Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (42,384)

Search Parameters:
Keywords = +OIL

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2254 KiB  
Article
SmartGel OV: A Natural Origanum vulgare-Based Adjunct for Periodontitis with Clinical and Microbiological Evaluation
by Casandra-Maria Radu, Carmen Corina Radu and Dana Carmen Zaha
Medicina 2025, 61(8), 1423; https://doi.org/10.3390/medicina61081423 - 7 Aug 2025
Abstract
Background and Objectives: Periodontitis is a chronic inflammatory disease that leads to progressive destruction of periodontal tissues and remains a significant global health burden. While conventional therapies such as scaling and root planning offer short-term improvements, they often fall short in maintaining [...] Read more.
Background and Objectives: Periodontitis is a chronic inflammatory disease that leads to progressive destruction of periodontal tissues and remains a significant global health burden. While conventional therapies such as scaling and root planning offer short-term improvements, they often fall short in maintaining long-term microbial control, underscoring the need for adjunctive strategies. This study evaluated the clinical and microbiological effects of a novel essential oil (EO)-based gel—SmartGel OV—formulated with Origanum vulgare. Materials and Methods: Thirty adults with periodontitis were enrolled in a 4-month observational study, during which SmartGel OV was applied daily via gingival massage. Clinical outcomes and bacterial profiles were assessed through probing measurements and real-time PCR analysis. Additionally, a pilot AI-based tool was explored as a supplemental method to monitor inflammation progression through intraoral images. Results: Significant reductions were observed in Fusobacterium nucleatum and Capnocytophaga spp., accompanied by improvements in clinical markers, including probing depth, bleeding on probing, and plaque index. The AI framework successfully identified visual inflammation changes and supported early detection of non-responsiveness. Conclusions: SmartGel OV demonstrates promise as a natural adjunctive treatment for periodontitis and AI monitoring was included as an exploratory secondary tool to assess feasibility for future remote tracking. Full article
(This article belongs to the Special Issue Current and Future Trends in Dentistry and Oral Health)
Show Figures

Figure 1

15 pages, 1253 KiB  
Article
Effect of Modification Methods on Composition and Technological Properties of Sea Buckthorn (Hippophae rhamnoides L.) Pomace
by Gabrielė Kaminskytė, Jolita Jagelavičiūtė, Loreta Bašinskienė, Michail Syrpas and Dalia Čižeikienė
Appl. Sci. 2025, 15(15), 8722; https://doi.org/10.3390/app15158722 (registering DOI) - 7 Aug 2025
Abstract
With the growth of the plant-based food sector, increasing amounts of by-products are generated. Sea buckthorn pomace (SBP), a by-product of juice and other manufacturing products, is rich in bioactive compounds such as phenolics, oligosaccharides, proteins, and dietary fiber. The aim of the [...] Read more.
With the growth of the plant-based food sector, increasing amounts of by-products are generated. Sea buckthorn pomace (SBP), a by-product of juice and other manufacturing products, is rich in bioactive compounds such as phenolics, oligosaccharides, proteins, and dietary fiber. The aim of the study was to evaluate the impact of modification methods, such as enzymatic hydrolysis and supercritical carbon dioxide extraction (SFE-CO2), on the chemical composition and technological properties of SBP. SBP and SBP obtained after SFE-CO2 (SBP-CO2) were enzymatically modified using Pectinex® Ultra Tropical, Viscozyme® L, and Celluclast® 1.5 L (Novozyme A/S, Bagsværd, Denmark). The SBP’s main constituent was insoluble dietary fiber (IDF), followed by crude proteins and lipids (respectively, 58.7, 21.1 and 12.6 g/100 in d.m.). SFE-CO2 reduced the lipid content (by 85.7%) in the pomace while increasing protein and TDF content. Enzymatic hydrolysis decreased the content of both soluble dietary fiber (SDF) and IDF, and increased the content of mono- and oligosaccharides as well as free phenolics, depending on the commercial enzyme preparation used in SBP and SBP-CO2 samples. Celluclast® 1.5 L was the most effective in hydrolyzing IDF, while Viscozyme® L and Pectinex® Ultra Tropical were the most effective in degrading SDF. Enzymatic treatment improved water swelling capacity, water retention capacity, water solubility index, oil retention capacity of SBP and SBP-CO2; however, it did not have a significant effect on the stability of the emulsions. Modification of SBP by SFE-CO2 effectively increased WSC and WSI, however it reduced WRC. These findings highlight the potential of targeted modifications to enhance the nutritional and technological properties of SBP for functional food applications. Full article
Show Figures

