Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (448)

Search Parameters:
Authors = Yu-Cheng Shih

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2067 KiB  
Article
EphA5 Expression Predicts Better Survival Despite an Association with Proliferative Activity in Endometrial Cancer
by Shy-Yau Ang, Ching-Yu Shih, Hua Ho, Yen-Lin Chen, Jen-Tang Sun and Chiao-Yin Cheng
J. Clin. Med. 2025, 14(15), 5360; https://doi.org/10.3390/jcm14155360 - 29 Jul 2025
Viewed by 254
Abstract
Background/Objectives: Eph receptor A5 (EphA5) is a receptor tyrosine kinase that is implicated in multiple malignancies, although its role in endometrial cancer (EC) remains unclear. The aim of this study was to investigate the clinicopathological significance of EphA5 expression in EC and [...] Read more.
Background/Objectives: Eph receptor A5 (EphA5) is a receptor tyrosine kinase that is implicated in multiple malignancies, although its role in endometrial cancer (EC) remains unclear. The aim of this study was to investigate the clinicopathological significance of EphA5 expression in EC and explore its association with proliferative and metabolic markers. Methods: We retrospectively analyzed 75 EC tissue samples from treatment-naïve patients by using immunohistochemistry and H-score quantification. Associations between EphA5 expression and clinicopathological parameters were assessed through logistic regression analysis. Kaplan–Meier analysis was used to evaluate survival outcomes. Correlation analysis, stratified according to cancer stage, was used to explore biomarker interactions. Results: High EphA5 expression levels were significantly associated with elevated Ki-67 expression (adjusted odds ratio (aOR): 1.08 per 1-point H-score increase, p = 0.024) and decreased pAMPK expression (aOR: 0.89 per 1-point H-score increase, p = 0.024), indicating its involvement in proliferative and metabolic pathways. Paradoxically, patients with high EphA5 levels had significantly better overall survival probabilities (H-score > 105, log-rank p = 0.007). Stage-specific analyses suggested that EphA5 levels correlated with proliferation in early-stage disease and epithelial–mesenchymal transition in advanced stages. Conclusions: EphA5 may act as a context-dependent biomarker in EC. Despite its positive correlation with proliferation and negative association with metabolic stress signaling, high EphA5 expression levels were predictive of a favorable prognosis. Full article
(This article belongs to the Special Issue Risk Prediction for Gynecological Cancer)
Show Figures

Figure 1

15 pages, 4437 KiB  
Article
HOXA5 as a Dual Modulator of Tumor Biology in Endometrial Cancer
by Yi-Kai Fu, Ching-Yu Shih, Chiao-Yin Cheng, Hua Ho and Yen-Lin Chen
Cancers 2025, 17(15), 2473; https://doi.org/10.3390/cancers17152473 - 26 Jul 2025
Viewed by 291
Abstract
Background/Objectives: Endometrial cancer (EC) is the most prevalent gynecological malignancy, with increasing incidence and mortality. HOXA5, a developmental transcription factor, has been linked to prognosis in various cancers, but its role in EC remains unclear. This study aimed to evaluate the prognostic [...] Read more.
Background/Objectives: Endometrial cancer (EC) is the most prevalent gynecological malignancy, with increasing incidence and mortality. HOXA5, a developmental transcription factor, has been linked to prognosis in various cancers, but its role in EC remains unclear. This study aimed to evaluate the prognostic potential of HOXA5 in EC and to explore its association with common tumor-related proteins. Methods: We analyzed 75 EC tissue samples using immunohistochemistry to evaluate HOXA5 expression and its association with clinicopathological features and tumor-related biomarkers, including Ki-67, CD31, and fibronectin. Statistical analyses included logistic regression and Kaplan–Meier survival analysis. Results: High HOXA5 expression was significantly associated with elevated Ki-67 levels (p = 0.001) but paradoxically correlated with improved overall survival (p = 0.026). CD31 and fibronectin levels were significantly lower in the high-HOXA5 group (p = 0.007 and p = 0.001, respectively), suggesting reduced angiogenic and invasive potential. However, neither marker remained significant in multivariable analysis. Conclusions: HOXA5 may exert a dual role in EC by promoting proliferation while limiting tumor progression via suppression of angiogenesis and matrix remodeling. It holds potential as a prognostic biomarker and therapeutic target. Full article
Show Figures

