Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (127)

Search Parameters:
Authors = Shubham Sharma ORCID = 0000-0001-9446-8074

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3023 KiB  
Article
Slip-Resistance Performance of Basketball Shoes Tread Patterns on Common Courts
by Pramod Yadav, Shubham Gupta, Dishant Sharma and Arnab Chanda
Appl. Mech. 2025, 6(3), 54; https://doi.org/10.3390/applmech6030054 - 24 Jul 2025
Viewed by 414
Abstract
Basketball requires intense movements like jumping and sudden changes in direction, increasing the risk of slips and falls due to poor shoe–court traction. Therefore, a significant demand is for good traction performance in basketball shoes, particularly in the heel region on different court [...] Read more.
Basketball requires intense movements like jumping and sudden changes in direction, increasing the risk of slips and falls due to poor shoe–court traction. Therefore, a significant demand is for good traction performance in basketball shoes, particularly in the heel region on different court surfaces, to prevent slipping. This study examined the traction performance of fifteen common basketball shoe designs that were considered and developed using thermoplastic polyurethane to assess the available coefficient of friction (ACOF) on popular floorings (hardwood, synthetic, and polyurethane) under dry and wet conditions using a robotic slip tester. Results indicate that the hardwood flooring provided better traction, followed by the synthetic flooring, while the polyurethane flooring showed reduced friction. The study also examined the traction with apparent contact areas. Shoes with herringbone and circular tread patterns demonstrated the highest traction on all flooring in dry conditions. This research is anticipated to help basketball shoemakers choose safer shoes for player safety and performance, providing a foundation for future research on shoe flooring interaction in basketball. Full article
Show Figures

Graphical abstract

21 pages, 7883 KiB  
Article
Transcriptomic Analysis to Understand the Nitrogen Stress Response Mechanism in BNI-Enabled Wheat
by Chandra Nath Mishra, Sushma Kumari Pawar, Swati Sharma, Arun Thakur, Sabhyata Sabhyata, Shubham Mishra, Satish Kumar, Om Prakash Gupta, Arun Kumar Joshi and Ratan Tiwari
Int. J. Mol. Sci. 2025, 26(10), 4610; https://doi.org/10.3390/ijms26104610 - 12 May 2025
Viewed by 549
Abstract
A comparative transcriptomic analysis was conducted for the nitrogen-efficient (BNI-Munal) and derivative parent Munal wheat genotypes to unravel the gene expression patterns across four nitrogen levels (0%, 50%, 75%, and 100%). Analyzing the genes of BNI-enabled wheat helps us understand how they are [...] Read more.
A comparative transcriptomic analysis was conducted for the nitrogen-efficient (BNI-Munal) and derivative parent Munal wheat genotypes to unravel the gene expression patterns across four nitrogen levels (0%, 50%, 75%, and 100%). Analyzing the genes of BNI-enabled wheat helps us understand how they are expressed differently, which heavily influences BNI activity. Grain yield and 1000-grain weight were higher in BNI Munal than in Munal. All the other traits were similar in performance. Varying nitrogen dosages led to significant differences in gene expression patterns between the two genotypes. Genes related to binding and catalytic activity were prevalent among molecular functions, while genes corresponding to cellular anatomical entities dominated the cellular component category. Differential expression was observed in 371 genes at 0%N, 261 genes at 50%N, 303 genes at 75%N, and 736 genes at 100%N. Five unigenes (three upregulated and two downregulated) were consistently expressed across all nitrogen levels. Further analysis of upregulated unigenes identified links to the NrpA gene (involved in nitrogen regulation), tetratricopeptide repeat-containing protein (PPR), and cytokinin dehydrogenase 2. Analysis of downregulated genes pointed to associations with the Triticum aestivum 3BS-specific BAC library, which encodes the NPF (Nitrate and Peptide Transporter Family) and the TaVRN gene family (closely related to the TaNUE1 gene). The five unigenes and one unigene highlighted in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were validated in Munal and BNI Munal. The results obtained will enhance our understanding about gene expression patterns across different nitrogen levels in BNI wheat and help us breed wheat varieties with the BNI trait for improved NUE. Full article
(This article belongs to the Special Issue Plant Nitrogen Metabolism: Current Status and Future Directions)
Show Figures