Figure 1

14 pages, 2177 KiB  
Article
Study on the Regulation Mechanism of Silane Coupling Agents’ Molecular Structure on the Rheological Properties of Fe3O4/CNT Silicone Oil-Based Magnetic Liquids
by Wenyi Li, Xiaotong Zeng, Shiyu Yang, Bingxue Wang, Xiangju Tian and Weihao Shen
J. Compos. Sci. 2025, 9(8), 423; https://doi.org/10.3390/jcs9080423 - 7 Aug 2025
Abstract
Silicone oil-based magnetic liquids containing carbon nanotubes (CNTs) were prepared using an in situ chemical coprecipitation method. The surface modification of Fe3O4/CNT composite particles was carried out by using three silane coupling agents: γ-aminopropyltriethoxysilane (550), γ-methacryloxypropyltrimethoxysilane (570), and phenyltrimethoxysilane [...] Read more.
Silicone oil-based magnetic liquids containing carbon nanotubes (CNTs) were prepared using an in situ chemical coprecipitation method. The surface modification of Fe3O4/CNT composite particles was carried out by using three silane coupling agents: γ-aminopropyltriethoxysilane (550), γ-methacryloxypropyltrimethoxysilane (570), and phenyltrimethoxysilane (7030). Infrared Spectroscopy (IR), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD) were used to confirm the successful doping of CNTs and the effective coating of the coupling agents. The rheological behavior of the magnetic liquids was systematically studied using an Anton Paar Rheometer. The results show that viscosity decreases exponentially with increasing temperature (fitting the Arrhenius equation), increases and tends to saturate with rising magnetic field intensity, and exhibits shear-thinning characteristics with increasing shear rate. Among the samples, Fe3O4@7030 has the best visco-thermal performance due to the benzene ring structure, which reduces the symmetry of the molecular chains. In contrast, Fe3O4@570 shows the most significant magneto-viscous effect (viscosity variation of 161.4%) as a result of the long-chain structure enhancing the steric hindrance of the magnetic dipoles. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

16 pages, 2565 KiB  
Article
Postharvest Quality of Plums Treated with Chitosan-Based Edible Coatings
by Gabor Zsivanovits, Stoil Zhelyazkov and Petya Sabeva
Polysaccharides 2025, 6(3), 68; https://doi.org/10.3390/polysaccharides6030068 - 7 Aug 2025
Abstract
This study aims to investigate the differences in the effects of spraying and immersing methods on edible coatings for halved and pitted plums. Earlier studies have shown that these biodegradable packaging materials can preserve the quality and safety of fruits for an extended [...] Read more.
This study aims to investigate the differences in the effects of spraying and immersing methods on edible coatings for halved and pitted plums. Earlier studies have shown that these biodegradable packaging materials can preserve the quality and safety of fruits for an extended shelf life. Halved and pitted plums (variety Stanley) were treated with chitosan and rosehip oil edible coating emulsions by spraying and immersing methods. The treated series were analyzed by physical, physicochemical, microbiological, and sensorial methods during refrigerated storage for nine days, until the onset of microbiological spoilage. At the beginning of the storage, there was a visible difference between the differently treated samples. The untreated series showed the fastest browning. The emulsion-sprayed samples presented the least changes in color, shape, and volume. A weaker effect of the immersion technique can be explained by a deep standing of the fruits in a treating solution or emulsion. Some of the immersed samples have an aqueous texture and received a smaller sensory rating. The advantages and disadvantages of the methods need further investigation, but on a production scale, spraying can guarantee uniform batches. In laboratory circumstances, immersion is an easier method that does not need expensive and difficult-to-use equipment and gives good results. Full article
Show Figures