Figure 1

21 pages, 5628 KiB  
Article
Hygrothermal Stress Analysis of Epoxy Molding Compound in Fan-Out Panel-Level Package Based on Experimental Characterization and Structural Sensitivity
by Yu-Chi Sung, Chih-Ping Hu, Sheng-Jye Hwang, Ming-Hsien Shih, Wen-Hsiang Liao, Yong-Jie Zeng and Cheng-Tse Tsai
Polymers 2025, 17(15), 2034; https://doi.org/10.3390/polym17152034 - 25 Jul 2025
Viewed by 225
Abstract
As semiconductor devices demand higher input–output density and faster signal transmission, fan-out panel-level packaging has emerged as a promising solution for next-generation electronic systems. However, the hygroscopic nature of epoxy molding compounds raises critical reliability concerns under high-temperature and high-humidity conditions. This study [...] Read more.
As semiconductor devices demand higher input–output density and faster signal transmission, fan-out panel-level packaging has emerged as a promising solution for next-generation electronic systems. However, the hygroscopic nature of epoxy molding compounds raises critical reliability concerns under high-temperature and high-humidity conditions. This study investigates the hygrothermal stress of a single fan-out panel-level package unit through experimental characterization and numerical simulation. Thermal–mechanical analysis was conducted at 100 °C and 260 °C to evaluate the strain behavior of two commercial epoxy molding compounds in granule form after moisture saturation. The coefficient of moisture expansion was calculated by correlating strain variation with moisture uptake obtained under 85 °C and 85% relative humidity, corresponding to moisture sensitivity level 1 conditions. These values were directly considered into a moisture -thermal coupled finite element analysis. The simulation results under reflow conditions demonstrate accurate principal stress and failure location predictions, with stress concentrations primarily observed at the die corners. The results confirm that thermal effects influence stress development more than moisture effects. Finally, a structural sensitivity analysis of the single-package configuration showed that optimizing the thickness of the dies and epoxy molding compound can reduce maximum principal stress by up to 12.4%, providing design insights for improving package-level reliability. Full article
(This article belongs to the Special Issue Epoxy Resins and Epoxy-Based Composites: Research and Development)
Show Figures

Figure 1

17 pages, 1391 KiB  
Article
High-Throughput Post-Quantum Cryptographic System: CRYSTALS-Kyber with Computational Scheduling and Architecture Optimization
by Shih-Hsiang Chou, Yu-Hua Yang, Wen-Long Chin, Ci Chen, Cheng-Yu Tsao and Pin-Luen Tung
Electronics 2025, 14(15), 2969; https://doi.org/10.3390/electronics14152969 - 24 Jul 2025
Viewed by 350
Abstract
With the development of a quantum computer in the near future, classical public-key cryptography will face the challenge of being vulnerable to quantum algorithms, such as Shor’s algorithm. As communication technology advances rapidly, a great deal of personal information is being transmitted over [...] Read more.
With the development of a quantum computer in the near future, classical public-key cryptography will face the challenge of being vulnerable to quantum algorithms, such as Shor’s algorithm. As communication technology advances rapidly, a great deal of personal information is being transmitted over the Internet. Based on our observation that the Kyber algorithm exhibits a significant number of idle cycles during execution when implemented following the conventional software procedure, this paper proposes a high-throughput scheduling for Kyber by parallelizing the SHA-3 function, the sampling algorithm, and the NTT computations to improve hardware utilization and reduce latency. We also introduce the 8-stage pipelined SHA-3 architecture and multi-mode polynomial arithmetic module to increase area efficiency. By also optimizing the hardware architecture of the various computational modules used by Kyber, according to the implementation result, an aggregate throughput of 877.192 kOPS in Kyber KEM can be achieved on TSMC 40 nm. In addition, our design not only achieves the highest throughput among existing studies but also improves the area and power efficiencies. Full article
Show Figures

