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Abstract: New three-step with-memory iterative methods for solving nonlinear equations are pre-
sented. We have enhanced the convergence order of an existing eighth-order memory-less iterative
method by transforming it into a with-memory method. Enhanced acceleration of the convergence
order is achieved by introducing two self-accelerating parameters computed using the Hermite
interpolating polynomial. The corresponding R-order of convergence of the proposed uni- and
bi-parametric with-memory methods is increased from 8 to 9 and 10, respectively. This increase in
convergence order is accomplished without requiring additional function evaluations, making the
with-memory method computationally efficient. The efficiency of our with-memory methods NWM9
and NWM10 increases from 1.6818 to 1.7320 and 1.7783, respectively. Numeric testing confirms the
theoretical findings and emphasizes the superior efficacy of suggested methods when compared to
some well-known methods in the existing literature.
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1. Introduction

The pursuit of computing accurate solutions for nonlinear equations is a continual
quest in the field of numerical computation. The analytical methods used to find the exact
roots of nonlinear equation f(x,) = 0, where f : I C R — R is a real function defined on
the open interval I, are either complex or nonexistent. We can only depend on the iterative
method to obtain an approximate solution with the desired level of accuracy. The Newton
method is one of the most widely used iterative methods to find the solution of nonlinear
equations, given by

f(xn)

T )
n

The Newton method is a single-point, second-order method that requires the eval-
uation of one function and one derivative at each iteration. The Newton method is a
method without memory and the optimal order is as per the Kung—Traub Conjecture [1],
which states that any iterative method requiring k function evaluations per iteration is
considered optimal when the order of convergence equals 2~!. The one-point iteration
method, traditionally relying on k-function evaluations, achieves a maximum order of
k [1,2]. Multipoint iterative schemes are highly significant as they surpass the theoretical
limits of any one-point iterative method. Nevertheless, they may also lead to decreases in
the efficiency index of the method. The performance of an iterative method is quantified by
its efficiency index, expressed as follows [1,3]:

n=0,1,23.. 1)
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E=p'k )

Here, p represents the order of the iterative method. However, the with-memory
approach not only exceeds this theoretical limit but also enhances the efficiency indices of
the methods. In recent years, there has been a lot of interest in extending without-memory
methods to with-memory methods by using accelerating parameters [4,5]. The order of
convergence in multi-point with-memory iterative methods is greatly boosted without
any additional function evaluation by utilizing information from both the current and
previous iterations.

In this manuscript, a novel parametric three-point iterative method with memory is
developed, wherein the R-order of convergence is enhanced from 8 to 9 and 10 using one
and two parameters, respectively. The remaining part of this work is organized as follows:
In Section 2, we develop new parametric three-point iterative methods with memory
by introducing self-accelerating parameters using Hermite-interpolating polynomials. In
Section 3, we present the results of numerical calculations by comparing the newly proposed
methods with other well-known methods on test functions. Finally, concluding remarks
are provided in Section 4.

2. Analysis of Convergence for With-Memory Methods

In this section, firstly we will introduce a parameter « in the second step and then
introduce another parameter f in the third step of the three-step scheme proposed by
Sharma and Arora [6] in 2021. We increase the order of convergence by replacing the
parameters a and 8 with the iterative parameters a,, and j;,.

2.1. The Uni-Parametric With-Memory Method and Its Convergence Analysis

Here, we introduce the parameter « in the second sub-step of the without-memory
scheme of the eighth order, presented in article [6]:

_ ¥ (xn)
yn—xn ‘I”(xn)'
=y ¥ (yn)
T ¥ e, ynl — ¥ () + 6 ¥ ()
_ ‘I”(xn)—‘I’[xn,yn]—l-‘I’[yn,zn] \P(Zn)
"”“‘Z”‘< 2% [y, z0] — ¥ (2, %] )‘f'(xn)' ©)