Figure 1

14 pages, 3406 KiB  
Article
Implication of Surface Passivation on the In-Plane Charge Transport in the Oriented Thin Films of P3HT
by Nisarg Hirens Purabiarao, Kumar Vivek Gaurav, Shubham Sharma, Yoshito Ando and Shyam Sudhir Pandey
Electron. Mater. 2025, 6(2), 6; https://doi.org/10.3390/electronicmat6020006 - 7 May 2025
Viewed by 1111
Abstract
Optimizing charge transport in organic semiconductors is crucial for advancing next-generation optoelectronic devices. The performance of organic field-effect transistors (OFETs) is significantly influenced by the alignment of films in the channel direction and the quality of the dielectric surface, which should be uniform, [...] Read more.
Optimizing charge transport in organic semiconductors is crucial for advancing next-generation optoelectronic devices. The performance of organic field-effect transistors (OFETs) is significantly influenced by the alignment of films in the channel direction and the quality of the dielectric surface, which should be uniform, smooth, and free of charge-trapping defects. Our study reports the enhancement of OFET performance using large-area, uniform, and oriented thin films of regioregular poly[3-hexylthiophene] (RR-P3HT), prepared via the Floating Film Transfer Method (FTM) on octadecyltrichlorosilane (OTS) passivated SiO2 surfaces. SiO2 surfaces inherently possess dangling bonds that act as charge traps, but these can be effectively passivated through optimized surface treatments. OTS treatment has improved the optical anisotropy of thin films and the surface wettability of SiO2. Notably, using octadecene as a solvent during OTS passivation, as opposed to toluene, resulted in a significant enhancement of charge carrier transport. Specifically, passivation with OTS-F (10 mM OTS in octadecene at 100 °C for 48 h) led to a >150 times increase in mobility and a reduction in threshold voltage compared to OTS-A (5 mM OTS in toluene for 12 h at room temperature). Under optimal conditions, these FTM-processed RR-P3HT films achieved the best device performance, with a saturated mobility (μsat) of 0.18 cm2V−1s−1. Full article
Show Figures

Figure 1

22 pages, 5739 KiB  
Article
Development and Validation of AAV-Mediated Liver, Liver-VAT, and Liver-Brain SORT and Therapeutic Regulation of FASN in Hepatic De Novo Lipogenesis
by Ratulananda Bhadury, Mohammad Athar, Pooja Mishra, Chayanika Gogoi, Shubham Sharma and Devram S. Ghorpade
Cells 2025, 14(5), 372; https://doi.org/10.3390/cells14050372 - 4 Mar 2025
Viewed by 2470
Abstract
Hepatic lipogenesis combined with elevated endoplasmic reticulum (ER) stress is central to non-alcoholic steatohepatitis (NASH). However, the therapeutic targeting of key molecules is considerably less accomplished. Adeno-associated virus (AAV)-mediated gene therapies offer a new solution for various human ailments. Comprehensive bio-functional validation studies [...] Read more.
Hepatic lipogenesis combined with elevated endoplasmic reticulum (ER) stress is central to non-alcoholic steatohepatitis (NASH). However, the therapeutic targeting of key molecules is considerably less accomplished. Adeno-associated virus (AAV)-mediated gene therapies offer a new solution for various human ailments. Comprehensive bio-functional validation studies are essential to assess the impact of AAVs in the target organ for developing both preclinical and clinical gene therapy programs. Here, we have established a robust and efficient protocol for high-titer AAV production to enable detailed Selective ORgan Targeting (SORT) of AAV1, 5, 7, and 8 in vivo. Our results for in vivo SORT showed single organ (liver) targeting by AAV8, no organ targeting by AAV1, and dual organ transduction (liver-brain and liver-VAT) by AAV5 and AAV7. Using a human dataset and preclinical murine models of NASH, we identified an inverse correlation between ER stress-triggered CRELD2 and the de novo lipogenesis driver FASN. Furthermore, liver-specific silencing of CRELD2 via AAV8-shCreld2 strongly supports the contribution of CRELD2 to de novo lipogenesis through FASN regulation. Thus, our study demonstrates a robust method for producing clinically translatable AAVs that could be readily adapted for liver and/or liver-VAT or liver-brain targeted gene therapy. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Liver Diseases)
Show Figures

