Assessing the Viability of Segmental Aneuploid Embryos: A Chromosomal Concordance Study of 175 Human Blastocysts
Abstract
1. Introduction
2. Results
2.1. Overall Concordance and Discordance Analysis
2.2. Euploidy and Aneuploidy Concordance
2.3. Sensitivity and Specificity of Embryo Implantation Potential
2.4. Correlation Between ICM Status and TE Biopsy in Seg-A and Seg-M
3. Discussion
4. Materials and Methods
4.1. Ethics Approval and Consent to Participate
4.2. Clinical PGT-A and Donated Embryos Using Next Generation Sequence (NGS)
4.3. Ovarian Stimulation, IVF, and Embryo Culture
4.4. TE Biopsy and Embryo Cryopreservation
4.5. Thawed Blastocysts and Biopsy of ICM
4.6. NGS Protocol for PGT-A
4.7. Data Availability
4.8. Definition of Chromosome Concordance and Discordance
4.9. Evaluation Sensitivity and Specificity of Embryo Implantation Potential
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Theobald, R.; SenGupta, S.; Harper, J. The status of preimplantation genetic testing in the UK and USA. Hum. Reprod. 2020, 35, 986–998. [Google Scholar] [CrossRef]
- Lee, E.; Illingworth, P.; Wilton, L.; Chambers, G.M. The clinical effectiveness of preimplantation genetic diagnosis for aneuploidy in all 24 chromosomes (PGD-A): Systematic review. Hum. Reprod. 2015, 30, 473–483. [Google Scholar] [CrossRef]
- Natsuaki, M.N.; Dimler, L.M. Pregnancy and child developmental outcomes after preimplantation genetic screening: A meta-analytic and systematic review. World J. Pediatr. 2018, 14, 555–569. [Google Scholar] [CrossRef]
- Armstrong, A.; Kroener, L.; Miller, J.; Nguyen, A.; Kwan, L.; Quinn, M. The nature of embryonic mosaicism across female age spectrum: An analysis of 21,345 preimplantation genetic testing for aneuploidy cycles. F S Rep. 2023, 4, 256–261. [Google Scholar] [CrossRef]
- Gleicher, N.; Patrizio, P.; Mochizuki, L.; Barad, D.H. Previously reported and here added cases demonstrate euploid pregnancies followed by PGT-A as “mosaic” as well as “aneuploid” designated embryos. Reprod. Biol. Endocrinol. 2023, 21, 25. [Google Scholar] [CrossRef]
- Gleicher, N.; Albertini, D.F.; Barad, D.H.; Homer, H.; Modi, D.; Murtinger, M.; Patrizio, P.; Orvieto, R.; Takahashi, S.; Weghofer, A.; et al. The 2019 PGDIS position statement on transfer of mosaic embryos within a context of new information on PGT-A. Reprod. Biol. Endocrinol. 2020, 18, 57. [Google Scholar] [CrossRef]
- Treff, N.R.; Franasiak, J.M. Detection of segmental aneuploidy and mosaicism in the human preimplantation embryo: Technical considerations and limitations. Fertil. Steril. 2017, 107, 27–31. [Google Scholar] [CrossRef]
- Picchetta, L.; Ottolini, C.S.; O’Neill, H.C.; Capalbo, A. Investigating the significance of segmental aneuploidy findings in preimplantation embryos. F S Sci. 2023, 4, 17–26. [Google Scholar] [CrossRef]
- Besser, A.; Weidenbaum, E.; Buldo-Licciardi, J.; McCaffrey, C.; Grifo, J.; Blakemore, J. Healthy live births achieved from embryos diagnosed as non-mosaic segmental aneuploid. J. Assist. Reprod. Genet. 2024, 41, 3379–3385. [Google Scholar] [CrossRef]