The error expressions for each sub-step of the above scheme are:

eny = 26> + (=263 + 2c3)es + (4c3 + 7cacs + 3ca)ey + O(ey), 4
enz =ca(ca(a+ ) — c3)ey
—2(20¢3 4 2¢5 — 4ckes + 3+ co(—2acz +cy))es, +O(eh), )
and
eni1 = —ca(ca(a+c2) —c3)(acs + ¢ — cacs + 3 — cacy)ed

+ (20ach +10c5 + c5(10a? — 29¢3) 4 2¢% 4 2c5c3(—2ac3 + ¢4)
—2¢3(19ac3 + cg) + 3 (—9a?c3 4 30c3 — 2acy + 2c5) + 2¢3(2c3(5acs + c4) + acs)
— 5(15¢5 + 2¢3 + 2¢3(—acy +c5)))e; + O(eld), (6)

where eny = yn — G, enz = zn — §,en = Xy —Gand ¢; = %, forj=2,3,..and « € R.

We obtain the following with-memory iterative scheme by replacing a with a;, in (3):
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20— 1, — ¥ (yn)
n=Yn 2¥ [xn, yn] — ¥ (xn) + an¥(yn)’
_ qﬂ(xﬂ) — 11j[x‘myn] +‘P[}/nfzn] \P(Zn)
el = A ( 2¥[yn, zn] — ¥[zn, ] ) Y (xn)’ @)

and the above scheme is represented by NWM9. Now, from Expression (6), it is clear that
the convergence order of Algorithm (3) is eight when a # i—; — ¢. Next, to accelerate the
order of convergence of the algorithm presented in (3) from eight to nine, we can assume

a=2—0= ;I;,/,/,((?) ;I/,/,(( )) but in actual fact, the exact values of ¥/ (&), ¥ (¢) and ¥ (¢)

are not attainable in practice. So, we will assume the parameter « as a;,. The parameter ay,
can be calculated by using the available data from the current and previous iterations and

satisfies the condition lim;, e &), = 2—2 —C = ;I\[;,,,,,(é) %((?), such that the eighth-order

asymptotic convergence constant should be zero in Error Expression (6). The formula for
u,, is as follows:

Hg" (yn) _ Hg (xn) ®)
3HY (xn)  2¥'(xn)’

Ay =

where

Hs(x) =¥ (x4) + (¥ — x)¥[xn, 2] + (x — ) 2¥[x0, X, Zp—1]
+ (x = x0)?(x = Z5-1) ¥ [Xn, X0, Zne1, Y1) + (6 = x20) 2 (X = Z21) (X = Y1)
¥ [, X, Zn—1, Yn-1, Xn—1] + (x = %) (x = 24—1) (X = Y1) (x — xy_1)
‘I’[xn, XnrZn—1,Yn—1,Xn—1, xnfl]/
Hg(x) =Y (yn) + (x = yn)¥lyn, xu] + (x = yn) (x = x0) ¥ [Yn, Xn, Xn]
+ (% = yn)(x — xn)2‘I’[yn,xn,xn,zn_1] + (% = yn)(x — xn)z(x —Zp-1)
Y (Y, Xn, X0, Zn—1,Yn—1] + (X — yn) (x — xn)z(x —Zp1) (X = Yn-1)
WY, X, X, Zn—1,Yn—1, Xn1] + (X — yu) (x — x0)(x — Zy—1) (X — Yp—1)
(x = x4 1)¥[Yn, Xn, Xn, Zn—1,Yn—1, Xn—1, ¥n—1},
Hg(xn) :ij[xnr Xn,Zn— 1] + 2(3(” - anl)‘P[le/ xnrznflr]/nfl]
+ (2(xn — zp—1) (X — Yn-1)) ¥ [Xn, X, Zn—1, Yn—1, Xn—1]
( Xp — Zp—1) — Yn—1)(xn — xn—l))‘ﬂxmxnzzn—ll.‘/n—lrxn—llxn—1]~
Hg' (yn) —6‘P[yn,xn,xn,zn_1] (12(3/n —xn) +6(yn — Zn—l))
¥ Yo, X0, Xy Zn—1, Yn1) + (6(Yn — X)? + 12(yn — xn) (Y0 — zn—1)
+12(yn = xu) (Yn — Yn-1) +6(Yn — 2n—1)(Yn — Yn-1))
¥ [Yons Xns X, Zn—1, Y1, Xn-1) + (6(yn — %) (Y — 2n—1)
+6(yn —%0)*(Yn — Y1) + 120 — %) (Y — 201) (Yn — Y1)
+6(yn — Xn) 2 (Yn — Xn1) + 12(Yn — %) (Yn — Zu—1) (Yn — Xn_1)
+12(yn — x0) (Yn — Yn-1) Yn — Xn—1) +6(Yn — 2p—1) (Yn — Yn—1) (Yn — Xu-1))
Yyn, Xn, Xn, 201, Yn—1, Xn—1, Xn—1]- )