Figure 1

26 pages, 2012 KiB  
Review
Biofuels from Microalgae: A Review on Microalgae Cultivation, Biodiesel Production Techniques and Storage Stability
by Amit Kumar Sharma, Shivangi Jaryal, Shubham Sharma, Archana Dhyani, Bhagya Sindhu Tewari and Neelima Mahato
Processes 2025, 13(2), 488; https://doi.org/10.3390/pr13020488 - 10 Feb 2025
Cited by 5 | Viewed by 5163
Abstract
Rising global energy demands, depleting fossil fuel reserves, and growing environmental concerns have led to an increasing demand for clean and renewable energy sources. Recently, microalgae biofuels have emerged as a promising and sustainable energy source due to their high biomass productivity, lipid [...] Read more.
Rising global energy demands, depleting fossil fuel reserves, and growing environmental concerns have led to an increasing demand for clean and renewable energy sources. Recently, microalgae biofuels have emerged as a promising and sustainable energy source due to their high biomass productivity, lipid content, and wastewater treatment capabilities. However, the viability of microalgae biofuels as a commercial-scale renewable fuel remains uncertain due to high production costs and storage stability issues. This review focuses on advanced technologies aimed at enhancing both the production of microalgae biodiesel and its storage stability. It explores the potential and challenges of recent developments in microalgae cultivation systems, particularly those factors that have contributed to increased lipid content in microalgae biomass. The study also examines the role of industrial wastewater in promoting microalgae growth and provides an overview of recent advances in biodiesel production. Additionally, it discusses various strategies to improve the storage stability of biodiesel, a critical consideration for the commercialization of microalgae biodiesel. Full article
(This article belongs to the Special Issue Green Chemistry: From Wastes to Value-Added Products (2nd Edition))
Show Figures

Figure 1

21 pages, 2922 KiB  
Review
Recent Trends in Advanced Glycation End Products in Foods: Formation, Toxicity, and Innovative Strategies for Extraction, Detection, and Inhibition
by Shubham Singh Patel, Aarti Bains, Minaxi Sharma, Ankur Kumar, Baskaran Stephen Inbaraj, Prince Chawla and Kandi Sridhar
Foods 2024, 13(24), 4045; https://doi.org/10.3390/foods13244045 - 14 Dec 2024
Cited by 1 | Viewed by 7113
Abstract
Advanced glycation end products (AGEs) are produced in foods during their thermal treatment through routes like the Maillard reaction. They have been linked to various health issues such as diabetes, neurodegenerative disorders, and cardiovascular diseases. There are multiple pathways through which AGEs can [...] Read more.
Advanced glycation end products (AGEs) are produced in foods during their thermal treatment through routes like the Maillard reaction. They have been linked to various health issues such as diabetes, neurodegenerative disorders, and cardiovascular diseases. There are multiple pathways through which AGEs can form in foods and the body. Therefore, this review work aims to explore multiple formation pathways of AGEs to gain insights into their generation mechanisms. Furthermore, this review work has analyzed the recent trends in the detection and inhibition of AGEs in food matrices. It can be highlighted, based on the surveyed literature, that UHPLC-Orbitrap-Q-Exactive-MS and UPLC-ESI-MS/MS can produce highly sensitive results with a low limit of detection levels for AGEs in food matrices. Moreover, various works on inhibitory agents like spices, herbs, fruits, vegetables, hydrocolloids, plasma-activated water, and probiotic bacteria were assessed for their capacity to suppress the formation of AGEs in food products and simulation models. Overall, it is essential to decrease the occurrence of AGEs in food products, and future scope might include studying the interaction of macromolecular components in food products to minimize the production of AGEs without sacrificing the organoleptic qualities of processed foods. Full article
(This article belongs to the Special Issue Food Contaminants: Detection, Toxicity and Safety Risk Assessment)
Show Figures