- Chuang, T.H.; Hsieh, J.Y.; Lee, M.J.; Lai, H.H.; Hsieh, C.L.; Wang, H.L.; Chang, Y.J.; Chen, S.U. Concordance between different trophectoderm biopsy sites and the inner cell mass of chromosomal composition measured with a next-generation sequencing platform. Mol. Hum. Reprod. 2018, 24, 593–601. [Google Scholar] [CrossRef]
- Victor, A.R.; Griffin, D.K.; Brake, A.J.; Tyndall, J.C.; Murphy, A.E.; Lepkowsky, L.T.; Lal, A.; Zouves, C.G.; Barnes, F.L.; McCoy, R.C.; et al. Assessment of aneuploidy concordance between clinical trophectoderm biopsy and blastocyst. Hum. Reprod. 2019, 34, 181–192. [Google Scholar] [CrossRef]
- Navratil, R.; Horak, J.; Hornak, M.; Kubicek, D.; Balcova, M.; Tauwinklova, G.; Travnik, P.; Vesela, K. Concordance of various chromosomal errors among different parts of the embryo and the value of re-biopsy in embryos with segmental aneuploidies. Mol. Hum. Reprod. 2020, 26, 269–276. [Google Scholar] [CrossRef]
- McCarty, K.J.; Haywood, M.E.; Lee, R.; Henry, L.; Arnold, A.; McReynolds, S.; McCallie, B.; Schoolcraft, B.; Katz-Jaffe, M. Segmental aneuploid hotspots identified across the genome concordant on reanalysis. Mol. Hum. Reprod. 2022, 29, gaac040. [Google Scholar] [CrossRef]
- Huang, J.; Yan, L.; Lu, S.; Zhao, N.; Qiao, J. Re-analysis of aneuploidy blastocysts with an inner cell mass and different regional trophectoderm cells. J. Assist. Reprod. Genet. 2017, 34, 487–493. [Google Scholar] [CrossRef]
- Leigh, D.; Cram, D.S.; Rechitsky, S.; Handyside, A.; Wells, D.; Munne, S.; Kahraman, S.; Grifo, J.; Katz-Jaffe, M.; Rubio, C.; et al. PGDIS position statement on the transfer of mosaic embryos 2021. Reprod. Biomed. Online 2022, 45, 19–25. [Google Scholar] [CrossRef]
- Gleicher, N.; Mochizuki, L.; Barad, D.H.; Patrizio, P.; Orvieto, R. A review of the 2021/2022 PGDIS Position Statement on the transfer of mosaic embryos. J. Assist. Reprod. Genet. 2023, 40, 817–826. [Google Scholar] [CrossRef]
- Abhari, S.; Kawwass, J.F. Pregnancy and Neonatal Outcomes after Transfer of Mosaic Embryos: A Review. J. Clin. Med. 2021, 10, 1369. [Google Scholar] [CrossRef]
- The use of preimplantation genetic testing for aneuploidy: A committee opinion. Fertil. Steril. 2024, 122, 421–434. [CrossRef]
- Girardi, L.; Serdarogullari, M.; Patassini, C.; Poli, M.; Fabiani, M.; Caroselli, S.; Coban, O.; Findikli, N.; Boynukalin, F.K.; Bahceci, M.; et al. Incidence, Origin, and Predictive Model for the Detection and Clinical Management of Segmental Aneuploidies in Human Embryos. Am. J. Hum. Genet. 2020, 106, 525–534. [Google Scholar] [CrossRef]
- Scott, R.T., Jr. Introduction: Subchromosomal abnormalities in preimplantation embryonic aneuploidy screening. Fertil. Steril. 2017, 107, 4–5. [Google Scholar] [CrossRef]
- García-Pascual, C.M.; Navarro-Sánchez, L.; Navarro, R.; Martínez, L.; Jiménez, J.; Rodrigo, L.; Simón, C.; Rubio, C. Optimized NGS Approach for Detection of Aneuploidies and Mosaicism in PGT-A and Imbalances in PGT-SR. Genes 2020, 11, 724. [Google Scholar] [CrossRef]
- Barad, D.H.; Albertini, D.F.; Molinari, E.; Gleicher, N. IVF outcomes of embryos with abnormal PGT-A biopsy previously refused transfer: A prospective cohort study. Hum. Reprod. 2022, 37, 1194–1206. [Google Scholar] [CrossRef]