Figure 1

25 pages, 2545 KiB  
Article
Kinetic, Isotherm, and Thermodynamic Modeling of Methylene Blue Adsorption Using Natural Rice Husk: A Sustainable Approach
by Yu-Ting Huang and Ming-Cheng Shih
Separations 2025, 12(8), 189; https://doi.org/10.3390/separations12080189 - 22 Jul 2025
Viewed by 299
Abstract
The discharge of synthetic dyes in industrial wastewaters poses a serious environmental threat as they are difficult to degrade naturally and are harmful to aquatic organisms. This study aimed to evaluate the feasibility of using clean untreated rice husk (CRH) as a sustainable [...] Read more.
The discharge of synthetic dyes in industrial wastewaters poses a serious environmental threat as they are difficult to degrade naturally and are harmful to aquatic organisms. This study aimed to evaluate the feasibility of using clean untreated rice husk (CRH) as a sustainable and low-cost adsorbent for the removal of methylene blue (MB) from synthetic wastewater. This approach effectively avoids the energy-intensive grinding process by directly using whole unprocessed rice husk, highlighting its potential as a sustainable and cost-effective alternative to activated carbon. A series of batch adsorption experiments were conducted to evaluate the effects of key operating parameters such as initial dye concentration, contact time, pH, ionic strength, and temperature on the adsorption performance. Adsorption kinetics, isotherm models, and thermodynamic analysis were applied to elucidate the adsorption mechanism and behavior. The results showed that the maximum adsorption capacity of CRH for MB was 5.72 mg/g. The adsorption capacity was stable and efficient between pH 4 and 10, and reached the highest value at pH 12. The presence of sodium ions (Na+) and calcium ions (Ca2+) inhibited the adsorption efficiency, with calcium ions having a more significant effect. Kinetic analysis confirmed that the adsorption process mainly followed a pseudo-second-order model, suggesting the involvement of a chemisorption mechanism; notably, in the presence of ions, the Elovich model provided better predictions of the data. Thermodynamic evaluation showed that the adsorption was endothermic (ΔH° > 0) and spontaneous (ΔG° < 0), accompanied by an increase in the disorder of the solid–liquid interface (ΔS° > 0). The calculated activation energy (Ea) was 17.42 kJ/mol, further supporting the involvement of chemisorption. The equilibrium adsorption data were well matched to the Langmuir model at high concentrations (monolayer adsorption), while they were accurately described by the Freundlich model at lower concentrations (surface heterogeneity). The dimensionless separation factor (RL) confirmed that the adsorption process was favorable at all initial MB concentrations. The results of this study provide insights into the application of agricultural waste in environmental remediation and highlight the potential of untreated whole rice husk as a sustainable and economically viable alternative to activated carbon, which can help promote resource recovery and pollution control. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Figure 1

22 pages, 5400 KiB  
Article
Polyaniline/Ti3C2 MXene Composites with Artificial 3D Biomimetic Surface Structure of Natural Macaw Feather Applied for Anticorrosion Coatings
by Chen-Cheng Chien, Yu-Hsuan Liu, Kun-Hao Luo, Ting-Yun Liu, Yi-Ting Kao, Shih-Harn Yang and Jui-Ming Yeh
Biomimetics 2025, 10(7), 465; https://doi.org/10.3390/biomimetics10070465 - 15 Jul 2025
Viewed by 331
Abstract
In this paper, a series of polyaniline (PANI)/Ti3C2 MXene composites (PMCs) with a biomimetic structure were prepared and employed as an anticorrosion coating application. First, the PANI was synthesized by oxidative polymerization with ammonium persulfate as the oxidant. Then, 2D [...] Read more.
In this paper, a series of polyaniline (PANI)/Ti3C2 MXene composites (PMCs) with a biomimetic structure were prepared and employed as an anticorrosion coating application. First, the PANI was synthesized by oxidative polymerization with ammonium persulfate as the oxidant. Then, 2D Ti3C2 MXene nanosheets were prepared by treating the Ti3AlC2 using the optimized minimally intensive layer delamination (MILD) method, followed by characterization via XRD and SEM. Subsequently, the PMC was prepared by the oxidative polymerization of aniline monomers in the presence of Ti3C2 MXene nanosheets, followed by characterization via FTIR, XRD, SEM, TEM, CV, and UV–Visible. Eventually, the PMC coatings with the artificial biomimetic surface structure of a macaw feather were prepared by the nano-casting technique. The corrosion resistance of the PMC coatings, evaluated via Tafel polarization and Nyquist impedance measurements, shows that increasing the MXene loading up to 5 wt % shifts the corrosion potential (Ecorr) on steel from −588 mV to −356 mV vs. SCE, reduces the corrosion current density (Icorr) from 1.09 µA/cm2 to 0.035 µA/cm2, and raises the impedance modulus at 0.01 Hz from 67 kΩ to 3794 kΩ. When structured with the hierarchical feather topography, the PMC coating (Bio-PA-MX-5) further advances the Ecorr to +103.6 mV, lowers the Icorr to 7.22 × 10−4 µA/cm2, and boosts the impedance to 96,875 kΩ. Compared to neat coatings without biomimetic structuring, those with engineered biomimetic surfaces showed significantly improved corrosion protection performance. These enhancements arise from three synergistic mechanisms: (i) polyaniline’s redox catalysis accelerates the formation of a dense passive oxide layer; (ii) MXene nanosheets create a tortuous gas barrier that cuts the oxygen permeability from 11.3 Barrer to 0.9 Barrer; and (iii) the biomimetic surface traps air pockets, raising the water contact angle from 87° to 135°. This integrated approach delivers one of the highest combined corrosion potentials and impedance values reported for thin-film coatings, pointing to a general strategy for durable steel protection. Full article
(This article belongs to the Section Biomimetic Design, Constructions and Devices)
Show Figures

