Effect of Modification Methods on Composition and Technological Properties of Sea Buckthorn (Hippophae rhamnoides L.) Pomace
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation and Enzymatic Treatment of Sea Buckthorn Pomace (SBP)
2.2. Proximate Composition and Dietary Fiber Determination
2.3. Saccharide Profiling Using High-Performance Liquid Chromatography
2.4. Determination of Total Phenolic Content
2.5. Hydration Properties
2.6. Oil Retention Capacity (ORC)
2.7. Bulk Density (BD)
2.8. Color Analysis
2.9. Emulsion Preparation and Stability Assessment
2.10. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of SBP and SBP-CO2
3.2. Enzymatic Hydrolysis Effect on Dietary Fiber Composition of SBP and SBP-CO2
3.3. Technological Properties of Enzymatically Modified SBP and SBP-CO2
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BD | bulk density |
TDF | total dietary fiber |
TPC | total phenolic content |
SDS | soluble dietary fiber |
IDF | insoluble dietary fiber |
ORC | oil retention capacity |
WSI | water solubility index |
WRC | water retention capacity |
WSC | water swelling capacity |
SBP | sea buckthorn pomace |
SBP-CO2 | sea buckthorn pomace modified using supercritical carbon dioxide extraction |
SFE-CO2 | supercritical carbon dioxide extraction |
References
- Sabater, C.; Ruiz, L.; Delgado, S.; Ruas-Madiedo, P.; Margolles, A. Valorization of Vegetable Food Waste and By-Products Through Fermentation Processes. Front. Microbiol. 2020, 11, 581997. [Google Scholar] [CrossRef]
- Tlais, A.Z.A.; Fiorino, G.M.; Polo, A.; Filannino, P.; Cagno, R. Di High-Value Compounds in Fruit, Vegetable and Cereal Byproducts: An Overview of Potential Sustainable Reuse and Exploitation. Molecules 2020, 25, 2987. [Google Scholar] [CrossRef]
- How, Y.H.; Nyam, K.L. Reutilization of Fruit Waste as Potential Prebiotic for Probiotic or Food-Grade Microorganisms in Food Applications: A Review. Probiotics Antimicrob. Proteins 2024, 1–26. [Google Scholar] [CrossRef]
- Kandylis, P.; Dimitrellou, D.; Moschakis, T. Recent Applications of Grapes and Their Derivatives in Dairy Products. Trends Food Sci. Technol. 2021, 114, 696–711. [Google Scholar] [CrossRef]
- Trigo, J.P.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M.E. High Value-Added Compounds from Fruit and Vegetable by-Products–Characterization, Bioactivities, and Application in the Development of Novel Food Products. Crit. Rev. Food Sci. Nutr. 2020, 60, 1388–1416. [Google Scholar] [CrossRef] [PubMed]
- Waldbauer, K.; McKinnon, R.; Kopp, B. Apple Pomace as Potential Source of Natural Active Compounds. Planta Med. 2017, 83, 994–1010. [Google Scholar] [CrossRef] [PubMed]
- Ercisli, S.; Orhan, E.; Ozdemir, O.; Sengul, M. The Genotypic Effects on the Chemical Composition and Antioxidant Activity of Sea Buckthorn (Hippophae rhamnoides L.) Berries Grown in Turkey. Sci. Hortic. 2007, 115, 27–33. [Google Scholar] [CrossRef]
- El-Sohaimy, S.A.; Shehata, M.G.; Mathur, A.; Darwish, A.G.; Abd El-Aziz, N.M.; Gauba, P.; Upadhyay, P. Nutritional Evaluation of Sea Buckthorn “Hippophae Rhamnoides” Berries and the Pharmaceutical Potential of the Fermented Juice. Fermentation 2022, 8, 391. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, F.; Wei, P.; Chai, X.; Hou, G.; Meng, Q. Phytochemistry, Health Benefits, and Food Applications of Sea Buckthorn (Hippophae rhamnoides L.): A Comprehensive Review. Front. Nutr. 2022, 9, 1036295. [Google Scholar] [CrossRef]