- Daughtry, B.L.; Rosenkrantz, J.L.; Lazar, N.H.; Fei, S.S.; Redmayne, N.; Torkenczy, K.A.; Adey, A.; Yan, M.; Gao, L.; Park, B.; et al. Single-cell sequencing of primate preimplantation embryos reveals chromosome elimination via cellular fragmentation and blastomere exclusion. Genome Res. 2019, 29, 367–382. [Google Scholar] [CrossRef]
- Singla, S.; Iwamoto-Stohl, L.K.; Zhu, M.; Zernicka-Goetz, M. Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism. Nat. Commun. 2020, 11, 2958. [Google Scholar] [CrossRef]
- Lin, P.Y.; Lee, C.I.; Cheng, E.H.; Huang, C.C.; Lee, T.H.; Shih, H.H.; Pai, Y.P.; Chen, Y.C.; Lee, M.S. Clinical Outcomes of Single Mosaic Embryo Transfer: High-Level or Low-Level Mosaic Embryo, Does it Matter? J. Clin. Med. 2020, 9, 1695. [Google Scholar] [CrossRef]
- Viotti, M.; Greco, E.; Grifo, J.A.; Madjunkov, M.; Librach, C.; Cetinkaya, M.; Kahraman, S.; Yakovlev, P.; Kornilov, N.; Corti, L.; et al. Chromosomal, gestational, and neonatal outcomes of embryos classified as a mosaic by preimplantation genetic testing for aneuploidy. Fertil. Steril. 2023, 120, 957–966. [Google Scholar] [CrossRef]
- Van der Aa, N.; Cheng, J.; Mateiu, L.; Zamani Esteki, M.; Kumar, P.; Dimitriadou, E.; Vanneste, E.; Moreau, Y.; Vermeesch, J.R.; Voet, T. Genome-wide copy number profiling of single cells in S-phase reveals DNA-replication domains. Nucleic Acids Res. 2013, 41, e66. [Google Scholar] [CrossRef]
- Tiegs, A.W.; Tao, X.; Zhan, Y.; Whitehead, C.; Kim, J.; Hanson, B.; Osman, E.; Kim, T.J.; Patounakis, G.; Gutmann, J.; et al. A multicenter, prospective, blinded, nonselection study evaluating the predictive value of an aneuploid diagnosis using a targeted next-generation sequencing based preimplantation genetic testing for aneuploidy assay and impact of biopsy. Fertil. Steril. 2021, 115, 627–637. [Google Scholar] [CrossRef]
- Lee, C.I.; Chen, C.H.; Huang, C.C.; Cheng, E.H.; Chen, H.H.; Ho, S.T.; Lin, P.Y.; Lee, M.S.; Lee, T.H. Embryo morphokinetics is potentially associated with clinical outcomes of single-embryo transfers in preimplantation genetic testing for aneuploidy cycles. Reprod. Biomed. Online 2019, 39, 569–579. [Google Scholar] [CrossRef]
- Gardner, D.K.; Lane, M.; Stevens, J.; Schlenker, T.; Schoolcraft, W.B. Blastocyst score affects implantation and pregnancy outcome: Towards a single blastocyst transfer. Fertil. Steril. 2000, 73, 1155–1158. [Google Scholar] [CrossRef]
- Gutnisky, C.; Alvarez, G.M.; Cetica, P.D.; Dalvit, G.C. Evaluation of the Cryotech Vitrification Kit for bovine embryos. Cryobiology 2013, 67, 391–393. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.H.; Huang, C.C.; Cheng, E.H.; Lee, T.H.; Chien, L.F.; Lee, M.S. Optimal timing of blastocyst vitrification after trophectoderm biopsy for preimplantation genetic screening. PLoS ONE 2017, 12, e0185747. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.I.; Cheng, E.H.; Lee, M.S.; Lin, P.Y.; Chen, Y.C.; Chen, C.H.; Huang, L.S.; Huang, C.C.; Lee, T.H. Healthy live births from transfer of low-mosaicism embryos after preimplantation genetic testing for aneuploidy. J. Assist. Reprod. Genet. 2020, 37, 2305–2313. [Google Scholar] [CrossRef]