Figure 1

22 pages, 4482 KiB  
Article
Cu-Doping Induced Structural Transformation and Magnetocaloric Enhancement in CoCr2O4 Nanoparticles
by Ming-Kang Ho, Yun-Tai Yu, Hsin-Hao Chiu, K. Manjunatha, Shih-Lung Yu, Bing-Li Lyu, Tsu-En Hsu, Heng-Chih Kuo, Shuan-Wei Yu, Wen-Chi Tu, Chiung-Yu Chang, Chia-Liang Cheng, H. Nagabhushana, Tsung-Te Lin, Yi-Ru Hsu, Meng-Chu Chen, Yue-Lin Huang and Sheng Yun Wu
Nanomaterials 2025, 15(14), 1093; https://doi.org/10.3390/nano15141093 - 14 Jul 2025
Viewed by 331
Abstract
This study systematically investigates the impact of Cu2+ doping on the structural, magnetic, and magnetocaloric properties of CuxCo1−xCr2O4 nanoparticles synthesized via a solution combustion method. Cu incorporation up to x = 20% induces a [...] Read more.
This study systematically investigates the impact of Cu2+ doping on the structural, magnetic, and magnetocaloric properties of CuxCo1−xCr2O4 nanoparticles synthesized via a solution combustion method. Cu incorporation up to x = 20% induces a progressive structural transformation from a cubic spinel to a trigonal corundum phase, as confirmed by X-ray diffraction and Raman spectroscopy. The doping process also leads to increased particle size, improved crystallinity, and reduced agglomeration. Magnetic measurements reveal a transition from hard to soft ferrimagnetic behavior with increasing Cu content, accompanied by a notable rise in the Curie temperature from 97.7 K (x = 0) to 140.2 K (x = 20%). The magnetocaloric effect (MCE) is significantly enhanced at higher doping levels, with the 20% Cu-doped sample exhibiting a maximum magnetic entropy change (−ΔSM) of 2.015 J/kg-K and a relative cooling power (RCP) of 58.87 J/kg under a 60 kOe field. Arrott plot analysis confirms that the magnetic phase transitions remain second-order in nature across all compositions. These results demonstrate that Cu doping is an effective strategy for tuning the magnetostructural response of CoCr2O4 nanoparticles, making them promising candidates for low-temperature magnetic refrigeration applications. Full article
Show Figures