- Dienaitė, L.; Pukalskas, A.; Pukalskienė, M.; Pereira, C.V.; Matias, A.A.; Venskutonis, P.R. Phytochemical Composition, Antioxidant and Antiproliferative Activities of Defatted Sea Buckthorn (Hippophaë rhamnoides L.) Berry Pomace Fractions Consecutively Recovered by Pressurized Ethanol and Water. Antioxidants 2020, 9, 274. [Google Scholar] [CrossRef]
- Luntraru, C.M.; Apostol, L.; Oprea, O.B.; Neagu, M.; Popescu, A.F.; Tomescu, J.A.; Mulțescu, M.; Susman, I.E.; Gaceu, L. Reclaim and Valorization of Sea Buckthorn (Hippophae rhamnoides) By-Product: Antioxidant Activity and Chemical Characterization. Foods 2022, 11, 462. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Sharma, M.; Bhat, R. Valorisation of Sea Buckthorn Pomace by Optimization of Ultrasonic-Assisted Extraction of Soluble Dietary Fibre Using Response Surface Methodology. Foods 2021, 10, 1330. [Google Scholar] [CrossRef]
- Alba, K.; MacNaughtan, W.; Laws, A.P.; Foster, T.J.; Campbell, G.M.; Kontogiorgos, V. Fractionation and Characterisation of Dietary Fibre from Blackcurrant Pomace. Food Hydrocoll. 2018, 81, 398–408. [Google Scholar] [CrossRef]
- Schneeman, B.O. Soluble vs Insoluble Fiber: Different Physiological Responses. Food Technol. 1987, 41, 81–82. [Google Scholar]
- Jagelaviciute, J.; Basinskiene, L.; Cizeikiene, D.; Syrpas, M. Technological Properties and Composition of Enzymatically Modified Cranberry Pomace. Foods 2022, 11, 2321. [Google Scholar] [CrossRef]
- Šimkutė, S.; Bašinskienė, L.; Syrpas, M.; Čižeikienė, D. Composition and Technological Properties of Modified Lingonberry (Vaccinium vitis-idaea L.) Pomace. Appl. Sci. 2025, 15, 3661. [Google Scholar] [CrossRef]
- Kitrytė, V.; Kavaliauskaitė, A.; Tamkutė, L.; Pukalskienė, M.; Syrpas, M.; Rimantas Venskutonis, P. Zero Waste Biorefining of Lingonberry (Vaccinium vitis-idaea L.) Pomace into Functional Ingredients by Consecutive High Pressure and Enzyme Assisted Extractions with Green Solvents. Food Chem. 2020, 322, 126767. [Google Scholar] [CrossRef]
- Helrich, K. Association of Official Analytical Chemists. In Official Methods of Analysis; Association of Official Analytical Chemists, Inc.: Rockville, MD, USA, 1990. [Google Scholar]
- Megazyme. Total Dietary Fiber Assay Procedure; Megazyme: Wicklow, Ireland, 2017; pp. 1–19. [Google Scholar]
- Bytautaitė, M.; Kitrytė-Syrpa, V.; Jonutė, P.; Endriulaitytė, U.; Petrikaitė, V.; Syrpas, M. Short-chain fructooligosaccharides synthesis using a commercial enzyme complex from Aspergillus sp. and anti-cancer activity on HCT116 and HT-29 cell lines. Food Biosci. 2024, 61, 104995. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Yu, G.; Bei, J.; Zhao, J.; Li, Q.; Cheng, C. Modification of Carrot (Daucus carota Linn. Var. Sativa hoffm.) Pomace Insoluble Dietary Fiber with Complex Enzyme Method, Ultrafine Comminution, and High Hydrostatic Pressure. Food Chem. 2018, 257, 333–340. [Google Scholar] [CrossRef]