- Munné, S.; Blazek, J.; Large, M.; Martinez-Ortiz, P.A.; Nisson, H.; Liu, E.; Tarozzi, N.; Borini, A.; Becker, A.; Zhang, J.; et al. Detailed investigation into the cytogenetic constitution and pregnancy outcome of replacing mosaic blastocysts detected with the use of high-resolution next-generation sequencing. Fertil. Steril. 2017, 108, 62–71.e8. [Google Scholar] [CrossRef] [PubMed]
- Viotti, M.; Victor, A.R.; Barnes, F.L.; Zouves, C.G.; Besser, A.G.; Grifo, J.A.; Cheng, E.H.; Lee, M.S.; Horcajadas, J.A.; Corti, L.; et al. Using outcome data from one thousand mosaic embryo transfers to formulate an embryo ranking system for clinical use. Fertil. Steril. 2021, 115, 1212–1224. [Google Scholar] [CrossRef]
Patient Characteristics a | |
---|---|
IVF cycles | 89 |
Mean age ± SD (yr) | 36.0 ± 4.1 b |
BMI (kg/m2) | 21.7 ± 3.1 b |
AMH (ng/mL) | 4.9 ± 3.3 b |
PGT-A Indicator | |
Egg donation | 1 |
Advanced maternal age (≧38 years) | 24 |
Repeated miscarriage (≧2 times) | 16 |
Repeat implantation failure (≧3 times) | 29 |
Male factor (severe oligospermia) | 1 |
Others c | 18 |
Total Blastocysts | 175 |
Biopsied on day 5 | 69.1% (121/175) |
Biopsied on day 6 | 30.9% (54/175) |
Embryo Quality (SART grading system) | |
Good | 13.1% (23/175) |
Fair | 82.9% (145/175) |
Poor | 4% (7/175) |
Original TE | No of Implantation Potential | Sensitivity | Specificity | PPV | NPV | |
---|---|---|---|---|---|---|
Low (TP) | High (FP) | |||||
Euploidy (reference) | 1 (FN) | 12 (TN) | - | - | - | |
Seg-A | 17 | 19 | 94.4% | 38.7% | 47.2% | 92.3% |
Seg-M | 5 | 55 | 83.3% | 17.9% | 8.3% | 92.3% |
Who-M | 7 | 7 | 87.5% | 63.2% | 50.0% | 92.3% |
Who-A | 52 | 0 | 98.1% | 100.0% | 100.0% | 92.3% |
No. | Embryo Quality | Seg-A of Original TE Biopsy | Estimated Size of Seg-A (Mb) | PGT-A Classification of ICM | NGS Results for ICM |
---|---|---|---|---|---|
1 | 4BB | gain 6q13~27. | 80 | EU | Euploidy |
2 | 5BB | loss 6q25.3~27. | 50 | EU | Euploidy |
3 | 5BB | gain 6q15~27. | 60 | EU | Euploidy |
4 | 4AA | loss 7p22.3~15.1. | 30 | EU | Euploidy |
5 | 3AB | gain 11p15.5~15.2. | 15 | EU | Euploidy |
6 | 4AB | loss 13q31.1~34. | 25 | EU | Euploidy |
7 | 5BB | gain 16p13.3~12.3. | 10 | EU | Euploidy |
8 | 5BB | gain 1q12~44. | 130 | Seg-M | Mosaicism, XY; 30% mosaic gain of 11p11.2~q12.2; 30% mosaic loss of 1q21.2~44 |
9 | 4BB | gain 1q32.1~44. | 95 | Seg-M | Mosaicism, XX; 30% mosaic gain of 8q24.12~24.3; 30% mosaic loss of 2q32.1~37.3 and 9p24.3~21.1 |
10 | 5BB | gain 4p14~q13.1. | 140 | Seg-M | Mosaicism, XY; 40% mosaic loss of 5p15.33~15.2; 30% mosaic loss of 2p25.3~23.3 |
11 | 5CB | loss 4q31.3~35.2. | 50 | Seg-M | Mosaicism, XY; 60% mosaic loss of 4q31.3~4q35.2; 30% mosaic loss of 10q26.13~10q26.3 |
12 | 5BC | loss 5q12.1~14.1. | 15 | Seg-M | Mosaicism, XX; 80% mosaic loss of 5q12.1~14.1 |
13 | 5BC | loss 6p25.3~21.33. | 20 | Seg-M | Mosaicism, XX; 50% mosaic loss of 6p25.3~6p21.33, 6q26~6q27; 30% mosaic loss of 2p25.3~2p24.1 |
14 | 5BB | loss 6q25.3~27. | 50 | Seg-M | Mosaicism, XY; 30% mosaic loss of chr6 |
15 | 5BB | gain 7q21.12~36.3. | 35 | Seg-M | Mosaicism, XX; 30% mosaic gain of 11q24.2~25 |
16 | 4BB | loss 7q33~36.3 | 23 | Seg-M | Mosaicism, XX; 80% mosaic loss of 7q33~36.3 |
17 | 5BC | loss 7q31.31~36.3. | 10 | Seg-M | Mosaicism, XY; 60% mosaic gain of 7q31.1~31.31; 60% mosaic loss of 7q31.31~36.3 |
