Parametric Optimization of Powder-Mixed EDM of AA2014/Si3N4/Mg/Cenosphere Hybrid Composites Using Fuzzy Logic: Analysis of Mechanical, Machining, Microstructural, and Morphological Characterizations
Abstract
:1. Introduction
- i.
- ii.
- iii.
- iv.
2. Materials and Methods
2.1. Material
2.2. Methods
3. Results and Discussion
3.1. Evaluations of Mechanical Behaviour of Representative Samples
3.1.1. Tensile Test
3.1.2. Compression Test
3.1.3. Hardness Test
3.1.4. Microstructure Analysis of the Representative Hybrid Composite Samples
3.2. Experimentation and Machining Studies on the Representative Hybrid Composite Samples
3.2.1. Machining Study on the Representative Samples of Al-Based Hybrid Composites
Effects of Input Parameters on Ra
Effects of Input Variables on Electrode Wear
Effects of Input Variables on MRR
Interaction Plot
3.3. Grey Relational Analysis
4. Fuzzy Interference System
- “Rule 1: if ×1 is A1 and ×2 is B1 then y is C1 else”;
- “Rule 2: if ×1 is A2 and ×2 is B2 then y is C2 else”;
- “Rule 3: if ×1 is A3 and ×2 is B3 then y is C3 else”;
- “Rule n: if ×1 is An and ×2 is Bn then y is Cn”.
5. Novelty Statement of this Research
6. Conclusions
- i.
- The uniform distribution of Si3N4, cenosphere, and Mg in the AA2014 was accomplished with a stir-casting process, which was employed for the developed AA2014 composites, and the impact of the machining parameters on the PMEDM characteristics was investigated using a grey-fuzzy approach.
- ii.
- The tensile strength of the fabricated AA 2014 composites was found to increase with increased reinforcements of Si3N4 and cenosphere, with the maximum elongation occurring at 1.11%, a maximum compression strength of 372.5 N/mm2, and a maximum hardness value of 48HRB.
- iii.
- The Taguchi analysis depicted the optimal conditions for the surface roughness at a 20 µs Ton, a 20 µs Toff, and a 7 A gap current, for the electrode wear, a 10 µs Ton, a 40 µs Toff, and a 6 A gap current, and finally, for material removal rate, a 30 µs Ton, a 40 µs Toff, and an 8 A gap current.
- iv.
- The Taguchi based grey analysis summarized the multiple responses into a single grey relational grade, which optimized the machining process. We evaluated the multiple responses using the grey-fuzzy approach with nine available trial readings and reported an improvement when reducing the fuzziness.
- v.
- SEM images revealed the existence of filler reinforcements within the metal matrix. The SEM micrographs demonstrated that the grain boundaries had a more uniform distribution of reinforcements, leading to an improved microstructure. The SEM images showed that the distribution of Si3N4 and Mg particles were clearly visible as white spots in various regions.
- vi.
- The XRD analysis of the fabricated composites showed that aluminium was the major component, followed by silicon and magnesium. The SEM analysis was performed on the hybrid metal matrix composites (MMCs) fabricated for this EDM process in order to evaluate the mechanical properties and microstructural details, including bonding. The SEM images showed that the reinforcement structures were tightly packed, and circular ash-coloured spots indicated the presence of silicon and nitrates in the composites. A microstructural analysis showed a fine dispersion of cenosphere reinforcement particles.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Straffelini, G.; Bonollo, F.; Molinari, A.; Tiziani, A. Influence of matrix hardness on the dry sliding behaviour of 20 vol.% Al2O3-particulate-reinforced 6061 Al metal matrix composite. Wear 1997, 211, 192–197. [Google Scholar] [CrossRef]