Note: The condition Hj,(x,) = ¥'(x,) is satisfied by the Hermite interpolation

polynomial Hy,(x) for m = 5,6. So, ay, = ;él,/,(g( ")) - gél/((z")) can be expressed as a, =
5 n n

Hm(l/n) H//(xn) _
31%,(3(") - 2H57,”(xn) form =5, 6.
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Theorem 1. Let Hy, be the Hermite polynomial of degree m that interpolates a function f at inter-
polation nodes Y, Xn, Xn, Zn—1, Yn—1, Xn—1, Xn—1, to, . . ., tm—y belonging to an interval I, where the
derivative ¥("+1) is continuous in I and the Hermite polynomial Hy,(x,) = ¥ (xy), Hy () =
Y (xn), Hu(t;) = ¥(t;) (j = 0,1,...,m —7). Denotee;; = t; —¢ (j =0,1,...,m—7) and
suppose that

(1) All nodes yn, Xn, Xn, Zn—1, Yn—1, Xn—1, Xn—1, to, - - ., tm—y are sufficiently near to the root ¢.
(2) The condition e, = O(e ... et m—7) holds. Then,

Hg/ (yn) = 6‘?’((:)(% - C7en—l,z€n—1,ye%—l)/ (10)
Hé/(xn) = ZY/(C) (c2 — C6en71,zen71,y€31—1)/ (11)
H///(y ) H//(x ) c
6 \Yn 5\An 3 2
T BHI (xa) 29 (xn) (Cz . ") (en-t€n-16-1). (12
and c
Xp — =3 +c = CZ(OCn + CZ) — 3~ (enfl,zenfl,yezlf])Bn/ (13)

2

_ c c3C C6C 2
where B, = (—CZ + % — %en—l,zen—1,y€n_1 + c6).
2 2

Proof. We can calculate the expression of the sixth-degree and fifth-degree Hermite inter-
polation polynomial as:

(7)
%) Holx) = T () ) () ) ()
(6)
¥ (x) — Hs(x) = \FT((S)(X — xn)Z(x —zp 1) (x —yp1)(x — xn,l)z. (15)

Now, we get the below-mentioned equations by differentiating Equation (14) three
times at the point x = y,, and Equation (15) two times at the point x = x;, respectively.

(s
Hg"(yn) = ¥" (yn) = 6T77!()(yn = 20-1) (Y = Yu=1) (Y — Xu-1)?, (16)
(6)
HY () = ¥ (o)~ Dy 2 ) o)) @)

Next, a Taylor series expansion of f’ at the points y, and x, in [ and § € I about the
zero ¢ of f provides

Y (xy) = ¥ (€) (1 + 2coe, + 3362 + O(ei)), (18)
¥ (x) = ¥'(8) (23 + besen +0(e})). (19)
Similarly,
¥ () = ¥ (8) (6C3 +24cqeyy + O(e,zw)), (20)
¥ (5) = ¥(8) (6tc6 + 7'cres + O(3)), 21)
¥ (5) = ¥/(8) (7te7 + Bleses +O(e3)), 22)

where e; = 6 — . Putting (20), (22) in (16) and (19), (21) in (17), we obtain
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H{'(yn) = 6¥'(8)(c3 — c7en-1,2€n-14€5 1), (23)
and
Hé/(xn) = ZY/@)(CZ - Céen—l,zen—l,yeiq)/ (24)
which implies
1
M N% - genfl,zenfl,ye,zqq + %enfl,zenfl,ye;zqfl
- %eifl,zerzzfl,yefzfl' (25)