Graphical abstract

28 pages, 5176 KiB  
Article
Pedestrian Interaction with a Novel Urban Light Rail Vehicle: Implications for Multi-Modal Crash Compatibility Standards
by Callum J. D. Bethell, Shubham Sharma, James Winnett and Darren J. Hughes
Future Transp. 2024, 4(4), 1177-1204; https://doi.org/10.3390/futuretransp4040057 - 14 Oct 2024
Viewed by 1778
Abstract
This work investigates the risk to Vulnerable Road Users (VRUs) from a novel light rail vehicle using the pedestrian impact scenario outlined in CEN/TR 17420. At a 20 km/h impact speed, a maximum head impact criterion (HIC15) value of 15.9 was [...] Read more.
This work investigates the risk to Vulnerable Road Users (VRUs) from a novel light rail vehicle using the pedestrian impact scenario outlined in CEN/TR 17420. At a 20 km/h impact speed, a maximum head impact criterion (HIC15) value of 15.9 was obtained for a 50th-percentile anthropometric test device (ATD), with this value increasing to 120.2 at 30 km/h impact speed. Both results are within the CEN/TR 17420 prescribed limit of 1000. In both cases, the vehicle does not fully comply with CEN/TR 17420 recommendations due to insufficient lateral displacement of the ATD post-impact. A vehicle front-end design—which would be exempt from the CEN/TR 17420 impact testing—was designed and tested to the same framework. Despite being formally exempt from testing, the design also did not fully comply with CEN/TR 17420 lateral displacement requirements. Critical evaluation of the CEN/TR 17420 framework is presented, leading to recommendations about how updated frameworks should take a pragmatic approach in how they define VRUs, and the measurement criteria used for assessing VRU risk in collisions. Discussions are presented considering whether alternative frameworks, such as the Bus Safety Standard, should be applicable to assess the safety of the novel light rail vehicle. Full article
(This article belongs to the Special Issue Emerging Issues in Transport and Mobility)
Show Figures

Figure 1

17 pages, 3395 KiB  
Article
Clarifying the Dominant Role of Crystallinity and Molecular Orientation in Differently Processed Thin Films of Regioregular Poly(3-hexylthiophene)
by Kumar Vivek Gaurav, Harshita Rai, Kshitij RB Singh, Shubham Sharma, Yoshito Ando and Shyam S. Pandey
Micromachines 2024, 15(6), 677; https://doi.org/10.3390/mi15060677 - 22 May 2024
Cited by 1 | Viewed by 1756
Abstract
Conjugated polymers (CPs) offer the potential for sustainable semiconductor devices due to their low cost and inherent molecular self-assembly. Enhanced crystallinity and molecular orientation in thin films of solution-processable CPs have significantly improved organic electronic device performance. In this work, three methods, namely [...] Read more.
Conjugated polymers (CPs) offer the potential for sustainable semiconductor devices due to their low cost and inherent molecular self-assembly. Enhanced crystallinity and molecular orientation in thin films of solution-processable CPs have significantly improved organic electronic device performance. In this work, three methods, namely spin coating, dip coating, and unidirectional floating-film transfer method (UFTM), were utilized with their parametric optimization for fabricating RR-P3HT films. These films were then utilized for their characterization via optical and microstructural analysis to elucidate dominant roles of molecular orientation and crystallinity in controlling charge transport in organic field-effect transistors (OFETs). OFETs fabricated by RR-P3HT thin films using spin coating and dip coating displayed field-effect mobility (μ) of 8.0 × 10−4 cm2V−1s−1 and 1.3 × 10−3 cm2V−1s−1, respectively. This two-time enhancement in µ for dip-coated films was attributed to its enhanced crystallinity. Interestingly, UFTM film-based OFETs demonstrated μ of 7.0 × 10−2 cm2V−1s−1, >100 times increment as compared to its spin-coated counterpart. This superior device performance is attributed to the synergistic influence of higher crystallinity and molecular orientation. Since the crystallinity of dip-coated and UFTM-thin films are similar, ~50 times improved µ of UFTM thin films, this suggests a dominant role of molecular orientation as compared to crystallinity in controlling the charge transport. Full article
(This article belongs to the Special Issue Organic Semiconductors and Devices)
Show Figures