- Yang, G.; Fu, D.; Li, Q.; Liu, Z. A finite element analysis on mechanical behavior of Al/Al-Mg composites for the design of tank cars under actual measuring loads. Eng. Fail. Anal. 2019, 103, 294–307. [Google Scholar] [CrossRef]
- Rohatgi, P.K.; Schultz, B.F.; Daoud, A.; Zhang, W.W. Tribological performance of A206 aluminum alloy containing silica sand particles. Tribol. Int. 2010, 43, 455–466. [Google Scholar] [CrossRef]
- Shahid, R.N.; Scudino, S. Microstructure and Mechanical Behavior of Al-Mg Composites Synthesized by Reactive Sintering. Metals 2018, 8, 762. [Google Scholar] [CrossRef]
- Jiang, J.; Xiao, G.; Che, C.; Wang, Y. Microstructure, mechanical properties and wear behavior of the rheoformed 2024 aluminum matrix composite component reinforced by Al2O3 nanoparticles. Metals 2018, 8, 460. [Google Scholar] [CrossRef]
- Bains, P.S.; Sidhu, S.S.; Payal, H.S.; Kaur, S. Magnetic Field Influence on Surface Modifications in Powder Mixed EDM. Silicon 2019, 11, 415–423. [Google Scholar] [CrossRef]
- Bédard, F.; Jahazi, M.; Songmene, V. Die-sinking EDM of Al6061-T6: Interactions between process parameters, process performance, and surface characteristics. Int. J. Adv. Manuf. Technol. 2020, 107, 333–342. [Google Scholar] [CrossRef]
- Palanivel, R.; Dinaharan, I.; Laubscher, R.F.; Davim, J.P. Influence of boron nitride nanoparticles on microstructure and wear behavior of AA6082/TiB2 hybrid aluminum composites synthesized by friction stir processing. Mater. Des. 2016, 106, 195–204. [Google Scholar] [CrossRef]
- Ramanujam, R.; Muthukrishnan, N.; Raju, R. Optimization of cutting parameters for turning Al–SiC (10p) MMC using ANOVA and Grey relational analysis. Int. J. Precision Eng. Manuf. 2011, 12, 651–656. [Google Scholar] [CrossRef]
- Rajmohan, T.; Palanikumar, K.; Ranganathan, S. Evaluation of mechanical and wear properties of hybrid aluminium matrix composites. Trans. Nonferrous Met. Soc. China 2013, 23, 2509–2517. [Google Scholar] [CrossRef]
- Fenghong, C.; Chang, C.; Zhenyu, W.; Muthuramalingam, T.; Anbuchezhiyan, G. Effects of silicon carbide and tungsten carbide in aluminium metal matrix composites. Silicon 2019, 11, 2625–2632. [Google Scholar] [CrossRef]
- Yigezu, B.S.; Mahapatra, M.M.; Jha, P.K. Influence of reinforcement type on microstructure, hardness, and tensile properties of an aluminum alloy metal matrix composite. J. Miner. Mater. Charact. Eng. 2013, 1, 124–130. [Google Scholar] [CrossRef]
- Ravikumar, K.; Kiran, K.; Sreebalaji, V.S. Characterization of mechanical properties of aluminium/tungsten carbide composites. Measurement 2017, 102, 142–149. [Google Scholar] [CrossRef]