Now, by Equations (18) and (24), one can write

HE/ (xn)
2% (xy,)

2
~ €2 = C6€n—1,26n—1,yCn—1- (26)

Furthermore, by virtue of Relations (25) and (26), it may be written as

Hg'(yn)  Hg(xn) 3 C7 | C3C6  CeC7 2
- ~—=—C0+t | ——+ 5 — 5 €r-1z8n-1y€y_1+C
3HI(xn)  2¥'(xn) @ ° © g G e
(en—l,zen—l,ye%_l)' (27)

and hence

C3 C7 , C3C6  CoCy 2 2

y~——C+|——+ 5 T3 fn—1z6n—1y€—1 + ce (en—l,zen—l,yen_1>/ (28)
Co Co C2 C2

or

C3
oy — o +ep=co(an+c2) —c3~ (en—l,zen—l,ye%—l)B”’ (29)

where B, = (—Z + % - %en,l,zen,weifl + 66). O
The definition of the R-order of convergence [7] and the following statement [8] can
be used to estimate the order of convergence of the iterative scheme (7).

Theorem 2. If the errors e; = x; — ¢ evaluated by an iterative root finding method (IM) fulfill

m—2

eer1 ~ [ ] (exi)™, k> k({ex}), (30)

i=0
then the R-order of convergence of IM, denoted by Og (IM, §), satisfies the inequality Ogr (IM, &) >

s*, where s* is the unique positive solution of the equation s, 1 — Y1y m;s"~' = 0.

Presently, for the new iterative scheme with Memory (7), we can state the subsequent
convergence theorem.

Theorem 3. In the iterative method (7), let ay be the varying parameter, and it is computed
using (8). If an initial guess xg is sufficiently close to a simple zero  of f(x), then the R-order of
convergence for the with-memory method (7) is at least 9.

Proof. Suppose the IM produces the sequence of {x,} converging the root { of f(x) =0
with an R-order Or (IM, &) > r, then we express

€n+1 NDn,rezr (31)
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and

en ~Dy_1,€l_4. (32)

Next, D, , will tend to the asymptotic error constant D, of IM taking n — oo, and then
2

ent1~ Dnyr(Dy1,€, 1) = Dn,rD;,Lre;,y (33)

The error expression for the with-memory scheme (7) can be obtained using (4)—(6)
and the varying parameter a,.

eny =Yn — ¢~ czefl, (34)
enz=2n—C ~ ca(ca(a+ca) — C3)eﬁ, (35)
and
_ _ o _ 3, 4 2 2 8
1 = Xpp1 — & ~ —ca(ca(w+c2) — c3)(acy + 3 — c5c3 + ¢35 — cacy) ey, (36)

Here, the higher order terms in Equations (34)—(36) are excluded. Now, let the R-order
convergence of the iterative sequences {y, } and {z,} be p and g, respectively, then

T
eny ~ Dn,peﬁ ~ Dn,p(DHreZq)” = D"rPDZ—l,renp—lf (37)
and
enz ~ Dpgel ~ Dy g(Dy 1,6, )7 =Dy,DT | e (38)
n,z n,q€n ng\“n—1rtp—-1)" = “ngty_1,%n-1-

Now, by Equations (32) and (34), we obtain
eny ~ 265 ~ ca(Dy_1,€)_1)* ~ CZD%—l,reir—l' (39)
Again, by Equations (29), (32) and (35), we get

enz ~ e (ca(a+ c2) — c3)ey
~ CZ(en—l,zen—l,yE%_1)Bn(Dn—l,re:l_l)4
~ CZ(anl,qu_l)(anl,peﬁq)ei—an(anl,rEZ—l)4
~ ¢2BuDy_14Dy_1,D}_ e PHIH2, (40)

n—1,r€n-1
and
ens1 ~ —ca(ca(a+co) —c3)Cred
~ _CZ(enfl,zenfl,yeifﬂBnCn(anl,rezfl)S
~ —Cz(Dn—l,qEZq)(Dn—l,pEZq)e%—anCn(Dn—l,re;l—l)s