- Jagelavičiutė, J.; Čižeikienė, D.; Bašinskienė, L. Enzymatic Modification of Apple Pomace and Its Application in Conjunction with Probiotics for Jelly Candy Production. Appl. Sci. 2025, 15, 599. [Google Scholar] [CrossRef]
- Sivam, A.S.; Sun-Waterhouse, D.; Waterhouse, G.I.N.; Quek, S.; Perera, C.O. Physicochemical Properties of Bread Dough and Finished Bread with Added Pectin Fiber and Phenolic Antioxidants. J. Food Sci. 2011, 76, H97–H107. [Google Scholar] [CrossRef] [PubMed]
- Keršiene, M.; Jasutiene, I.; Eisinaite, V.; Venskutonis, P.R.; Leskauskaite, D. Designing Multiple Bioactives Loaded Emulsions for the Formulations for Diets of Elderly. Food Funct. 2020, 11, 2195–2207. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Kraujalis, P.; Tamkutė, L.; Urbonavičienė, D.; Viškelis, P.; Venskutonis, P.R. Recovery of Bioactive Substances from Rowanberry Pomace by Consecutive Extraction with Supercritical Carbon Dioxide and Pressurized Solvents. J. Ind. Eng. Chem. 2020, 85, 152–160. [Google Scholar] [CrossRef]
- Grunovaite, L.; Pukalskiene, M.; Pukalskas, A.; Venskutonis, P.R. Fractionation of Black Chokeberry Pomace into Functional Ingredients Using High Pressure Extraction Methods and Evaluation of Their Antioxidant Capacity and Chemical Composition. J. Funct. Foods 2016, 24, 85–96. [Google Scholar] [CrossRef]
- Kuhkheil, A.; Badi, H.; Mehrafarin, A.; Abdossi, V. Chemical Constituents of Sea Buckthorn (Hippophae rhamnoides L.) Fruit in Populations of Central Alborz Mountains in Iran. Res. J. Pharmacogn. 2017, 4, 1–12. [Google Scholar]
- Pocevičienė, I.; Jūrienė, L.; Pukalskienė, M.; Baranauskienė, R.; Venskutonis, P.R. Supercritical CO2 Separation of Lipids from Mechanically Pre-Fractionated Black Currant Pomace: Chemical Composition, Bioactivities and Application Perspectives. Sep. Purif. Technol. 2025, 373, 133641. [Google Scholar] [CrossRef]
- Kitrytė, V.; Kraujalienė, V.; Šulniūtė, V.; Pukalskas, A.; Venskutonis, P.R. Chokeberry Pomace Valorization into Food Ingredients by Enzyme-Assisted Extraction: Process Optimization and Product Characterization. Food Bioprod. Process. 2017, 105, 36–50. [Google Scholar] [CrossRef]
- Kairė, A.; Jagelavičiūtė, J.; Bašinskienė, L.; Syrpas, M.; Čižeikienė, D. Influence of Enzymatic Hydrolysis on Composition and Technological Properties of Black Currant (Ribes nigrum) Pomace. Appl. Sci. 2025, 15, 6207. [Google Scholar] [CrossRef]
- Will, F.; Bauckhage, K.; Dietrich, H. Apple Pomace Liquefaction with Pectinases and Cellulases: Analytical Data of the Corresponding Juices. Eur. Food Res. Technol. 2000, 211, 291–297. [Google Scholar] [CrossRef]
- Capek, P.; Renard, C.M.G.C.; Thibault, J.F. Enzymatic Degradation of Cell Walls of Apples and Characterization of Solubilized Products. Int. J. Biol. Macromol. 1995, 17, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Mrabet, A.; Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Hamza, H.; Rodríguez-Arcos, R.; Guillén-Bejarano, R.; Sindic, M.; Jiménez-Araujo, A. Enzymatic Conversion of Date Fruit Fiber Concentrates into a New Product Enriched in Antioxidant Soluble Fiber. LWT 2017, 75, 727–734. [Google Scholar] [CrossRef]