- Sankhla, A.M.; Patel, K.M.; Makhesana, M.A.; Saxena, K.K.; Gupta, N. Experimental Investigation of Tool Wear in Machining of SiC Based Al-MMC. Adv. Mater. Process. Technol. 2021, 8, 635–654. [Google Scholar] [CrossRef]
- Anbuchezhiyan, G.; Muthuramalingam, T.; Mohan, B. Effect of process parameters on mechanical properties of hollow glass microsphere reinforced magnesium alloy syntactic foams under vacuum die casting. Arch. Civ. Mech. Eng. 2018, 18, 1645–1650. [Google Scholar] [CrossRef]
- Natarajan, N.; Vijayarangan, S.; Rajendran, I. Wear behaviour of A356/25SiCp aluminium matrix composites sliding against automobile friction material. Wear 2006, 261, 812–822. [Google Scholar] [CrossRef]
- Liu, L.; Yu, S.; Niu, Y.; Liu, E. Preparation and properties of hollow glass microspheres reinforced Mg alloy degradable composites. J. Alloys Compd. 2020, 835, 155198. [Google Scholar] [CrossRef]
- Rajaparthiban, J.; Sait, A.N. Application of the grey based Taguchi method and Deform-3D for optimizing multiple responses in turning of Inconel 718. Mater. Test. 2018, 60, 907–912. [Google Scholar] [CrossRef]
- Behnamfard, S.; Mousavian, R.T.; Afkham, Y.; Khosroshahi, R.A.; Nekouee, K.A.; Brabazon, D. Dry Milling of Aluminum and Ceramic Nanoparticles for a Particulate-Injection Casting of Aluminum Matrix Nanocomposites. Silicon 2020, 12, 913–920. [Google Scholar] [CrossRef]
- Athul, K.R.; Srinivasan, A.; Pillai, U.T.S. Investigations on the microstructure, mechanical, corrosion and wear properties of Mg–9Al–xGd (0, 0.5, 1, and 2 wt%) alloys. J. Mater. Res. 2017, 32, 3732–3743. [Google Scholar] [CrossRef]
- Rajaparthiban, J.; Sait, A.N. Experimental investigation on Machining of Titanium Allo (Ti 6Al 4V) and Optimization of its Parameters using ANN. Mechanika 2018, 24, 449–455. [Google Scholar] [CrossRef]
- Jabbaripour, B.; Sadeghi, M.H.; Shabgard, M.R.; Faraji, H. Investigating surface roughness, material removal rate and corrosion resistance in PMEDM of γ-TiAl intermetallics. J. Manuf. Process. 2013, 15, 56–68. [Google Scholar] [CrossRef]
- Sahin, I.; Eker, A.A. Analysis of Microstructure and Mechanical Properties of Particle Reinforced AlSi7Mg2 Matrix Composite Materials. J. Mater. Eng. Perform. 2011, 20, 1090–1096. [Google Scholar] [CrossRef]
- Wang, M.; Xiao, D.H.; Liu, W.S. Effect of Si addition on microstructure and properties of magnesium alloys with high Al and Zn contents. Vaccum 2017, 141, 144–151. [Google Scholar] [CrossRef]
- Chen, J.; Tan, L.; Yu, X.; Yang, K. Effect of minor content of Gd on the mechanical and degradable properties of as-cast Mg-2Zn-xGd-0.5Zr alloys. J. Mater. Sci. Technol. 2019, 35, 503–511. [Google Scholar] [CrossRef]
- Slătineanu, L.; Dodun, O.; Coteaţă, M.; Nagîţ, G.; Băncescu, I.B.; Hriţuc, A. Wire Electrical Discharge Machining—A Review. Machines 2020, 8, 69. [Google Scholar] [CrossRef]
- Peta, K.; Mendak, M.; Bartkowiak, T. Discharge Energy as a Key Contributing Factor Determining Microgeometry of Aluminum Samples Created by Electrical Discharge Machining. Crystals 2021, 11, 1371. [Google Scholar] [CrossRef]
- Lauwers, B.; Vleugels, J.; Malek, O.; Brans, K.; Liu, K. E8-Electrical discharge machining of composites. In Woodhead Publishing Series in Composites Science and Engineering, Machining Technology for Composite Materials; Hocheng, H., Ed.; Woodhead Publishing: Cambridge, UK, 2012; pp. 202–241. ISBN 9780857090300. [Google Scholar] [CrossRef]