Figure 1

16 pages, 1093 KiB  
Article
Topical Application of Bio-Pulsed Avian MSC-Derived Extracellular Vesicles Enhances Hair Regrowth and Skin Rejuvenation: Evidence from Clinical Evaluation and miRNA Profiling
by Ju-Sheng Shieh, Yu-Tang Chin, Tsu-Te Yeh, Jiong Jiong Guo, Fung-Wei Chang, Hui-Rong Cheng, Hung-Han Hsu, Wei-Lun Huang, Han-Hsiang Huang, Ya-Yu Hsieh, Chien-Ping Chiang and Shih-Ching Wang
Curr. Issues Mol. Biol. 2025, 47(7), 539; https://doi.org/10.3390/cimb47070539 - 11 Jul 2025
Viewed by 525
Abstract
Small extracellular vesicles (sEVs) derived from mesenchymal stem cells have emerged as promising therapeutic agents in regenerative dermatology. This study evaluated the safety and efficacy of Bio-Pulsed avian mesenchymal stem cell-derived sEVs (AMSC-sEVs), topically applied for hair follicle stimulation and skin rejuvenation. Two [...] Read more.
Small extracellular vesicles (sEVs) derived from mesenchymal stem cells have emerged as promising therapeutic agents in regenerative dermatology. This study evaluated the safety and efficacy of Bio-Pulsed avian mesenchymal stem cell-derived sEVs (AMSC-sEVs), topically applied for hair follicle stimulation and skin rejuvenation. Two prospective, single-arm clinical trials were conducted: one involving 30 participants using a hair ampoule over 60 days, and the other involving 30 participants applying a facial essence for 28 days. Objective measurements demonstrated significant improvements in the anagen/telogen hair ratio, reduced shedding, increased collagen density, and reduced wrinkle depth and pigmentation. Small RNA sequencing and qPCR profiling confirmed that Bio-Pulsed AMSC-sEVs were enriched with regenerative microRNAs, such as miR-21-5p and miR-199a-5p, associated with anti-inflammatory and anti-aging effects. No adverse events were reported. These findings suggest that Bio-Pulsed AMSC-sEVs may offer a safe, non-invasive, and cell-free approach to enhance skin and hair regeneration in human subjects. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Graphical abstract

14 pages, 1568 KiB  
Article
The Efficacy of Albumin Infusion in Septic Patients with Hypoalbuminemia: An International Retrospective Observational Study
by Hsin-Yu Liu, Yu-Ching Chen, Ju-Fang Liu, Pei-Sung Hsu, Wen-Pin Cheng and Shih-Sen Lin
J. Clin. Med. 2025, 14(13), 4790; https://doi.org/10.3390/jcm14134790 - 7 Jul 2025
Viewed by 469
Abstract
Background/Objectives: Albumin supplementation is widely used for hypoalbuminemia treatment in patients with critical illness, especially those with cirrhosis. However, studies have demonstrated that routine albumin administration is not always advantageous. We examined how albumin supplementation affects survival outcomes in patients with sepsis [...] Read more.
Background/Objectives: Albumin supplementation is widely used for hypoalbuminemia treatment in patients with critical illness, especially those with cirrhosis. However, studies have demonstrated that routine albumin administration is not always advantageous. We examined how albumin supplementation affects survival outcomes in patients with sepsis with hypoalbuminemia. Methods: This study was conducted by researchers in Taiwan using data from the TriNetX research platform, covering the period from 1 April 2014 to 30 April 2024. This platform aggregates real-world data from healthcare organizations worldwide. From this dataset, 1,147,433 patients who developed sepsis and hypoalbuminemia with albumin levels <3.5 g/dL were identified. The study population was stratified into two groups on the basis of whether they received albumin infusion or not. To compare outcomes, hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated between propensity-score-matched patients who did and did not receive albumin supplementation. Subgroup analysis by albumin levels was conducted. Results: Albumin infusion was linked to increased risks of 30-day mortality (HR [95% CI] = 1.800 [1.774–1.827], p < 0.05), shock (HR [95% CI] = 1.436 [1.409–1.465], p < 0.05), septic shock (HR [95% CI] = 1.384 [1.355–1.415], p < 0.05), hypovolemic shock (HR [95% CI] = 1.496 [1.391–1.608], p < 0.05), cardiogenic shock (HR [95% CI] = 1.553 [1.473–1.637], p < 0.05), heart failure (HR [95% CI] = 1.098 [1.080–1.116], p < 0.05), and pulmonary edema (HR [95% CI] = 1.479 [1.438–1.520], p < 0.05). The subgroup analysis by albumin levels revealed a trend of increased mortality risk with albumin supplementation in patients with high baseline albumin levels. Conclusions: Patients with sepsis with hypoalbuminemia who received albumin supplementation exhibited high 30-day mortality rates and increased risks of shock, heart failure, and pulmonary edema compared with those who did not. These findings indicate that routine albumin administration may be linked with unfavorable outcomes in these patients. Full article
(This article belongs to the Special Issue Sepsis: New Insights into Diagnosis and Treatment)
Show Figures