Figure 1

13 pages, 3810 KiB  
Article
Solar-Driven Selective Benzyl Alcohol Oxidation in Pickering Emulsion Stabilized by CNTs/GCN Hybrids Photocatalyst
by Yunyi Han, Yuwei Hou, Xuezhong Gong, Yu Zhang, Meng Wang, Pekhyo Vasiliy Ivanovich, Meili Guan and Jianguo Tang
Catalysts 2025, 15(8), 753; https://doi.org/10.3390/catal15080753 - 7 Aug 2025
Abstract
Herein, a bi-functional composite photocatalyst was synthesized by integrating carbon nanotubes (CNTs) and graphitic carbon nitride (GCN) via a facile electrostatic self-assembly strategy. The resulting CNTs/GCN composite served dual roles as both a solid emulsifier and a photocatalyst, enabling highly efficient photocatalytic benzyl [...] Read more.
Herein, a bi-functional composite photocatalyst was synthesized by integrating carbon nanotubes (CNTs) and graphitic carbon nitride (GCN) via a facile electrostatic self-assembly strategy. The resulting CNTs/GCN composite served dual roles as both a solid emulsifier and a photocatalyst, enabling highly efficient photocatalytic benzyl alcohol oxidation within a Pickering emulsion system. The relationship between emulsion droplet size and solid emulsifier dosage was investigated and optimized. The enhanced photocatalytic function was supported by an improved photocurrent response and reduced charge-transfer resistance, attributed to superior charge separation efficiency. Consequently, the benzyl alcohol conversion efficiency achieved in the Pickering emulsion system (58.9%) was three-fold of that observed in a traditional oil–water non-emulsion system (19.0%). Key active species were identified as photoholes, and an interfacial reaction mechanism was proposed. This work provides a new approach for extending photocatalytic applications in aqueous environments to diverse organic conversion reactions through the construction of multifunctional photocatalysts. Full article
(This article belongs to the Collection Catalysis in Advanced Oxidation Processes for Pollution Control)
Show Figures

Figure 1

12 pages, 468 KiB  
Article
Discrimination of Phytosterol and Tocopherol Profiles in Soybean Cultivars Using Independent Component Analysis
by Olivio Fernandes Galãoa, Patrícia Valderrama, Luana Caroline de Figueiredo, Oscar Oliveira Santos Júnior, Alessandro Franscisco Martins, Rafael Block Samulewski, André Luiz Tessaro, Elton Guntendorfer Bonafé and Jesui Vergilio Visentainer
AppliedChem 2025, 5(3), 19; https://doi.org/10.3390/appliedchem5030019 - 7 Aug 2025
Abstract
Soybean (Glycine max (L.) Merrill) is a major oilseed crop rich in phytosterols and tocopherols, compounds associated with functional and nutritional properties of vegetable oils. This study aimed to apply, for the first time, Independent Component Analysis (ICA) to discriminate the composition [...] Read more.
Soybean (Glycine max (L.) Merrill) is a major oilseed crop rich in phytosterols and tocopherols, compounds associated with functional and nutritional properties of vegetable oils. This study aimed to apply, for the first time, Independent Component Analysis (ICA) to discriminate the composition of phytosterols (β-sitosterol, campesterol, stigmasterol) and tocopherols (α, β, γ, δ) in 20 soybean genotypes—14 non-transgenic and six transgenic—cultivated in two major producing regions of Paraná state, Brazil (Londrina and Ponta Grossa). Lipophilic compounds were extracted from soybean seeds, quantified via gas chromatography and HPLC, and statistically analyzed using ICA with the JADE algorithm. The extracted independent components successfully differentiated soybean varieties based on phytochemical profiles. Notably, transgenic cultivars from Ponta Grossa exhibited higher levels of total tocopherols, including α- and β-tocopherol, while conventional cultivars from both regions showed elevated phytosterol content, particularly campesterol and stigmasterol. ICA proved to be a powerful unsupervised method for visualizing patterns in complex compositional data. These findings highlight the significant influence of genotype and growing region on the nutraceutical potential of soybean, and support the use of multivariate analysis as a strategic tool for cultivar selection aimed at enhancing functional quality in food applications. Full article
Show Figures