- Sharma, S.; Sudhakara, P.; Singh, J.; Singh, S.; Singh, G. Emerging progressive developments in the fibrous composites for acoustic applications. J. Manuf. Process. 2023, 102, 443–477. [Google Scholar] [CrossRef]
- Sharma, S.; Sudhakara, P.; Petru, M.; Singh, J.; Rajkumar, S. Effect of nano- additives on the novel leather fiber/recycled Poly (Ethylene-vinyl-acetate) polymer composites for multi-functional applications: Fabrication, characterizations, and multi-objective optimization using Central Composite Design. Nanotechnol. Rev. 2022, 11, 2366–2432. [Google Scholar] [CrossRef]
- Sharma, S.; Sudhakara, P.; Singh, J.; MR, S.; Siengchin, S. Fabrication of Novel Polymer Composites from Leather Waste Fibers and Recycled Poly(Ethylene-Vinyl-Acetate) for Value-Added Products. Sustainability 2023, 15, 4333. [Google Scholar] [CrossRef]
- Karthik, A.; Vijayan, V.; Ahmad, Z.; Rajkumar, S.; Sharma, S.; Sharma, K.P.; Singh, R.; Li, C.; Eldin, S.M. Study on the physicomechanical, fracture-deformation, interface-adhesion, and water-absorption properties of twill fabric cotton-bamboo/epoxy composites. J. Mater. Res. Technol. 2023, 24, 8429–8442. [Google Scholar] [CrossRef]
- Jha, K.; Tamrakar, P.; Kumar, R.; Sharma, S.; Singh, J.; Ilyas, R.A.; Rangappa, S.M.; Siengchin, S. Effect of hybridization on physio-mechanical behavior of Vetiver and Jute fibers reinforced epoxy composites for structural applications: Studies on fabrication, physicomechanical, water-absorption, and morphological properties. J. Ind. Text. 2022, 51, 2642S–2664S. [Google Scholar] [CrossRef]
- Yadav, V.; Singh, S.; Chaudhary, N.; Garg, M.P.; Sharma, S.; Kumar, A.; Li, C.; Eldin, E.M.T. Dry sliding wear characteristics of natural fibre reinforced poly-lactic acid composites for engineering applications: Fabrication, properties and characterizations. J. Mater. Res. Technol. 2023, 23, 1189–1203. [Google Scholar] [CrossRef]
- Muni, R.N.; Singh, J.; Kumar, V.; Sharma, S.; Sudhakara, P.; Aggarwal, V.; Rajkumar, S. Multiobjective Optimization of EDM Parameters for Rice Husk Ash/Cu/Mg-Reinforced Hybrid Al-0.7Fe-0.6Si-0.375Cr-0.25Zn Metal Matrix Nanocomposites for Engineering Applications: Fabrication and Morphological Analysis. J. Nanomater. 2022, 2022, 2188705. [Google Scholar] [CrossRef]
- Kumar, R.; Jha, K.; Sharma, S.; Kumar, V.; Li, C.; Eldin, E.M.T.; Rajkumar, S.; Królczyk, G. Effect of particle size and weight fraction of SiC on the mechanical, tribological, morphological, and structural properties of Al-5.6Zn-2.2Mg-1.3Cu composites using RSM: Fabrication, characterization, and modelling. Heliyon 2022, 8, e10602. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, S.P.; Pachauri, P.; Maurya, M.; Saxena, A.; Butola, R.; Sahu, R.; Sharma, S. Alumina catalyst waste utilization for aluminum-based composites using the friction stir process. Mater. Test. 2022, 64, 533–540. [Google Scholar] [CrossRef]