Figure 1

19 pages, 2775 KiB  
Article
Marine Spatial Planning for Offshore Wind Firms: A Comparison of Global Existing Policies and Data for Energy System Storage
by Yun-Sin Chen, Cheng-Yu Hu, Chun-Yi Li, Jia-Bin Lin and Yi-Che Shih
Sustainability 2025, 17(13), 5884; https://doi.org/10.3390/su17135884 - 26 Jun 2025
Viewed by 370
Abstract
This study aims to conduct a comparative analysis of existing global policies and data for offshore wind (OW) farms (OWFs) by exploring the performance of the United Kingdom (UK), Germany, China, Taiwan and the rest of the world based on chosen quantitative metrics [...] Read more.
This study aims to conduct a comparative analysis of existing global policies and data for offshore wind (OW) farms (OWFs) by exploring the performance of the United Kingdom (UK), Germany, China, Taiwan and the rest of the world based on chosen quantitative metrics (total installations, energy capacity, bathymetry, wind resources) and qualitative policy drivers (costs, installation regulations, taxation). This research adopts an explorative multi-case study design that involves analyzing quantitative and qualitative metrics of OW energy parameters for the UK, Germany, China, Taiwan and the rest of the world. The quantitative metrics include the total OW energy installations, bathymetric data, wind speed and direction data and OW energy capacity while the qualitative metrics include the policy changes on costs of installations, installation policies and taxation policies. As compared to the United Kingdom and Germany, China reported the highest number of installed OW energy farms between 2019 and 2023. The UK reported a gradual increase in the number of OWFs installed between 2019 and 2023. Taiwan has the lowest number of OWFs and wind energy capacity but ranks almost the same as China and the UK in terms of the bathymetric data and wind speed. Statistically significant correlation, (p ≤ 0.05), between the wind speed and the number of OWFs for all the countries. No statistically significant relationship between the bathymetric characteristics and the number of OW installations and wind energy capacity. Geographical factors, weather patterns and government policies play crucial roles in the successful installation and maintenance of OWFs. Full article
Show Figures

Figure 1

20 pages, 2749 KiB  
Article
ROVs Utilized in Communication and Remote Control Integration Technologies for Smart Ocean Aquaculture Monitoring Systems
by Yen-Hsiang Liao, Chao-Feng Shih, Jia-Jhen Wu, Yu-Xiang Wu, Chun-Hsiang Yang and Chung-Cheng Chang
J. Mar. Sci. Eng. 2025, 13(7), 1225; https://doi.org/10.3390/jmse13071225 - 25 Jun 2025
Viewed by 550
Abstract
This study presents a new intelligent aquatic farming surveillance system that tackles real-time monitoring challenges in the industry. The main technical break-throughs of this system are evident in four key aspects: First, it achieves the smooth integration of remotely operated vehicles (ROVs), sensors, [...] Read more.
This study presents a new intelligent aquatic farming surveillance system that tackles real-time monitoring challenges in the industry. The main technical break-throughs of this system are evident in four key aspects: First, it achieves the smooth integration of remotely operated vehicles (ROVs), sensors, and real-time data transmission. Second, it uses a mobile communication architecture with buoy relay stations for distributed edge computing. This design supports future upgrades to Beyond 5G and satellite networks for deep-sea applications. Third, it features a multi-terminal control system that supports computers, smartphones, smartwatches, and centralized hubs, effectively enabling monitoring anytime, anywhere. Fourth, it incorporates a cost-effective modular design, utilizing commercial hardware and innovative system integration solutions, making it particularly suitable for farms with limited resources. The data indicates that the system’s 4G connection is both stable and reliable, demonstrating excellent performance in terms of data transmission success rates, control command response delays, and endurance. It has successfully processed 324,800 data transmission events, thoroughly validating its reliability in real-world production environments. This system integrates advanced technologies such as the Internet of Things, mobile communications, and multi-access control, which not only significantly enhance the precision oversight capabilities of marine farming but also feature a modular design that allows for future expansion into satellite communications. Notably, the system reduces operating costs while simultaneously improving aquaculture efficiency, offering a practical and intelligent solution for small farmers in resource-limited areas. Full article
(This article belongs to the Special Issue Design and Application of Underwater Vehicles)
Show Figures