Graphical abstract

20 pages, 1749 KiB  
Article
Potential of Gas-Enhanced Oil Recovery (EOR) Methods for High-Viscosity Oil: A Core Study from a Kazakhstani Reservoir
by Karlygash Soltanbekova, Gaukhar Ramazanova and Uzak Zhapbasbayev
Energies 2025, 18(15), 4182; https://doi.org/10.3390/en18154182 - 7 Aug 2025
Abstract
At present, various advanced technologies for field development based on gas-enhanced oil recovery (EOR) methods are widely applied worldwide. These include high-pressure gas injection (hydrocarbon gases, nitrogen, flue gases), water-alternating-gas (WAG) injection, and carbon dioxide (CO2) flooding. This study presents the [...] Read more.
At present, various advanced technologies for field development based on gas-enhanced oil recovery (EOR) methods are widely applied worldwide. These include high-pressure gas injection (hydrocarbon gases, nitrogen, flue gases), water-alternating-gas (WAG) injection, and carbon dioxide (CO2) flooding. This study presents the results of filtration experiments investigating the application of gas EOR methods using core samples from a heavy oil reservoir. The primary objective of these experiments was to determine the oil displacement factor and analyze changes in interfacial tension upon injection of different gas agents. The following gases were utilized for modeling gas EOR processes: nitrogen (N2), carbon dioxide (CO2), and hydrocarbon gases (methane, propane). The core samples used in the study were obtained from the East Moldabek heavy oil field in Kazakhstan. Based on the results of the filtration experiments, carbon dioxide (CO2) injection was identified as the most effective gas EOR method in terms of increasing the oil displacement factor, achieving an incremental displacement factor of 5.06%. Other gas injection methods demonstrated lower efficiency. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

19 pages, 1835 KiB  
Article
Methods for Enhancing Energy and Resource Efficiency in Sunflower Oil Production: A Case Study from Bulgaria
by Penka Zlateva, Angel Terziev, Nikolay Kolev, Martin Ivanov, Mariana Murzova and Momchil Vasilev
Eng 2025, 6(8), 195; https://doi.org/10.3390/eng6080195 - 6 Aug 2025
Abstract
The rising demand for energy resources and industrial goods presents significant challenges to sustainable development. Sunflower oil, commonly utilized in the food sector, biofuels, and various industrial applications, is notably affected by this demand. In Bulgaria, it serves as a primary source of [...] Read more.
The rising demand for energy resources and industrial goods presents significant challenges to sustainable development. Sunflower oil, commonly utilized in the food sector, biofuels, and various industrial applications, is notably affected by this demand. In Bulgaria, it serves as a primary source of vegetable fats, ranking second to butter in daily consumption. The aim of this study is to evaluate and propose methods to improve energy and resource efficiency in sunflower oil production in Bulgaria. The analysis is based on data from an energy audit conducted in 2023 at an industrial sunflower oil production facility. Reconstruction and modernization initiatives, which included the installation of high-performance, energy-efficient equipment, led to a 34% increase in energy efficiency. The findings highlight the importance of adjusting the technological parameters such as temperature, pressure, grinding level, and pressing time to reduce energy use and operational costs. Additionally, resource efficiency is improved through more effective raw material utilization and waste reduction. These strategies not only enhance the economic and environmental performance of sunflower oil production but also support sustainable development and competitiveness within the industry. The improvement reduces hexane use by approximately 2%, resulting in energy savings of 12–15 kWh/t of processed seeds and a reduction in CO2 emissions by 3–4 kg/t, thereby improving the environmental profile of sunflower oil production. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