- Dwivedi, S.P.; Sharma, S.; Krishna, B.V.; Sonia, P.; Saxena, K.K.; Iqbal, A.; Djavanroodi, F. Effect of the addition of TiB2 with waste glass powder on microstructure, mechanical and physical behavior of PET-based polymer composite material. Mechanics of Advanced Materials and Structures 2023, 1–10. [Google Scholar] [CrossRef]
- Sharma, S.; Patyal, V.; Sudhakara, P.; Singh, J.; Petru, M.; Ilyas, R.A. Mechanical, morphological, and fracture-deformation behavior of MWCNTs-reinforced (Al–Cu–Mg–T351) alloy cast nanocomposites fabricated by optimized mechanical milling and powder metallurgy techniques. Nanotechnol. Rev. 2021, 11, 65–85. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, J.; Gupta, M.K.; Mia, M.; Dwivedi, S.P.; Saxena, A.; Chattopadhyaya, S.; Singh, R.; Pimenov, D.Y.; Korkmaz, M.E. Investigation on mechanical, tribological and microstructural properties of Al–Mg–Si–T6/SiC/muscovite-hybrid metal-matrix composites for high strength applications. J. Mater. Res. Technol. 2021, 12, 1564–1581. [Google Scholar] [CrossRef]
- Dwivedi, S.P.; Agrawal, R.; Sharma, S. Effect of Friction Stir Process Parameters on Mechanical Properties of Chrome Containing Leather Waste Reinforced Aluminium Based Composite. Int. J. Precis. Eng. Manuf. Technol. 2021, 8, 935–943. [Google Scholar] [CrossRef]
- Kumar, J.; Singh, D.; Kalsi, N.S.; Sharma, S.; Pruncu, C.I.; Pimenov, D.Y.; Rao, K.V.; Kapłonek, W. Comparative study on the mechanical, tribological, morphological and structural properties of vortex casting processed, Al–SiC–Cr hybrid metal matrix composites for high strength wear-resistant applications: Fabrication and characterizations. J. Mater. Res. Technol. 2020, 9, 13607–13615. [Google Scholar] [CrossRef]
- Kumar, J.; Singh, D.; Kalsi, N.S.; Sharma, S.; Mia, M.; Singh, J.; Rahman, M.A.; Khan, A.M.; Rao, K.V. Investigation on the mechanical, tribological, morphological and machinability behavior of stir-casted Al/SiC/Mo reinforced MMCs. J. Mater. Res. Technol. 2021, 12, 930–946. [Google Scholar] [CrossRef]
- Kumar, J.; Sharma, S.; Singh, J.; Singh, S.; Singh, G. Optimization of Wire-EDM Process Parameters for Al-Mg-0.6Si-0.35Fe/15%RHA/5%Cu Hybrid Metal Matrix Composite Using TOPSIS: Processing and Characterizations. J. Manuf. Mater. Process. 2022, 6, 150. [Google Scholar] [CrossRef]
- Miniappan, P.K.; Marimuthu, S.; Kumar, S.D.; Sharma, S.; Kumar, A.; Salah, B.; Ullah, S.S. Exploring the mechanical, tribological, and morphological characteristics of areca fiber epoxy composites reinforced with various fillers for multifaceted applications. Front. Mater. 2023, 10, 1185215. [Google Scholar] [CrossRef]
- Dwivedi, S.P.; Sharma, S.; Sunil, B.; Gupta, N.; Saxena, K.K.; Eldin, S.M.; Shahab, S.; Alkhafaji, M.A.; Abdullaev, S.S. Heat treatment behavior of Cr in the form of collagen powder and Al2O3 reinforced aluminum-based composite material. J. Mater. Res. Technol. 2023, 25, 3847–3864. [Google Scholar] [CrossRef]
- Dwivedi, S.P.; Saxena, A.; Haider, I.; Sharma, S. Effect of zirconium diboride addition in zirconium dioxide reinforced aluminum-based composite fabricated by microwave sintering technique. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2023, 0, 1–22. [Google Scholar] [CrossRef]