Figure 1

17 pages, 3125 KiB  
Article
Tribocorrosion Behavior of a Medium-Entropy Austenitic Stainless Steel in 3.5 wt.% NaCl: A Comparative Study with 304 and S31254 Stainless Steels
by Chun-Hao Wang, Shih-Yen Huang, Yu-Ren Chu, Peng-Shu Hsu, Hung-Wei Yen, I-Chung Cheng, Peng-Wei Chu and Yueh-Lien Lee
Lubricants 2025, 13(6), 260; https://doi.org/10.3390/lubricants13060260 - 11 Jun 2025
Viewed by 508
Abstract
This study investigates the tribocorrosion behavior of 304 stainless steel (304SS), S31254 super austenitic stainless steel (S31254 SASS), and a medium-entropy austenitic stainless steel (MEASS) in 3.5 wt.% NaCl solution under sliding conditions. The objective is to clarify the performance differences among these [...] Read more.
This study investigates the tribocorrosion behavior of 304 stainless steel (304SS), S31254 super austenitic stainless steel (S31254 SASS), and a medium-entropy austenitic stainless steel (MEASS) in 3.5 wt.% NaCl solution under sliding conditions. The objective is to clarify the performance differences among these alloys when exposed to simultaneous mechanical wear and corrosion. Electrochemical techniques, including potentiodynamic polarization and potentiostatic sliding tests, were used to evaluate corrosion resistance and repassivation behavior. Quantitative analysis based on ASTM G119 revealed that MEASS showed a 68% lower total material loss compared to 304SS and a 55% lower loss compared to S31254. MEASS also exhibited the lowest corrosion current density (1.46 μA/cm2) under tribocorrosion conditions, representing an 83% reduction compared to 304SS. These improvements are attributed to the higher chromium and nickel contents of MEASS, which enhance passive film stability and reduce susceptibility to localized corrosion. The results demonstrate that MEASS offers superior resistance to combined mechanical and corrosive degradation in chloride-containing environments. Full article
(This article belongs to the Special Issue Tribology of Metals and Alloys)
Show Figures

Figure 1

14 pages, 1837 KiB  
Article
Synthesis and Evaluation of 125I-IMPY: Application in Neuroblastoma Tracing and Treatment
by Tsung-Ming Wang, Shih-Chang Chuang, Kuo-Chen Hung, Chang-Ching Yu, Tzu-Chuan Ho, Kuo-Pin Chuang, Cheng-Hui Yuan, Ming-Hui Yang and Yu-Chang Tyan
Life 2025, 15(6), 930; https://doi.org/10.3390/life15060930 - 9 Jun 2025
Viewed by 559
Abstract
Background: Radiolabeled compounds can serve as diagnostic or therapeutic agents depending on the characteristics of the isotopes used. IMPY (6-iodo-2-(4′-dimethylamino)-phenyl-imidazo[1,2-a]pyridine) is a lipophilic derivative of thioflavin-T, designed to function as a tracer when labeled with radioactive iodine. While it has been primarily studied [...] Read more.
Background: Radiolabeled compounds can serve as diagnostic or therapeutic agents depending on the characteristics of the isotopes used. IMPY (6-iodo-2-(4′-dimethylamino)-phenyl-imidazo[1,2-a]pyridine) is a lipophilic derivative of thioflavin-T, designed to function as a tracer when labeled with radioactive iodine. While it has been primarily studied for imaging applications, its potential therapeutic effects when labeled with iodine-125 (125I) remain to be explored. Methods: In this study, IMPY was synthesized and labeled with 125I for therapeutic purposes. Three different labeling methods were employed: isotope exchange reaction, redox reaction, and the Iodogen technique. The radiochemical yield of each method was determined to identify the most effective approach. Additionally, the effects of 125I-IMPY on neuroblastoma cells were evaluated by assessing its toxicity and cellular uptake. Results: The radiochemical yields for the isotope exchange reaction, redox reaction, and Iodogen technique were found to be 0.96%, 10.74%, and 96.52%, respectively. The Iodogen technique exhibited the highest yield, exceeding 90% even after 48 h, making it the most efficient method. Furthermore, the impact of 125I-IMPY on neuroblastoma cells was analyzed, revealing significant cellular uptake and potential therapeutic effects. Conclusions: This study demonstrated that the Iodogen technique is the most effective method for labeling IMPY with 125I. The high labeling efficiency and observed cellular effects suggest that 125I-IMPY could be considered not only as a tracer but also as a potential therapeutic agent for neuroblastoma. Further studies are needed to explore its full therapeutic potential and mechanism of action. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