18 | 5BA | gain 8q22.1~24.3. | 40 | Seg-M | Mosaicism, XY; 40% mosaic loss of 5p15.33~15.2, 6q26~27; 30% mosaic gain of 19p13.3~12; 30% mosaic loss of 14q32.12~32.33 |
19 | 5BB | gain 9p24.3~23. | 20 | Seg-M | Mosaicism, XY; 30% mosaic loss of 9p24.3~23 |
20 | 4BB | gain 12q13.11~24.33. | 60 | Seg-M | Mosaicism, XX; 30% mosaic loss of 5p15.33~15.2, 7q35~36.3, 13q33.1~34 |
21 | 3BB | gain 13q12.11~21.32. | 30 | Seg-M | Mosaicism, XY; 40% mosaic loss of 13q21.32~34; 30% mosaic gain of 19p13.3~12 |
22 | 3BB | gain 16p13.3~q11.2. | 63 | Seg-M | Mosaicism, XX; 80% mosaic gain of 16p13.3~q11.2 |
23 | 5BA | gain 18p11.32~q11.2 | 45 | Seg-M | Mosaicism, XY; 30% mosaic gain of 19q13.11~13.42, 19p13.3~12; 30% mosaic loss of 2p25.3~24.1 |
24 | 4BA | gain 22q12.2~13.33. | 10 | Seg-M | Mosaicism, XY; 30% mosaic loss of 5p15.33~15.1 |
25 | 4BB | loss Xp22.33~11.3. | 25 | Seg-M | Mosaicism, XX; 60% mosaic loss of Xp22.33~Xp11.3; 30% mosaic gain of 4p16.1~14 and 19p13.3~13.11) |
26 | 4BB | loss 3p26.3~14.1. | 35 | Seg-A | Aneuploidy, XY; loss 3p26.3~14.1. |
27 | 3BB | loss 4q22.3~35.2. | 75 | Seg-A | Aneuploidy, XX; loss 4q22.2~35.2. |
28 | 5BB | loss 5q34~35.3. | 10 | Seg-A | Aneuploidy, XY; loss 5q34~35.3. |
29 | 5BB | loss 8q21.11~24.3. | 30 | Seg-A | Aneuploidy, XX; gain 3q27.3~3q29, loss 8q21.11~24.3. |
30 | 5BC | loss 8q24.12~24.3. | 10 | Seg-A | Aneuploidy, XX; loss 8q24.12~24.3. |
31 | 6BB | loss 12p13.33~11.21. | 35 | Seg-A | Aneuploidy, XY; loss 12p13.33~11.21. |
32 | 5BB | loss 17q22~24.3. | 20 | Seg-A | Aneuploidy, XY; loss 17q22~24.3. |
33 | 5BC | loss 18q22.1~23. | 10 | Seg-A | Aneuploidy, XY; loss 18q22.1~23. |
34 | 5BC | loss Xq25~28. | 20 | Seg-A | Aneuploidy, XX; loss Xq25~28. |
35 | 5BB | loss 4q25~35.2. | 60 | Who-A | Aneuploidy, XY; loss chr 4. |
36 | 5BA | gain 14q23.2~24.3, loss 21q22.11~22.3. | 10 10 | Who-A | Aneuploidy, XY; loss chr21. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, E.-H.; Shih, H.-H.; Lee, T.-H.; Lin, P.-Y.; Yu, T.-N.; Huang, C.-C.; Lee, M.-S.; Lee, C.-I. Assessing the Viability of Segmental Aneuploid Embryos: A Chromosomal Concordance Study of 175 Human Blastocysts. Int. J. Mol. Sci. 2025, 26, 5284. https://doi.org/10.3390/ijms26115284
Cheng E-H, Shih H-H, Lee T-H, Lin P-Y, Yu T-N, Huang C-C, Lee M-S, Lee C-I. Assessing the Viability of Segmental Aneuploid Embryos: A Chromosomal Concordance Study of 175 Human Blastocysts. International Journal of Molecular Sciences. 2025; 26(11):5284. https://doi.org/10.3390/ijms26115284
Chicago/Turabian StyleCheng, En-Hui, Hui-Hsin Shih, Tsung-Hsien Lee, Pin-Yao Lin, Tzu-Ning Yu, Chun-Chia Huang, Maw-Sheng Lee, and Chun-I Lee. 2025. "Assessing the Viability of Segmental Aneuploid Embryos: A Chromosomal Concordance Study of 175 Human Blastocysts" International Journal of Molecular Sciences 26, no. 11: 5284. https://doi.org/10.3390/ijms26115284
APA StyleCheng, E.-H., Shih, H.-H., Lee, T.-H., Lin, P.-Y., Yu, T.-N., Huang, C.-C., Lee, M.-S., & Lee, C.-I. (2025). Assessing the Viability of Segmental Aneuploid Embryos: A Chromosomal Concordance Study of 175 Human Blastocysts. International Journal of Molecular Sciences, 26(11), 5284. https://doi.org/10.3390/ijms26115284