- Dwivedi, S.P.; Sharma, S. Recovery of Al2O3/Al powder from aluminum dross to utilize as reinforcement along with graphene in the synthesis of aluminum-based composite. Part. Sci. Technol. 2023, 1–13. [Google Scholar] [CrossRef]
- Garg, H.K.; Sharma, S.; Kumar, R.; Manna, A.; Li, C.; Mausam, K.; Eldin, E.M.T. Multi-objective parametric optimization on the EDM machining of hybrid SiCp/Grp/aluminum nanocomposites using Non-dominating Sorting Genetic Algorithm (NSGA-II): Fabrication and microstructural characterizations. Rev. Adv. Mater. Sci. 2022, 61, 931–953. [Google Scholar] [CrossRef]
Component | Al | Cr | Cu | Fe | Mg | Mn | Si | Ti | Zn | Other |
---|---|---|---|---|---|---|---|---|---|---|
% wt. | 90.4 | Max 0.1 | 3.9 | Max 0.7 | 0.8 | 1.2 | 1.2 | Max 0.15 | Max 0.25 | Max 0.15 |
Purity | α Phase | N | O | Si | Impurities |
---|---|---|---|---|---|
99.9% | 90 | >38.5 | 1.5 | 0.2 | 0.1 |
Components | SiO2 | Al2O3 | FeO | Titania |
---|---|---|---|---|
% of Wt. | 55–65 | 25–35 | 1–5 | 0.5–1 |
Samples | AA2014 (%) | Si3N4 (%) | Cenosphere (%) | Mg (%) |
---|---|---|---|---|
Sample 1 | 93.5 | 2.5 | 3 | 1 |
Sample 2 | 91.5 | 2.5 | 5 | 1 |
Sample 3 | 89.5 | 2.5 | 7 | 1 |
Sample 4 | 91 | 5 | 3 | 1 |
Sample 5 | 89 | 5 | 5 | 1 |
Sample 6 | 87 | 5 | 7 | 1 |
Sample 7 | 88.5 | 7.5 | 3 | 1 |
Sample 8 | 86.5 | 7.5 | 5 | 1 |
Sample 9 | 84.5 | 7.5 | 7 | 1 |
Samples | Al (2014) in gms | Si3N4 (%) | Cenosphere | Mg (%) |
---|---|---|---|---|
R1 | 100 | 0 | 0 | 0 |
R2 | 93.5 | 2.5 | 3 | 1 |
R3 | 89 | 5 | 5 | 1 |
R4 | 84.5 | 7.5 | 7 | 1 |
Identification | Dia. (mm) | Cross-Sectional Area (mm2) | Tensile Load (kN) | Tensile Strength (N/mm2) | Initial Gauge Length (mm) | Final Gauge Length (mm) | Percentage Elongation |
---|---|---|---|---|---|---|---|
1. | 16 | 201.06 | 21.37 | 106.34 | 73.2 | 73.2 | 0.0 |
2. | 16 | 201.06 | 22.50 | 111.96 | 73.2 | 74.0 | 1.09 |
3. | 16 | 201.06 | 24.74 | 123.11 | 73.2 | 74.0 | 1.11 |
4. | 16 | 201.06 | 21.39 | 106.44 | 73.2 | 73.5 | 0.41 |
Identification | Dia. (mm) | Cross-Sectional Area (mm2) | Compressive Load (kN) | Compressive Strength (N/mm2) |
---|---|---|---|---|
Sample 1 | 16 | 201.06 | 61.7 | 306.9 |
Sample 2 | 16 | 201.06 | 70.2 | 349.2 |
Sample 3 | 16 | 201.06 | 71.5 | 355.6 |
Sample 4 | 16 | 201.06 | 74.9 | 372.5 |
Identification | Hardness (HRB) |
---|---|
Specimen 1 | 34 |
Specimen 2 | 37 |
Specimen 3 | 48 |
Specimen 4 | 42 |
S. No. | Factors | Specifications |
---|---|---|
1 | Work material | AA2014-Si3N4-cenosphere + Mg |
2 | Electrode | 6 mm diameter copper (Cu) |
3 | Polarity | Normal (Positive) |
4 | Cutting time | 10 min |
5 | Dielectric fluid | Kerosene mixed with Al powder |
6 | Al powder size | 27 microns |
7 | Duty factor | 75% |
8 | Pon | 65 μs |
Level | TON (µs) | TOFF (µs) | Gap Current (Amps) |
---|---|---|---|
1 | 10 | 20 | 6 |
2 | 20 | 30 | 7 |
3 | 30 | 40 | 8 |
TON (µs) | TOFF (µs) | Gap Current (A) | Surface Roughness (µm) | Electrode Wear (gms) | MRR (gms/min) |
---|---|---|---|---|---|
10 | 20 | 6 | 0.333 | 0.262 | 1.744 |
10 | 30 | 7 | 0.427 | 0.293 | 3.899 |
10 | 40 | 8 | 0.685 | 0.461 | 6.888 |
20 | 20 | 7 | 0.345 | 0.275 | 4.243 |
20 | 30 | 8 | 0.492 | 0.738 | 6.272 |
20 | 40 | 6 | 0.563 | 0.311 | 3.583 |