19 pages, 8662 KiB  
Article
Synergy of Fly Ash and Surfactant on Stabilizing CO2/N2 Foam for CCUS in Energy Applications
by Jabir Dubaish Raib, Fujian Zhou, Tianbo Liang, Anas A. Ahmed and Shuai Yuan
Energies 2025, 18(15), 4181; https://doi.org/10.3390/en18154181 - 6 Aug 2025
Abstract
The stability of nitrogen gas foam hinders its applicability in petroleum applications. Fly ash nanoparticles and clay improve the N2 foam stability, and flue gas foams provide a cost-effective solution for carbon capture, utilization, and storage (CCUS). This study examines the stability, [...] Read more.
The stability of nitrogen gas foam hinders its applicability in petroleum applications. Fly ash nanoparticles and clay improve the N2 foam stability, and flue gas foams provide a cost-effective solution for carbon capture, utilization, and storage (CCUS). This study examines the stability, volume, and bubble structure of foams formed using two anionic surfactants, sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS), along with the cationic surfactant cetyltrimethylammonium bromide (CTAB), selected for their comparable interfacial tension properties. Analysis of foam stability and volume and bubble structure was conducted under different CO2/N2 mixtures, with half-life and initial foam volume serving as the evaluation criteria. The impact of fly ash and clay on SDS-N2 foam was also evaluated. The results showed that foams created with CTAB, SDBS, and SDS exhibit the greatest stability in pure nitrogen, attributed to low solubility in water and limited gas diffusion. SDS showed the highest foam strength attributable to its comparatively low surface tension. The addition of fly ash and clay significantly improved foam stability by migrating to the gas–liquid interface, creating a protective barrier that reduced drainage. Both nano fly ash and clay improved the half-life of nitrogen foam by 11.25 times and increased the foam volume, with optimal concentrations identified as 5.0 wt% for fly ash and 3.0 wt% for clay. This research emphasizes the importance of fly ash nanoparticles in stabilizing foams, therefore optimizing a foam system for enhanced oil recovery (EOR). Full article
(This article belongs to the Special Issue Subsurface Energy and Environmental Protection 2024)
Show Figures

Figure 1

27 pages, 3377 KiB  
Article
Effect of Thuja occidentalis L. Essential Oil Combined with Diatomite Against Selected Pests
by Janina Gospodarek, Elżbieta Boligłowa, Krzysztof Gondek, Krzysztof Smoroń and Iwona B. Paśmionka
Molecules 2025, 30(15), 3300; https://doi.org/10.3390/molecules30153300 - 6 Aug 2025
Abstract
Combining products of natural origin with different mechanisms of action on insect herbivores may provide an alternative among methods of plant protection against pests that are less risky for the environment. The aim of the study was to evaluate the effectiveness of mixtures [...] Read more.
Combining products of natural origin with different mechanisms of action on insect herbivores may provide an alternative among methods of plant protection against pests that are less risky for the environment. The aim of the study was to evaluate the effectiveness of mixtures of Thuja occidentalis L. essential oil and diatomite (EO + DE) compared to each substance separately in reducing economically important pests such as black bean aphid (BBA) Aphis fabae Scop., Colorado potato beetle (CPB) Leptinotarsa decemlineata Say., and pea leaf weevil (PLW) Sitona lineatus L. The effects on mortality (all pests) and foraging intensity (CPB and PLW) were tested. The improvement in effectiveness using a mixture of EO + DE versus single components against BBA was dose- and the developmental stage-dependent. The effect of enhancing CPB foraging inhibition through DE addition was obtained at a concentration of 0.2% EO (both females and males of CPB) and 0.5% EO (males) in no-choice experiments. In choice experiments, mixtures EO + DE with both 0.2% and 0.5% EO concentrations resulted in a significant reduction in CPB foraging. A significant strengthening effect of EO 0.5% through the addition of DE at a dose of 10% against PLW males was observed in the no-choice experiment, while, when the beetles had a choice, the synergistic effect of a mixture of EO 0.5% and DE 10% was also apparent in females. In conclusion, the use of DE mixtures with EO from T. occidentalis appears to be a promising strategy. The results support the idea of not using doses of EO higher than 0.5%. Full article
19 pages, 2805 KiB  
Article
An Energy System Modeling Approach for Power Transformer Oil Temperature Prediction Based on CEEMD and Robust Deep Ensemble RVFL
by Yan Xu, Haohao Li, Xianyu Meng, Jialei Chen, Xinyu Zhang and Tian Peng
Processes 2025, 13(8), 2487; https://doi.org/10.3390/pr13082487 - 6 Aug 2025
Abstract
Accurate prediction of transformer oil temperature is crucial for load optimization scheduling and timely early warning of thermal faults in power transformers. This paper proposes a transformer oil temperature prediction method based on Complementary Ensemble Empirical Mode Decomposition (CEEMD), Outlier-Robust Ensemble Deep Random [...] Read more.
Accurate prediction of transformer oil temperature is crucial for load optimization scheduling and timely early warning of thermal faults in power transformers. This paper proposes a transformer oil temperature prediction method based on Complementary Ensemble Empirical Mode Decomposition (CEEMD), Outlier-Robust Ensemble Deep Random Vector Functional Link Network (ORedRVFL), and error correction. CEEMD is used to decompose the oil temperature data into multiple subsequences, enhancing the regularity and predictability of the data. Regularization and norm improvements are introduced to edRVFL to obtain a more robust ORedRVFL model. The Tent initialization-based Differential Evolution algorithm (TDE) is employed to optimize the model parameters and predict each subsequence. Finally, error correction is applied to the prediction results. Taking the main transformer of a hydropower station in Yunnan, China as an example, the experimental results show that the proposed method improves the prediction accuracy by 5.05% and 4.13% in winter and summer oil temperature predictions, respectively. Moreover, the model’s degradation is significantly reduced when random noise is added, which verifies its robustness. This method provides an efficient and accurate solution for transformer oil temperature prediction. Full article
Show Figures