8 8r+p+g+2
~ —3ByCuDy_1,4Dn-1,D5_1,¢, 77, (41)

where C;, originates from (36) since r > g > p. By equating the exponents of e,_; present
in the set of Relations (37)—(39), (38)—(40) and (33)—(41), we attain the resulting system
of equations:

rp =2r,
dr+p+g+2=rq,
8r+pt+qg+2=r= (42)

The solution of the system of Equation (42) is specified by r = 9,g = 5and p = 2.
Consequently, the R-order of convergence for the iterative method with Memory (7) is at
least9. 0O
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2.2. The Bi-Parametric With-Memory Method and Its Convergence Analysis

Now, we introduce a new parameter § in the third sub-step of the single parametric
with-memory method presented in (7)

e ¥ (xn)
]/n n T/(xn)/
Zn = Y — ¥ (yn)
Z‘Y[xn,yn] =¥ (xn) + “nT(yn>l
Xpal = Zn — ( W' (xn) = Ylxn, ynl + ¥y, 2n] ) ¥ (zn) 43)
" ! 2% [yn, zn] = ¥zn, xu] + B¥ (yn)? ) ¥ (xu)
Now, we get the error expressions for each sub-step of (43) as:
eny = 262 + (=203 + 2c3)e3 + (4¢3 + 7eacs + 3cy)ef + O(e)), (44)

enz: =2(c5 — cac4) ey

3
4cy

+ <cg +265c3 + —2 4 603cy — c3cq — o (763 + 305)> S +0(eh), (45)

2

e =—2(( — c2c1)( — ca(APer +cn) )
4c3
+ (—ABh — 6—3 +c3c3(2AB + c3) — cScq + g + 203 (6AB + c3)cy
2
— 3ey(9ABcs + 13¢5 + 7cs) — 3 (13ABC3 + 2¢5 — 6¢ + 3ABcs)
+ cac3(12ABC3 + 765 + 3¢ + 7escs) el + O(ell), (46)
, \y(j)(g .
where A = Y'(¢),eny = yn — & enz = zn —G,en = xp —fand ¢; = -5 GL forj=2,3,..

and B € R. We obtain the following with-memory iterative scheme by replacing g with 8,
in (43):

—

-

— ¥ (xn)
}/n n 1{,,<x”) 7
Zn = Yn — T<yn)
2% [xp, yn] — ¥ (xn) + an'¥ (yn)’
X =z, — ( T/('x”) _‘Y[x”/yn] —i—‘I"[yn,zn] ) 11[(27"1) (47)
e ! 2% [yu, zu] — ¥lzn, Xu] + Bu¥ (yn)? ) ¥ (xn)’
and the above scheme is represented by NWM10. Now, from (46), it is clear that the
2
convergence order of Algorithm (43) is nine when B # % — A%lz‘ Next, to accelerate
2

the order of convergence of the algorithm presented in (43) from nine to ten, we can
G AYQP-SY(OYI(E)

assume f = R ol 369 (P7(0) 2 , but in actual fact, the exact values of

¥(&),¥" (&), 9" (¢) and ¥®) (&) are not attainable in practice. So, we will assume the
parameter B as ;. The parameter 8, can be computed using the information from both
4

the current and previous iterations and satisfies the condition lim, e B = T2~ f%z =
2

4(¥"(2))2 -39 (£) Y™ (2)
36Y(5)(¥"(2))?
be zero in the error expression (46). The formula for B, is as follows:

, such that the ninth-order asymptotic convergence constant should

By = 4(Hy' (yn))? — 3Hé,(xn)H;4) (zu)
n 36‘I”(xn)(H§’(xn))2 ’