Figure 1

13 pages, 2688 KiB  
Article
The Influence of a Microstructural Conformation of Oriented Floating Films of Semiconducting Polymers on Organic Device Performance
by Shubham Sharma, Kumar Vivek Gaurav, Shuichi Nagamatsu and Shyam S. Pandey
Polymers 2024, 16(5), 710; https://doi.org/10.3390/polym16050710 - 5 Mar 2024
Cited by 3 | Viewed by 1985
Abstract
Extended π-conjugation with backbone-planarity-driven π-π stacking dominates charge transport in semiconducting polymers (SCPs). The roles of SCP film morphology and macromolecular conformation concerning the substrate in influencing charge transport and its impact on device performance have been a subject of extensive debate. Face-on [...] Read more.
Extended π-conjugation with backbone-planarity-driven π-π stacking dominates charge transport in semiconducting polymers (SCPs). The roles of SCP film morphology and macromolecular conformation concerning the substrate in influencing charge transport and its impact on device performance have been a subject of extensive debate. Face-on SCPs promote out-of-plane charge transport primarily through π-π stacking, with conjugated polymeric chains assisting transport in connecting crystalline domains, whereas edge-on SCPs promote in-plane charge transport primarily through conjugation and π-π stacking. In this work, we fabricated three different types of devices, namely, organic field effect transistors, organic Schottky diodes, and organic bistable memristors, as representatives of planar and vertical devices. We demonstrate that a planar device, i.e., an organic field effect transistor, performs well in an edge-on conformation exhibiting a field-effect mobility of 0.12 cm2V−1s−1 and on/off ratio >104, whereas vertical devices, i.e., organic Schottky diodes and organic memristors, perform well in a face-on conformation, exhibiting exceptionally high on/off ratios of ~107 and 106, respectively. Full article
(This article belongs to the Special Issue New Progress in Semiconducting Polymer Nanoparticles)
Show Figures