- Yoon, K.Y.; Cha, M.; Shin, S.R.; Kim, K.S. Enzymatic Production of a Soluble-Fibre Hydrolyzate from Carrot Pomace and Its Sugar Composition. Food Chem. 2005, 92, 151–157. [Google Scholar] [CrossRef]
- Nguyen, S.N.; Vien, M.D.; Le, T.T.T.; Tran, T.T.T.; Ton, N.M.N.; Le, V.V.M. Effects of Enzymatic Treatment Conditions on Dietary Fibre Content of Wheat Bran and Use of Cellulase-Treated Bran in Cookie. Int. J. Food Sci. Technol. 2021, 56, 4017–4025. [Google Scholar] [CrossRef]
- Seidi, F.; Jenjob, R.; Phakkeeree, T.; Crespy, D. Saccharides, Oligosaccharides, and Polysaccharides Nanoparticles for Biomedical Applications. J. Control. Release 2018, 284, 188–212. [Google Scholar] [CrossRef]
- Sójka, M.; Król, B. Composition of Industrial Seedless Black Currant Pomace. Eur. Food Res. Technol. 2009, 228, 597–605. [Google Scholar] [CrossRef]
- Wilkowska, A.; Nowak, A.; Antczak-Chrobot, A.; Motyl, I.; Czy, A.; Paliwoda, A. Structurally Different Pectic Oligosaccharides Produced from Apple Pomace and Their Biological Activity In Vitro. Foods 2019, 8, 365. [Google Scholar] [CrossRef]
- Jaouhari, Y.; Ferreira-Santos, P.; Disca, V.; Oliveira, H.; Martoccia, M.; Travaglia, F.; Gullón, B.; Mateus, N.; Coïsson, J.D.; Bordiga, M. Carbohydrases Treatment on Blueberry Pomace: Influence on Chemical Composition and Bioactive Potential. LWT 2024, 206, 116573. [Google Scholar] [CrossRef]
- Manthei, A.; Elez-Martínez, P.; Soliva-Fortuny, R.; Murciano-Martínez, P. Ultrasonication and Enzymatic Treatment of Apple and Orange Bagasses: Molecular Characterization of Released Oligosaccharides and Modification of Techno-Functional and Health-Related Properties. LWT 2024, 194, 115816. [Google Scholar] [CrossRef]
- Wu, D.; Yang, Z.; Li, J.; Huang, H.; Xia, Q.; Ye, X.; Liu, D. Optimizing the Solvent Selection of the Ultrasound-Assisted Extraction of Sea Buckthorn (Hippophae rhamnoides L.) Pomace: Phenolic Profiles and Antioxidant Activity. Foods 2024, 13, 482. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, X.; Liu, X.; Ji, X.; Zhang, Q.; Yang, X. Effects of Different Drying Techniques on Sea Buckthorn Pomace: Comprehensive Assessment of Drying Characteristics, Physicochemical Properties, and Odor. Front. Sustain. Food Syst. 2024, 8, 1434121. [Google Scholar] [CrossRef]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for Analysis of Plant Phenolic Compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, X.; Lv, Y.; He, Q. Extraction and Functional Properties of Water-Soluble Dietary Fiber from Apple Pomace. J. Food Process Eng. 2014, 37, 293–298. [Google Scholar] [CrossRef]
- Caparino, O.A.; Tang, J.; Nindo, C.I.; Sablani, S.S.; Powers, J.R.; Fellman, J.K. Effect of Drying Methods on the Physical Properties and Microstructures of Mango (Philippine ‘Carabao’ Var.) Powder. J. Food Eng. 2012, 111, 135–148. [Google Scholar] [CrossRef]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary Fibre and Fibre-Rich by-Products of Food Processing: Characterisation, Technological Functionality and Commercial Applications: A Review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Nemetz, N.J.; Schieber, A.; Weber, F. Application of Crude Pomace Powder of Chokeberry, Bilberry, and Elderberry as a Coloring Foodstuff. Molecules 2021, 26, 2689. [Google Scholar] [CrossRef] [PubMed]