Figure 1

22 pages, 1419 KiB  
Article
Bioconversion of Olive Pomace: A Solid-State Fermentation Strategy with Aspergillus sp. for Detoxification and Enzyme Production
by Laura A. Rodríguez, María Carla Groff, Sofía Alejandra Garay, María Eugenia Díaz, María Fabiana Sardella and Gustavo Scaglia
Fermentation 2025, 11(8), 456; https://doi.org/10.3390/fermentation11080456 - 6 Aug 2025
Abstract
This study aimed to evaluate solid-state fermentation (SSF) as a sustainable approach for the simultaneous detoxification of olive pomace (OP) and the production of industrially relevant enzymes. OP, a semisolid byproduct of olive oil extraction, is rich in lignocellulose and phenolic compounds, which [...] Read more.
This study aimed to evaluate solid-state fermentation (SSF) as a sustainable approach for the simultaneous detoxification of olive pomace (OP) and the production of industrially relevant enzymes. OP, a semisolid byproduct of olive oil extraction, is rich in lignocellulose and phenolic compounds, which limit its direct reuse due to phytotoxicity. A native strain of Aspergillus sp., isolated from OP, was employed as the biological agent, while grape pomace (GP) was added as a co-substrate to enhance substrate structure. Fermentations were conducted at two scales, Petri dishes (20 g) and a fixed-bed bioreactor (FBR, 2 kg), under controlled conditions (25 °C, 7 days). Key parameters monitored included dry and wet weight loss, pH, color, phenolic content, and enzymatic activity. Significant reductions in color and polyphenol content were achieved, reaching 68% in Petri dishes and 88.1% in the FBR, respectively. In the FBR, simultaneous monitoring of dry and wet weight loss enabled the estimation of fungal biotransformation, revealing a hysteresis phenomenon not previously reported in SSF studies. Enzymes such as xylanase, endopolygalacturonase, cellulase, and tannase exhibited peak activities between 150 and 180 h, with maximum values of 424.6 U·g−1, 153.6 U·g−1, 67.43 U·g−1, and 6.72 U·g−1, respectively. The experimental data for weight loss, enzyme production, and phenolic reduction were accurately described by logistic and first-order models. These findings demonstrate the high metabolic efficiency of the fungal isolate under SSF conditions and support the feasibility of scaling up this process. The proposed strategy offers a low-cost and sustainable solution for OP valorization, aligning with circular economy principles by transforming agro-industrial residues into valuable bioproducts. Full article
Show Figures