Graphical abstract

19 pages, 10397 KiB  
Article
Genome-Wide Association Study (GWAS) for Identifying SNPs and Genes Related to Phosphate-Induced Phenotypic Traits in Tomato (Solanum lycopersicum L.)
by Haroon Rashid Hakla, Shubham Sharma, Mohammad Urfan, Rushil Mandlik, Surbhi Kumawat, Prakriti Rajput, Bhubneshwari Khajuria, Rehana Chowdhary, Rupesh Deshmukh, Rajib Roychowdhury and Sikander Pal
Plants 2024, 13(3), 457; https://doi.org/10.3390/plants13030457 - 5 Feb 2024
Cited by 6 | Viewed by 3910
Abstract
Phosphate (P) is a crucial macronutrient for normal plant growth and development. The P availability in soils is a limitation factor, and understanding genetic factors playing roles in plant adaptation for improving P uptake is of great biological importance. Genome-wide association studies (GWAS) [...] Read more.
Phosphate (P) is a crucial macronutrient for normal plant growth and development. The P availability in soils is a limitation factor, and understanding genetic factors playing roles in plant adaptation for improving P uptake is of great biological importance. Genome-wide association studies (GWAS) have become indispensable tools in unraveling the genetic basis of complex traits in various plant species. In this study, a comprehensive GWAS was conducted on diverse tomato (Solanum lycopersicum L.) accessions grown under normal and low P conditions for two weeks. Plant traits such as shoot height, primary root length, plant biomass, shoot inorganic content (SiP), and root inorganic content (RiP) were measured. Among several models of GWAS tested, the Bayesian-information and linkage disequilibrium iteratively nested keyway (BLINK) models were used for the identification of single nucleotide polymorphisms (SNPs). Among all the traits analyzed, significantly associated SNPs were recorded for PB, i.e., 1 SNP (SSL4.0CH10_49261145) under control P, SiP, i.e., 1 SNP (SSL4.0CH08_58433186) under control P and 1 SNP (SSL4.0CH08_51271168) under low P and RiP i.e., 2 SNPs (SSL4.0CH04_37267952 and SSL4.0CH09_4609062) under control P and 1 SNP (SSL4.0CH09_3930922) under low P condition. The identified SNPs served as genetic markers pinpointing regions of the tomato genome linked to P-responsive traits. The novel candidate genes associated with the identified SNPs were further analyzed for their protein-protein interactions using STRING. The study provided novel candidate genes, viz. Solyc10g050370 for PB under control, Solyc08g062490, and Solyc08g062500 for SiP and Solyc09g010450, Solyc09g010460, Solyc09g010690, and Solyc09g010710 for RiP under low P condition. These findings offer a glimpse into the genetic diversity of tomato accessions’ responses to P uptake, highlighting the potential for tailored breeding programs to develop P-efficient tomato varieties that could adapt to varying soil conditions, making them crucial for sustainable agriculture and addressing global challenges, such as soil depletion and food security. Full article
(This article belongs to the Special Issue Crop Improvement under a Changing Climate)
Show Figures

Figure 1

14 pages, 4823 KiB  
Article
Determining the Presence and Size of Shoulder Lesions in Sows Using Computer Vision
by Shubham Bery, Tami M. Brown-Brandl, Bradley T. Jones, Gary A. Rohrer and Sudhendu Raj Sharma
Animals 2024, 14(1), 131; https://doi.org/10.3390/ani14010131 - 29 Dec 2023
Cited by 8 | Viewed by 2343
Abstract
Shoulder sores predominantly arise in breeding sows and often result in untimely culling. Reported prevalence rates vary significantly, spanning between 5% and 50% depending upon the type of crate flooring inside a farm, the animal’s body condition, or an existing injury that causes [...] Read more.
Shoulder sores predominantly arise in breeding sows and often result in untimely culling. Reported prevalence rates vary significantly, spanning between 5% and 50% depending upon the type of crate flooring inside a farm, the animal’s body condition, or an existing injury that causes lameness. These lesions represent not only a welfare concern but also have an economic impact due to the labor needed for treatment and medication. The objective of this study was to evaluate the use of computer vision techniques in detecting and determining the size of shoulder lesions. A Microsoft Kinect V2 camera captured the top-down depth and RGB images of sows in farrowing crates. The RGB images were collected at a resolution of 1920 × 1080. To ensure the best view of the lesions, images were selected with sows lying on their right and left sides with all legs extended. A total of 824 RGB images from 70 sows with lesions at various stages of development were identified and annotated. Three deep learning-based object detection models, YOLOv5, YOLOv8, and Faster-RCNN, pre-trained with the COCO and ImageNet datasets, were implemented to localize the lesion area. YOLOv5 was the best predictor as it was able to detect lesions with an mAP@0.5 of 0.92. To estimate the lesion area, lesion pixel segmentation was carried out on the localized region using traditional image processing techniques like Otsu’s binarization and adaptive thresholding alongside DL-based segmentation models based on U-Net architecture. In conclusion, this study demonstrates the potential of computer vision techniques in effectively detecting and assessing the size of shoulder lesions in breeding sows, providing a promising avenue for improving sow welfare and reducing economic losses. Full article
(This article belongs to the Special Issue 2nd U.S. Precision Livestock Farming Conference)
Show Figures