24 pages, 3425 KiB  
Article
A Neural Network Compiler for Efficient Data Storage Optimization in ReRAM-Based DNN Accelerators
by Hsu-Yu Kao, Liang-Ying Su, Shih-Hsu Huang and Wei-Kai Cheng
Electronics 2025, 14(12), 2352; https://doi.org/10.3390/electronics14122352 - 8 Jun 2025
Cited by 1 | Viewed by 503
Abstract
ReRAM-based DNN accelerators have emerged as a promising solution to mitigate the von Neumann bottleneck. While prior research has introduced tools for simulating the hardware behavior of ReRAM’s non-linear characteristics, there remains a notable gap in high-level design automation tools capable of efficiently [...] Read more.
ReRAM-based DNN accelerators have emerged as a promising solution to mitigate the von Neumann bottleneck. While prior research has introduced tools for simulating the hardware behavior of ReRAM’s non-linear characteristics, there remains a notable gap in high-level design automation tools capable of efficiently deploying DNN models onto ReRAM-based accelerators with simultaneous optimization of execution time and memory usage. In this paper, we propose a neural network compiler built on the open-source TVM framework to address this challenge. The compiler incorporates both layer fusion and model partitioning techniques to enhance data storage efficiency. The core contribution of our work is an algorithm that determines the optimal mapping strategy by jointly considering layer fusion and model partitioning under hardware resource constraints. Experimental evaluations demonstrate that the proposed compiler adapts effectively to varying hardware resource limitations, enabling efficient storage optimization and supporting early-stage design space exploration. Full article
(This article belongs to the Special Issue Research on Key Technologies for Hardware Acceleration)
Show Figures

Figure 1

15 pages, 1351 KiB  
Article
Assessing the Viability of Segmental Aneuploid Embryos: A Chromosomal Concordance Study of 175 Human Blastocysts
by En-Hui Cheng, Hui-Hsin Shih, Tsung-Hsien Lee, Pin-Yao Lin, Tzu-Ning Yu, Chun-Chia Huang, Maw-Sheng Lee and Chun-I Lee
Int. J. Mol. Sci. 2025, 26(11), 5284; https://doi.org/10.3390/ijms26115284 - 30 May 2025
Viewed by 867
Abstract
Preimplantation genetic testing for aneuploidy (PGT-A) is widely used to select euploid embryos for in vitro fertilization (IVF), but its accuracy in predicting the implantation potential for full segmental aneuploid (Seg-A) embryos remains unclear. In this study, we investigated chromosomal concordance between clinically [...] Read more.
Preimplantation genetic testing for aneuploidy (PGT-A) is widely used to select euploid embryos for in vitro fertilization (IVF), but its accuracy in predicting the implantation potential for full segmental aneuploid (Seg-A) embryos remains unclear. In this study, we investigated chromosomal concordance between clinically biopsied trophectoderm (TE) and inner cell mass (ICM) in 175 donated blastocysts, which comprised those clinically diagnosed as euploid (13), Seg-A (36), segmental mosaicism (Seg-M) (60), whole-chromosome aneuploid (Who-A) (52), and whole-chromosome mosaicism (14). Using next-generation sequencing (NGS), we found that TE–ICM concordance rates were higher for euploid (85%) and Who-A (94%) embryos but significantly lower for Seg-A (25%) and Seg-M embryos (33%). For Seg-A, the euploidy rate in the ICM was 19% and the euploidy rate in the ICM was 63% for Seg-M. These low concordance rates may be due to technical and biological artifacts of PGT-A for Seg-A. Despite the significant discordance between TE and ICM, a subset of Seg-A embryos demonstrated euploidy. While clinically diagnosed euploid embryos remain the preferred choice, Seg-A embryos should be considered as having implantation potential. In particular, Seg-A results should be clearly distinguished from Who-A results and not routinely categorically discarded. Further research is required to refine the selection criteria, aided by parental karyotyping or re-biopsy, and to develop more reliable embryo assessment methods to ensure the accurate evaluation of reproductive potential and support shared decision making between doctors and patients. Full article
(This article belongs to the Special Issue Latest Advances in Reproduction Biology)
Show Figures

Figure 1

Back to TopTop