4th ed.; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
Author(s) & Year | Design Type | Substrate | Gain (dBi) | Dimension (mm) | Bandwidth (%) | Side Lobe Level (db) | Special Features |
---|---|---|---|---|---|---|---|
[5] | 4 × 4 Phased Array | Not specified | 12.0 | 70 × 63 | Wideband | −10 (E-Plane) | 360° beam scanning, hybrid feeding network |
[6] | Low-Profile MIMO Array | Not specified | 11.0 | 30 × 30 | ~10% | −13 (E-Plane) | ECC < 0.005, compact and isolated array |
[7] | Wide-Beam Patch Array | Not specified | 10.0 | 37.4 × 14.6 | Moderate | −15 (E-Plane) | ±40° scanning, compact design |
[8]) | 2 × 2 Patch Array | High-frequency substrate | 10.0 | 12 × 32 | Approx. 10% | −10 (E-Plane) | High isolation, compact design |
[9] | Patch with Parasitic Elements | Not specified | 10.0 | 33 × 27 | 30% | Not specified | Parasitic coupling for bandwidth improvement |
[10] | Slot-Loaded Patch | Not specified | 9.0 | 20 × 30 | ~12% | −8 (E-Plane) | Slot-based bandwidth enhancement |
This Work | 1 × 6 Linear Patch Array | Rogers 3003 | 9.91–11.5 | 50 × 80 | 30.21% | −12 (E-Plane) | Compact, low cross-polarization, integrated power divider |
[11] | Circular Patch | Not specified | 9.0 | Not specified | Approx. 3.5% (AR) | −9 (E-Plane) | Circular polarization |
[12] | MIMO with EBG | High-frequency substrate | 8.0 | Not specified | ~10% | Not specified | High isolation, ECC < 0.01 |
[13] | 1 × 8 Patch Array | FR−4 | 10.0 | 32 × 65 | Limited (~5%) | −12 (E-Plane) | Low-cost FR-4 fabrication |
[14] | Phased Array | Not specified | 0.0 | 50 × 50 | Moderate | −8 (E-Plane) | ±60° beam steering |
Linear Array Elements | Parameters | Dimensions (mm) |
---|---|---|
Substrate | Length (L) | 27 |
Width (W) | 6.5 | |
Thickness (T) | 1.574 | |
Permittivity (Ɛ) | 3 (F/m) | |
Feedline | Length (Lf) | 3 |
Width (Wf) | 0.3 | |
Ground | Length (Lg) | 27 |
Width (Wg) | 6.5 | |
Patch | Length (Lp) | 2 |
Width (Wp) | 4 |
Parameters | Simulated Results | Measured Results | Interpretation |
---|---|---|---|
Resonant Frequency | ~28.2 GHz | ~28.1 GHz | Excellent alignment |
Return Loss | −22 dB | −20 dB | Good impedance matching |
Bandwidth (−10 dB) | ~2.2 GHz | ~2.3 GHz | Wide enough for mm-wave 5G |
E-Plane Pattern | Single lobe | Measured match | Unidirectional radiation |
H-Plane Pattern | Multi-lobe | Measured match | Phase-sensitive behavior |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeed, M.A.; Nwajana, A.O.; Ahmad, M. Compact and High-Efficiency Linear Six-Element mm-Wave Antenna Array with Integrated Power Divider for 5G Wireless Communication. Electronics 2025, 14, 2933. https://doi.org/10.3390/electronics14152933
Saeed MA, Nwajana AO, Ahmad M. Compact and High-Efficiency Linear Six-Element mm-Wave Antenna Array with Integrated Power Divider for 5G Wireless Communication. Electronics. 2025; 14(15):2933. https://doi.org/10.3390/electronics14152933
Chicago/Turabian StyleSaeed, Muhammad Asfar, Augustine O. Nwajana, and Muneeb Ahmad. 2025. "Compact and High-Efficiency Linear Six-Element mm-Wave Antenna Array with Integrated Power Divider for 5G Wireless Communication" Electronics 14, no. 15: 2933. https://doi.org/10.3390/electronics14152933
APA StyleSaeed, M. A., Nwajana, A. O., & Ahmad, M. (2025). Compact and High-Efficiency Linear Six-Element mm-Wave Antenna Array with Integrated Power Divider for 5G Wireless Communication. Electronics, 14(15), 2933. https://doi.org/10.3390/electronics14152933