- Gouw, V.P.; Jung, J.; Zhao, Y. Functional Properties, Bioactive Compounds, and in Vitro Gastrointestinal Digestion Study of Dried Fruit Pomace Powders as Functional Food Ingredients. LWT 2017, 80, 136–144. [Google Scholar] [CrossRef]
- Schmid, V.; Steck, J.; Mayer-Miebach, E.; Behsnilian, D.; Briviba, K.; Bunzel, M.; Karbstein, H.P.; Emin, M.A. Impact of Defined Thermomechanical Treatment on the Structure and Content of Dietary Fiber and the Stability and Bioaccessibility of Polyphenols of Chokeberry (Aronia melanocarpa) Pomace. Food Res. Int. 2020, 134, 109232. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.; Wooster, T.J.; Hoffmann, S.V.; Lee, T.H.; Augustin, M.A.; Aguilar, M.I. Structural Rearrangement of β-Lactoglobulin at Different Oil-Water Interfaces and Its Effect on Emulsion Stability. Langmuir 2011, 27, 9227–9236. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Mu, T.; Zhang, M.; Goffin, D. Effect of Heat Treatments on the Structure and Emulsifying Properties of Protein Isolates from Cumin Seeds (Cuminum cyminum). Food Sci. Technol. Int. 2018, 24, 673–687. [Google Scholar] [CrossRef]
- Huc-Mathis, D.; Almeida, G.; Michon, C. Pickering Emulsions Based on Food Byproducts: A Comprehensive Study of Soluble and Insoluble Contents. J. Colloid. Interface Sci. 2021, 581, 226–237. [Google Scholar] [CrossRef]
- Huang, Y.L.; Ma, Y.S. The Effect of Extrusion Processing on the Physiochemical Properties of Extruded Orange Pomace. Food Chem. 2016, 192, 363–369. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, Z.; Chen, X.; Zhang, W.; Xie, Y.; Chen, Y.; Liu, Z.; Yuan, W. An Overview of Pickering Emulsions: Solid-Particle Materials, Classification, Morphology, and Applications. Front. Pharmacol. 2017, 8, 235054. [Google Scholar] [CrossRef] [PubMed]
- Tamayo Tenorio, A.; Gieteling, J.; Nikiforidis, C.V.; Boom, R.M.; van der Goot, A.J. Interfacial Properties of Green Leaf Cellulosic Particles. Food Hydrocoll. 2017, 71, 8–16. [Google Scholar] [CrossRef]
- Xu, W.; Sun, H.; Li, H.; Li, Z.; Zheng, S.; Luo, D.; Ning, Y.; Wang, Y.; Shah, B.R. Preparation and Characterization of Tea Oil Powder with High Water Solubility Using Pickering Emulsion Template and Vacuum Freeze-Drying. LWT 2022, 160, 113330. [Google Scholar] [CrossRef]
Parameter | SBP | SBP-CO2 |
---|---|---|
Moisture, % | 4.17 ± 0.04 a | 5.25 ± 0.05 b |
Crude protein | 21.09 ± 0.28 a | 25.45 ± 0.41 b |
Lipids | 12.57 ± 0.39 a | 1.80 ± 0.20 b |
Ash | 1.38 ± 0.01 a | 1.53 ± 0.03 b |
TDF | 63.61 ± 0.79 a | 70.65 ± 0.56 b |
IDF | 58.69 ± 0.69 a | 63.93 ± 0.68 b |
SDF | 4.92 ± 0.1 a | 6.72 ± 0.44 b |
SDF/IDF ratio | 1:12 | 1:9.5 |
1 Mono- and oligosaccharides | 1.35 ± 1.22 a | 0.57 ± 0.45 a |
SBP | SBP-CO2 | |||||||
---|---|---|---|---|---|---|---|---|
Control | Viscozyme® L | Pectinex® Ultra Tropical | Celluclast® 1.5 L | Control | Viscozyme® L | Pectinex® Ultra Tropical | Celluclast® 1.5 L | |
TDF, g/100 g d.m. | 63.61 ± 0.79 e | 55.85 ± 0.31 b | 54.86 ± 0.31 b | 52.9 ± 0.31 a | 70.65 ± 0.56 e | 63.09 ± 0.28 e | 61.37 ± 0.21 d | 59.19 ± 0.67 c |
SDF, g/100 g d.m. | 4.92 ± 0.1 c | 2.90 ± 0.02 a | 3.52 ± 0.31 ab | 4.68 ± 0.62 bc | 6.72 ± 0.44 d | 4.22 ± 0.48 c | 4.96 ± 0.12 c | 6.41 ± 0.53 d |