Figure 1

17 pages, 1097 KiB  
Review
Natural Feed Additives in Sub-Saharan Africa: A Systematic Review of Efficiency and Sustainability in Ruminant Production
by Zonaxolo Ntsongota, Olusegun Oyebade Ikusika and Thando Conference Mpendulo
Ruminants 2025, 5(3), 36; https://doi.org/10.3390/ruminants5030036 - 6 Aug 2025
Abstract
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed [...] Read more.
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed shortages, and climate-related stresses, all of which limit productivity and sustainability. Considering these challenges, the adoption of natural feed additives has emerged as a promising strategy to enhance animal performance, optimise nutrient utilisation, and mitigate environmental impacts, including the reduction of enteric methane emissions. This review underscores the significant potential of natural feed additives such as plant extracts, essential oils, probiotics, and mineral-based supplements such as fossil shell flour as sustainable alternatives to conventional growth promoters in ruminant production systems across the region. All available documented evidence on the topic from 2000 to 2024 was collated and synthesised through standardised methods of systematic review protocol—PRISMA. Out of 319 research papers downloaded, six were included and analysed directly or indirectly in this study. The results show that the addition of feed additives to ruminant diets in all the studies reviewed significantly (p < 0.05) improved growth parameters such as average daily growth (ADG), feed intake, and feed conversion ratio (FCR) compared to the control group. However, no significant (p > 0.05) effect was found on cold carcass weight (CCW), meat percentage, fat percentage, bone percentage, or intramuscular fat (IMF%) compared to the control. The available evidence indicates that these additives can provide tangible benefits, including improved growth performance, better feed efficiency, enhanced immune responses, and superior meat quality, while also supporting environmental sustainability by reducing nitrogen excretion and decreasing dependence on antimicrobial agents. Full article
Show Figures

Figure 1

21 pages, 3336 KiB  
Article
A Computerized Analysis of Flow Parameters for a Twin-Screw Compressor Using SolidWorks Flow Simulation
by Ildiko Brinas, Florin Dumitru Popescu, Andrei Andras, Sorin Mihai Radu and Laura Cojanu
Computation 2025, 13(8), 189; https://doi.org/10.3390/computation13080189 - 6 Aug 2025
Abstract
Twin-screw compressors (TSCs) are widely used in various industries. Their performance is influenced by several parameters, such as rotor profiles, clearance gaps, operating speed, and thermal effects. Traditionally, optimizing these parameters relied on experimental methods, which are costly and time-consuming. However, advancements in [...] Read more.
Twin-screw compressors (TSCs) are widely used in various industries. Their performance is influenced by several parameters, such as rotor profiles, clearance gaps, operating speed, and thermal effects. Traditionally, optimizing these parameters relied on experimental methods, which are costly and time-consuming. However, advancements in computational tools, such as Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA), have revolutionized compressor analysis. This study presents a CFD analysis of a specific model of a TSC in a 5 male/6 female lobe configuration using the SolidWorks Flow Simulation environment—an approach not traditionally applied to such positive displacement machines. The results visually present internal flow trajectories, fluid velocities, pressure distributions, temperature gradients, and leakage behaviors with high spatial and temporal resolution. Additionally, torque fluctuations and isosurface visualizations revealed insights into mechanical loads and flow behavior. The proposed method allows for relatively easy adaptation to different TSC configurations and can also be a useful tool for engineering and educational purposes. Full article
(This article belongs to the Special Issue Advances in Computational Methods for Fluid Flow)
19 pages, 1584 KiB  
Article
The Development of a Predictive Maintenance System for Gearboxes Through a Statistical Diagnostic Analysis of Lubricating Oil and Artificial Intelligence
by Diego Rigolli, Lorenzo Pompei, Massimo Manfredini, Massimiliano Vignoli, Vincenzo La Battaglia and Alessandro Giorgetti
Machines 2025, 13(8), 693; https://doi.org/10.3390/machines13080693 - 6 Aug 2025
Abstract
This paper addressed the problem of oil diagnostics lubricants applied to the predictive maintenance of industrial gearboxes, proposing the integration of an artificial intelligence (AI) system into the process analysis. The main objective was to overcome the critical issues of the traditional method, [...] Read more.
This paper addressed the problem of oil diagnostics lubricants applied to the predictive maintenance of industrial gearboxes, proposing the integration of an artificial intelligence (AI) system into the process analysis. The main objective was to overcome the critical issues of the traditional method, characterized by long analysis times and a marked dependence on the subjective interpretation of operators. The method includes a detailed statistical analysis of the common ways to assess the condition of lubricants, such as optical emission spectroscopy, particle counting, measuring viscosity and density, and Fourier-transform infrared spectroscopy (FT-IR). These methods are then combined with an artificial intelligence model. Tested on commercial gearbox data, the proposed approach demonstrates agreement between IA and expert evaluation. The application has shown that it can effectively support diagnoses, reduce processing time by 60%, and minimize human errors. It also improves knowledge sharing through an increase in the stability and repetitiveness of diagnoses and promotes consistency and clarity in reporting. Full article
Show Figures

Figure 1

Back to TopTop