Figure 1

15 pages, 488 KiB  
Article
An Efficient Bi-Parametric With-Memory Iterative Method for Solving Nonlinear Equations
by Ekta Sharma, Shubham Kumar Mittal, J. P. Jaiswal and Sunil Panday
AppliedMath 2023, 3(4), 1019-1033; https://doi.org/10.3390/appliedmath3040051 - 11 Dec 2023
Cited by 3 | Viewed by 1494
Abstract
New three-step with-memory iterative methods for solving nonlinear equations are presented. We have enhanced the convergence order of an existing eighth-order memory-less iterative method by transforming it into a with-memory method. Enhanced acceleration of the convergence order is achieved by introducing two self-accelerating [...] Read more.
New three-step with-memory iterative methods for solving nonlinear equations are presented. We have enhanced the convergence order of an existing eighth-order memory-less iterative method by transforming it into a with-memory method. Enhanced acceleration of the convergence order is achieved by introducing two self-accelerating parameters computed using the Hermite interpolating polynomial. The corresponding R-order of convergence of the proposed uni- and bi-parametric with-memory methods is increased from 8 to 9 and 10, respectively. This increase in convergence order is accomplished without requiring additional function evaluations, making the with-memory method computationally efficient. The efficiency of our with-memory methods NWM9 and NWM10 increases from 1.6818 to 1.7320 and 1.7783, respectively. Numeric testing confirms the theoretical findings and emphasizes the superior efficacy of suggested methods when compared to some well-known methods in the existing literature. Full article
(This article belongs to the Special Issue Contemporary Iterative Methods with Applications in Applied Sciences)
Show Figures

Figure 1

13 pages, 514 KiB  
Article
Derivative-Free Families of With- and Without-Memory Iterative Methods for Solving Nonlinear Equations and Their Engineering Applications
by Ekta Sharma, Sunil Panday, Shubham Kumar Mittal, Dan-Marian Joița, Lavinia Lorena Pruteanu and Lorentz Jäntschi
Mathematics 2023, 11(21), 4512; https://doi.org/10.3390/math11214512 - 1 Nov 2023
Cited by 5 | Viewed by 1519
Abstract
In this paper, we propose a new fifth-order family of derivative-free iterative methods for solving nonlinear equations. Numerous iterative schemes found in the existing literature either exhibit divergence or fail to work when the function derivative is zero. However, the proposed family of [...] Read more.
In this paper, we propose a new fifth-order family of derivative-free iterative methods for solving nonlinear equations. Numerous iterative schemes found in the existing literature either exhibit divergence or fail to work when the function derivative is zero. However, the proposed family of methods successfully works even in such scenarios. We extended this idea to memory-based iterative methods by utilizing self-accelerating parameters derived from the current and previous approximations. As a result, we increased the convergence order from five to ten without requiring additional function evaluations. Analytical proofs of the proposed family of derivative-free methods, both with and without memory, are provided. Furthermore, numerical experimentation on diverse problems reveals the effectiveness and good performance of the proposed methods when compared with well-known existing methods. Full article
(This article belongs to the Special Issue Advances in Linear Recurrence System)
Show Figures