IDF, g/100 g d.m. | 58.69 ± 0.69 d | 52.95 ± 0.61 c | 51.34 ± 0.59 b | 48.22 ± 0.31 a | 63.93 ± 0.68 f | 58.87 ± 0.08 d | 56.41 ± 0.31 e | 52.78 ± 0.02 c |
SDF/IDF ratio | 1:12 | 1:18.2 | 1:14.6 | 1:10.3 | 1:9.5 | 1:13.9 | 1:11.4 | 1:8.2 |
TPC, mg GAE/g | 5.73 ± 0.02 e | 5.96 ± 0.02 f | 6.05 ± 0.01 g | 6.15 ± 0.02 h | 4.64 ± 0.01 a | 4.81 ± 0.01 b | 4.85 ± 0.01 c | 4.92 ± 0.01 d |
SBP | SBP-CO2 | |||||||
---|---|---|---|---|---|---|---|---|
Control | Viscozyme® L | Pectinex® Ultra Tropical | Celluclast® 1.5 L | Control | Viscozyme® L | Pectinex® Ultra Tropical | Celluclast® 1.5 L | |
ORC, g/g d.m. | 1.63 ± 0.06 a | 2.80 ± 0.16 e | 2.16 ± 0.05 d | 3.08 ± 0.05 f | 1.72 ± 0.03 ab | 1.80 ± 0.26 abc | 1.79 ± 0.2 b | 2.01 ± 0.2 c |
WSC, mL/g d.m. | 2.61 ± 0.46 a | 3.0 ± 0.02 a | 3.30 ± 0.58 ab | 3.83 ± 0.29 b | 3.81 ± 0.31 b | 4.47 ± 0.01 c | 4.50 ± 0.01 c | 4.69 ± 0.30 c |
WRC, g/g d.m. | 4.67 ± 0.21 b | 5.24 ± 0.15 cd | 5.12 ± 0.21 cd | 5.59 ± 0.26 d | 4.20 ± 0.05 a | 4.63 ± 0.02 b | 4.59 ± 0.17 b | 4.94 ± 0.12 c |
WSI, % | 12.1 ± 0.3 a | 15.4 ± 0.5 b | 15.2 ± 0.4 b | 12.6 ± 0.3 b | 18.7 ± 0.1 c | 20.2 ± 0.6 d | 19.9 ± 0.3 d | 18.9 ± 0.1 c |
Bulk density, g/mL | 0.34 ± 0.2 ab | 0.31 ± 0.1 a | 0.29 ± 0.1 a | 0.32 ± 0.1 a | 0.48 ± 0.1 c | 0.38 ± 0.1 b | 0.35 ± 0.1 a | 0.33 ± 0.1 a |
L* | 57.77 ± 0.29 d | 49.90 ± 0.01 a | 52.52 ± 0.01 b | 56.45 ± 0.04 c | 59.38 ± 0.01 e | 62.01 ± 0.03 h | 60.91 ± 0.08 f | 61.60 ± 0.09 g |
a* | 4.34 ± 0.04 a | 5.87 ± 0.00 e | 5.24 ± 0.01 d | 4.66 ± 0.01 b | 4.61 ± 0.02 c | 4.72 ± 0.01 d | 4.29 ± 0.07 a | 4.37 ± 0.01 b |
b* | 22.72 ± 0.12 d | 21.06 ± 0.02 a | 26.55 ± 0.01 e | 22.17 ± 0.02 c | 26.08 ± 0.03 a | 27.33 ± 0.02 c | 26.80 ± 0.24 b | 26.87 ± 0.05 b |
∆E | - | 8.19 ± 0.02 d | 6.56 ± 0.00 c | 1.47 ± 0.05 a | - | 2.91 ± 0.04 c | 1.73 ± 0.18 a | 2.37 ± 0.13 b |
Chroma | 23.13 ± 0.14 c | 21.87 ± 0.03 a | 27.06 ± 0.01 d | 22.65 ± 0.02 b | 26.48 ± 0.04 a | 27.74 ± 0.03 c | 27.14 ± 0.30 b | 27.23 ± 0.07 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaminskytė, G.; Jagelavičiūtė, J.; Bašinskienė, L.; Syrpas, M.; Čižeikienė, D. Effect of Modification Methods on Composition and Technological Properties of Sea Buckthorn (Hippophae rhamnoides L.) Pomace. Appl. Sci. 2025, 15, 8722. https://doi.org/10.3390/app15158722
Kaminskytė G, Jagelavičiūtė J, Bašinskienė L, Syrpas M, Čižeikienė D. Effect of Modification Methods on Composition and Technological Properties of Sea Buckthorn (Hippophae rhamnoides L.) Pomace. Applied Sciences. 2025; 15(15):8722. https://doi.org/10.3390/app15158722
Chicago/Turabian StyleKaminskytė, Gabrielė, Jolita Jagelavičiūtė, Loreta Bašinskienė, Michail Syrpas, and Dalia Čižeikienė. 2025. "Effect of Modification Methods on Composition and Technological Properties of Sea Buckthorn (Hippophae rhamnoides L.) Pomace" Applied Sciences 15, no. 15: 8722. https://doi.org/10.3390/app15158722
APA StyleKaminskytė, G., Jagelavičiūtė, J., Bašinskienė, L., Syrpas, M., & Čižeikienė, D. (2025). Effect of Modification Methods on Composition and Technological Properties of Sea Buckthorn (Hippophae rhamnoides L.) Pomace. Applied Sciences, 15(15), 8722. https://doi.org/10.3390/app15158722