(48)
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where

Hz(x) =¥ (zn) + (x — zn)¥]zn, Yn] + (x — 20) (X — yu)¥[2n, Y, Xn]
+ (x = z0) (x = Yn) (¥ — x0)¥[2n, Y, X0, Xn] + (X = 20) (X — Y ) (x — xn)
¥z, Yy Xy X, Zn—1) + (X — 20) (X — yu) (x — x0)?(x — Z,1_1)
W2, Yoy X X 21, Y1) A (X = 20) (8 = yn) (¥ = 20) 2 (X = 251) (% = Y1)
¥ (20, Yo Xy X Zn—1, Yn—1, Xn1) + (X = 20 (x = y) (x — x0)* (x — 24—1)
(X = Yn—1) (¥ = 1) 20, Y, X, X, Zn—1, Y1, Xu—1, Xn—1,
H§4) (zn) =24¥ (20, Yn, Xn, Xn, z2n—1] + (24(zn — yn) + 48(zn — xn)
+24(zy — 2-1)) Y20, Y, X1, X0, Zn—1, Yn—1) + (48(zn — yn) (zn — xn)
+ 24(zn — xu)? + 24(20 — Yn) (20 — Zn—1) + 48(20 — xn) (20 — Zu—1)
+24(zn — Yn)(zn — Yn—1) +48(zn — xn) (zn — Yn—1) + 24(zn — 24—1)
[

2

(Zn = Yu-1))¥ (20 Y, Xy X0, Zn 1, Y1, Xn 1] + (24(20 — Y) (20 — x0)
+48(zn — Yu) (zn — %n) (20 — Zn—1) + 24(z0 — X0)* (20 — Zp—1)
+48(z1 — Yu) (20 — xn) (20 — Xu—1) + 24(20 — X0)* (20 — Xp 1)
+24(zn — Yn) (20 — zu—1)(2n — Xu—1) +48(zn — xn) (20 — zu-1)

(zn — xn,l) +24(zn — Yn) (20 — Yn—1) (20 — Xp—1) + 48(zn — xz)
(Zn - ]/n—l)(zn - xn—l) + 24(271 - Zn—l)(zn - ]/n—l)(zn - xn—l))
Yz, Yis Xns X1y Zn—1,Yn—1, Xn—1, Xn—1), (49)

and H} (y,) and HZ (x;,;) can be calculated by Equation (9).
Note: The condition H),(x,) = ¥'(x,) is satisfied by the Hermite interpolation
4(HY! (y)2~3HY (x0) Hy) (20)

polynomial Hy,(x) for m = 5,6.So, B = 369 (o) (L (o)

can be expressed as

B, — 4(HY (yn)?— 3H/’(xn>H<4( n)
n— 36H' (xy,) (HL (xn))?

form =5,6.

Theorem 4. Let Hy, be the Hermite polynomial of degree m that interpolates a function f at inter-
polation nodes zn, Yn, Xn, Xn, Zn—1, Yn—1, Xn—1, Xn—1, to, - - . , tm—g Within an interval I, where the
derivative ¥("+1) is continuous in I and the Hermite polynomial satisfies Hy (xn) = ¥(xn),

Hy,(xn) = Y'(xn), Hu(tj)) = ¥(t;) (j = 0,1,...,m —8). Denote e;; = t; =& (j =
0,1,...,m —8) and suppose that

(1) All nodes zn, Yn, Xn, Xn, Zn—1, Yn—1, Xn—1, Xn—1, to, - - - , tm—g are sufficiently near to the root ¢.