Figure 1

52 pages, 11748 KiB  
Review
Nanofluids Minimal Quantity Lubrication Machining: From Mechanisms to Application
by Anxue Chu, Changhe Li, Zongming Zhou, Bo Liu, Yanbin Zhang, Min Yang, Teng Gao, Mingzheng Liu, Naiqing Zhang, Yusuf Suleiman Dambatta and Shubham Sharma
Lubricants 2023, 11(10), 422; https://doi.org/10.3390/lubricants11100422 - 2 Oct 2023
Cited by 40 | Viewed by 4948
Abstract
Minimizing the negative effects of the manufacturing process on the environment, employees, and costs while maintaining machining accuracy has long been a pursuit of the manufacturing industry. Currently, the nanofluid minimum quantity lubrication (NMQL) used in cutting and grinding has been studied as [...] Read more.
Minimizing the negative effects of the manufacturing process on the environment, employees, and costs while maintaining machining accuracy has long been a pursuit of the manufacturing industry. Currently, the nanofluid minimum quantity lubrication (NMQL) used in cutting and grinding has been studied as a useful technique for enhancing machinability and empowering sustainability. Previous reviews have concluded the beneficial effects of NMQL on the machining process and the factors affecting them, including nanofluid volume fraction and nanoparticle species. Nevertheless, the summary of the machining mechanism and performance evaluation of NMQL in processing different materials is deficient, which limits preparation of process specifications and popularity in factories. To fill this gap, this paper concentrates on the comprehensive assessment of processability based on tribological, thermal, and machined surface quality aspects for nanofluids. The present work attempts to reveal the mechanism of nanofluids in processing different materials from the viewpoint of nanofluids’ physicochemical properties and atomization performance. Firstly, the present study contrasts the distinctions in structure and functional mechanisms between different types of base fluids and nanoparticle molecules, providing a comprehensive and quantitative comparative assessment for the preparation of nanofluids. Secondly, this paper reviews the factors and theoretical models that affect the stability and various thermophysical properties of nanofluids, revealing that nanoparticles endow nanofluids with unique lubrication and heat transfer mechanisms. Finally, the mapping relationship between the parameters of nanofluids and material cutting performance has been analyzed, providing theoretical guidance and technical support for the industrial application and scientific research of nanofluids. Full article
Show Figures

Figure 1

25 pages, 11259 KiB  
Article
Parametric Optimization of Powder-Mixed EDM of AA2014/Si3N4/Mg/Cenosphere Hybrid Composites Using Fuzzy Logic: Analysis of Mechanical, Machining, Microstructural, and Morphological Characterizations
by G. Rajkumar, M. Saravanan, A. Bovas Herbert Bejaxhin, Shubham Sharma, Shashi Prakash Dwivedi, Rajeev Kumar and Sunpreet Singh
J. Compos. Sci. 2023, 7(9), 380; https://doi.org/10.3390/jcs7090380 - 11 Sep 2023
Cited by 55 | Viewed by 2606
Abstract
This research focuses on a comprehensive exploration of the experimental and mechanical aspects of the electrical discharge machining (EDM) process, specifically targeting the machining characteristics of AA2014/Si3N4/Mg/cenosphere hybrid composites. The aim is to optimize the process parameters for enhanced [...] Read more.
This research focuses on a comprehensive exploration of the experimental and mechanical aspects of the electrical discharge machining (EDM) process, specifically targeting the machining characteristics of AA2014/Si3N4/Mg/cenosphere hybrid composites. The aim is to optimize the process parameters for enhanced machining performance through a combination of testing, optimization, and modelling methodologies. The study examines the effects of key EDM variables—peak current, pulse on time, and pulse off time—on critical output responses: surface roughness (Ra), electrode wear rate (EWR), and material removal rate (MRR). Leveraging an L9 Taguchi orthogonal array experimental design, the impact of controllable factors on these responses is analysed. An integrated approach utilizing MATLAB’s logic toolbox and Mamdani’s technique is employed to model the EDM process, and a multiple-response performance index is calculated using fuzzy logic theory, enabling multiobjective optimizations. Furthermore, a mechanical behaviour evaluation of AA2014/Si3N4/Mg/cenosphere hybrid composites is performed through mechanical testing, with a comparison between experimental machining results and predicted values. Scanning electron microscopy (SEM) images reveal the presence of filler reinforcements within the base alloy, displaying an improved microstructure and uniform reinforcement dispersion. An X-ray diffraction (XRD) analysis confirms the major elemental constituents—aluminium, silicon, and magnesium—in the hybrid composites. A microstructural analysis of the hybrid metal matrix composites (MMCs) prepared for EDM showcases closely packed reinforcement structures, circular ash-coloured spots indicating silicon and nitrates, and a fine dispersion of cenosphere reinforcement particles. The study’s outcomes demonstrate a promising application potential for these hybrid composites in various fields. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

Back to TopTop