30 | 20 | 8 | 0.442 | 0.899 | 5.243 |
30 | 30 | 6 | 0.466 | 0.266 | 3.311 |
30 | 40 | 7 | 0.501 | 0.403 | 6.669 |
Surface Roughness (µs) | Electrode Wear (gms) | MRR (gms/min) | S/N Values of Surface Roughness | S/N Values of Electrode Wear | S/N Values of MRR |
---|---|---|---|---|---|
0.333 | 0.262 | 1.744 | 9.551 | 11.634 | 4.831 |
0.427 | 0.293 | 3.899 | 7.391 | 10.663 | 11.819 |
0.685 | 0.461 | 6.888 | 3.286 | 6.726 | 16.762 |
0.345 | 0.275 | 4.243 | 9.244 | 11.213 | 12.554 |
0.492 | 0.738 | 6.272 | 6.161 | 2.639 | 15.948 |
0.563 | 0.311 | 3.583 | 4.990 | 10.145 | 11.085 |
0.442 | 0.899 | 5.243 | 7.092 | 0.925 | 14.392 |
0.466 | 0.266 | 3.311 | 6.632 | 11.502 | 10.399 |
0.501 | 0.403 | 6.669 | 6.003 | 7.894 | 16.481 |
Trials | Normalized Sequence | GRC | GRG | Rank | ||||
---|---|---|---|---|---|---|---|---|
Surface Roughness | Electrode Wear | MRR | Ra | EWR | MRR | |||
1 | 0.000 | 0.000 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1 |
2 | 0.345 | 0.091 | 0.586 | 0.592 | 0.846 | 0.461 | 0.633 | 4 |
3 | 1.000 | 0.458 | 1.000 | 0.333 | 0.522 | 0.333 | 0.396 | 9 |
4 | 0.049 | 0.039 | 0.647 | 0.911 | 0.927 | 0.436 | 0.758 | 2 |
5 | 0.541 | 0.840 | 0.932 | 0.480 | 0.373 | 0.349 | 0.401 | 8 |
6 | 0.728 | 0.139 | 0.524 | 0.407 | 0.782 | 0.488 | 0.559 | 5 |
7 | 0.393 | 1.000 | 0.801 | 0.560 | 0.333 | 0.384 | 0.426 | 7 |
8 | 0.466 | 0.012 | 0.467 | 0.518 | 0.976 | 0.517 | 0.670 | 3 |
9 | 0.566 | 0.349 | 0.976 | 0.469 | 0.589 | 0.339 | 0.465 | 6 |
Sl. No | Range of Values | Condition | Membership Function |
---|---|---|---|
1 | (−0.2500.25) | Very low | Triangular function |
2 | (00.250.50) | Low | |
3 | (0.250.50.75) | Medium | |
4 | (0.50.751) | High | |
5 | (0.7511.25) | Very high |
Sl. No. | GRG | GFRG | Order |
---|---|---|---|
1 | 1.000 | 0.926 | 1 |
2 | 0.633 | 0.678 | 4 |
3 | 0.396 | 0.422 | 9 |
4 | 0.758 | 0.782 | 2 |
5 | 0.401 | 0.459 | 8 |
6 | 0.559 | 0.515 | 5 |
7 | 0.426 | 0.482 | 7 |
8 | 0.670 | 0.692 | 3 |
9 | 0.465 | 0.502 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajkumar, G.; Saravanan, M.; Bejaxhin, A.B.H.; Sharma, S.; Dwivedi, S.P.; Kumar, R.; Singh, S. Parametric Optimization of Powder-Mixed EDM of AA2014/Si3N4/Mg/Cenosphere Hybrid Composites Using Fuzzy Logic: Analysis of Mechanical, Machining, Microstructural, and Morphological Characterizations. J. Compos. Sci. 2023, 7, 380. https://doi.org/10.3390/jcs7090380
Rajkumar G, Saravanan M, Bejaxhin ABH, Sharma S, Dwivedi SP, Kumar R, Singh S. Parametric Optimization of Powder-Mixed EDM of AA2014/Si3N4/Mg/Cenosphere Hybrid Composites Using Fuzzy Logic: Analysis of Mechanical, Machining, Microstructural, and Morphological Characterizations. Journal of Composites Science. 2023; 7(9):380. https://doi.org/10.3390/jcs7090380
Chicago/Turabian StyleRajkumar, G., M. Saravanan, A. Bovas Herbert Bejaxhin, Shubham Sharma, Shashi Prakash Dwivedi, Rajeev Kumar, and Sunpreet Singh. 2023. "Parametric Optimization of Powder-Mixed EDM of AA2014/Si3N4/Mg/Cenosphere Hybrid Composites Using Fuzzy Logic: Analysis of Mechanical, Machining, Microstructural, and Morphological Characterizations" Journal of Composites Science 7, no. 9: 380. https://doi.org/10.3390/jcs7090380