(2) The condition e, = O(ey . . . e m—g) holds. Then,

H;4) (Z”) = 24T/(§)(C4 - C8€n—1,zen—l,yei—l)f (50)
Hg/(]/n) = 6‘Y/(€)(C3 - C7en—1,zen—1,ye%—1)/ (51)
Hé/(xﬂ) = 2T/(C) (c2— Céen—l,zen—l,ye%l—l)/ (52)

g, = HH (1))~ 3HE (x HY (24)
" 36%/ (xn)(H”(x ))?

n
C% Cq
~ E_TQ—FTH en 1,z26n— lyn 1) (53)
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and C% Cyq 2 2
Bn — + - =c§—2(ABnca +cq) ~ (en,llzen,lrye 1) T, (54)
Ac2 Acy n

‘6 C7C6 o2 2 et €3C6C7
+2 €n—1,21-1,y6n—1 —4 Ad €n—1,26n—1y

€37 , €8 Cs
where Ty,= (A 2€n 1,z€n— lyen 1= 2 +Ac2 +2

2 _ C4Ce  CeC8 C6C8 2
€1 Ac +A26” 1,26n— 1y€n 1+2A3e” 1,26n— 1yen 1 2A3en 1zn 1yn 1)
Proof. We can calculate the expression of the seventh-degree Hermite interpolation poly-
nomial as:

¥6)(5)

= 2a) (6 = ) (= 2 = 200 (5 ) (8 = 1) (69)

¥(x) — Hy(x) =

Now, the following equation is derived by taking the fourth derivative of Equation (55)
at the point x = z,,.
v ()

Y (Zn - anl) (Zn - ynfl)(z'rl - xnfl)z' (56)

HY (z,) = YW (z,) — 24

Next, a Taylor series expansion of f” at the points z, in I and é € I about the zero ¢ of
f provides

¥ (2) = ¥(£) (2404 + 120cs,,2 + O(ef ) ), (57)

and
¥ (5) = ¥ (¢) (8!c8 1 9cges + O(eg)). (58)

Putting Equations (57) and (58) in (56), we obtain
HY (z,) = 24%' - ; 59
7 (Zﬂ) (g)(C4 CSenfl,zenfl,yenfﬂr (59)

Now, using Equations (18), (23), (24) and (59), we get

4 H/// 2 *3H” H(4) 2
e i A [N R [ERR SR

36Y" (xu) (HY (xn))? A Ac
and hence
2
c c
3 4 2
;Bﬂ ~ (ACZ - A7C2 + Tn) (en—l,zen—l,yen_l)/ (61)
2
or
C% Cy 2 2
Bn — 22T vl c2(ABnca+ca) ~ (en—1:8n—1,y€; 1) Tn, (62)
c
here T, —(ie en_1y€>_; — 289+ +ZC3C6+2C7C6 2 e et | —49%,
where 1, = A2n12” Lybn—1 Ac Acz €n—1,2n— 1yn1 Ad n—1,z

2 C4Co | CoC c2cg o
en—1y€n—1 — jg+/§’cgen 1,26n— 1yen l+2A 36”1 1,26n— 1yen 1 223671 1z n 1y n 1) O

Now, for the iterative scheme with Memory (47), we can state the subsequent conver-
gence theorem.

Theorem 5. In the iterative method (47), let By, be the varying parameter, and it is computed
using (48). If an initial Quess x is sufficiently close to a simple zero & of f(x), then the R-order of
convergence for the with-memory iterative method (47) is at least 9.9083.
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Proof. Suppose the IM produces the sequence of {x, } converging to the root & of f(x) =0
with an R-order Or (IM, &) > r, then we express

€n+1 NDn,re;rw (63)

and

en ~Dy_1,€_4. (64)

Next, D;, » will tend to the asymptotic error constant D, of IM taking n — o, and then
2

Cnt1 Dn,r(anl,rezfl)r = Dn,rD,rqur@;fy (65)

The error expression of the with-memory scheme (47) can be obtained using (44)—(46)
and the varying parameter f3,,.

eny = Yn — € ~ C2€3, (66)
enz=2n—GC~ 2(c§ — c2C4)e?,, (67)
and
_ i~ 22— 2 _co(A J 68
ent1 = Xpp1— G (c3 — cacq)(c3 — ca(ABca +c4)) ) ey (68)

Here, the higher-order terms in Equations (66)—(68) are excluded. Now, let the R-order
convergence of the iterative sequences {y, } and {z,} are p and g, respectively, then

r
eny ~ Dn,pez ~ Dn,p(anl,re;fl)p = Dn,PDs—l,renp—l' (69)
and
Dyoeh ~ Dy g(Dy_q e, 1)1 = Dy DT . 70
enz ~ Ungln ~ n,q( n—l,ren—l) — Yng nfl,renfl’ ( )

Now, by Equations (64) and (66), we obtain

2 2 2 2
€ny ~ €26y ~ CZ(Dn—l,Ye:lfl) ~ CZDn—l,renrfl‘ (71)

Again, by Equations (64) and (67), we get

enz ™~ Z(C% - CZC4)3751 ~ Z(C% - C2C4)(Dn—1,rez_1)5

~2(c5— c2c4)D) e, (72)

and by (62) and (64), we get

eni1 ~ —2(( — c204) (3 — ca(APer +ca) ) )

enfl,zenfl,yei_l) Tyu(Dy—1,€}_1)°
Dy-1,4¢h 1) (Du-1,p€h_1)en 1 Tu(Dy-1,¢,_1)°
TuDy14Dp1,D5_1 60 72, (73)

n—1,r"n-1

—~ o~

Since r > g > p, by equating the exponents of e,_; present in the set of Relations
(69)-(71), (70)=(72) and (65)—(73), we attain the resulting system of equations:

rp =2r,
rq = b5r,
I+ptg+2=r> (74)
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The solution of the system of Equation (74) is specified by r = (9 + V117) /2,9 =5
and p = 2. As a result, the R-order of convergence of the with-memory iterative method
(47) is at least 9.9083. [

Note: There are a number of optimal-order without-memory methods available in the
literature such as [6,9] but every without-memory iterative scheme cannot be extended to
the with-memory version.

3. Numerical Results and Discussion

In this section, we provide numerical examples to elucidate the efficiency and ef-
fectiveness of the newly formulated three-step with-memory methods NWM9 (7) and
NWMI10 (47). These methods are compared with some existing well-known three-step
methods, SA8, NAJJ10, XT10 and NJ10, as presented in references [5,6,10,11], respectively,
using the test functions mentioned in Table 1. The aforementioned iterative methods are
now listed below.

In 2021, Sharma and Arora [6] proposed a three-step eighth-order without-memory
iterative method (SA8), which is defined as:

_ ¥ (yn)
=Yn lej[xn,yn] — T/(xn)/
Xyt =7 — <\}f/(xn) — ¥ [xn, Y] +‘I’[yn,zn]) ¥ (zy)
n+1 n Z‘Y[yn,zn] — ‘If[zn, xn] ‘Y’(xn) .

In 2018, Choubey et al. [10] proposed a tenth-order with-memory iterative method
(NAJJ10) using two self-accelerating parameters, which is defined as:

(75)

¥ (xn)
Y (xn) — ¥ (%)
— ¥ (yn)
=90~ (W) T2 ) - I w))”
(_ ¥(yn) — ¥ (xn) + ¥(zn) —¥(yn) + ¥(zn) — ¥ (xn)
Yn — Xn Zn — Yn Zn — Xn

+ Au(zn = %) (20 = yn) ), (76)

Yn = Xpn —

Xni1 = zn — ¥(z0)

where v, A, € R and are calculated as v, = % and A, = w.

In 2013, Wang and Zhang [5] developed a family of three-step with-memory iterative
schemes (XT10) for nonlinear equations given by:

Y (xn)
Y (xn) — Tn¥ (xn)’
¥ (yn) )’

Yn = Xn —

Zn=Yn = (Z‘F[xn,yn] — ¥ (xn) + Tn¥ (yn)
. (o +w)¥(zn)
X+t = 2Zn — [G(sn) + H(t)] (ZW‘Y[yn,Zn] + (& —w) (Y (xn) + L‘I’(zn)))’ 77)
where s;, = ‘?Ei;’l;,t” = $Ezzg,zx = Yn — Xp,w = zy, — Xy and L € R. Furthermore, T}, is

calculated as T}, = 7%.
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In 2016, Choubey and Jaiswal [11] developed a bi-parametric with-memory iterative
method (N]J10) with tenth-order convergence, the sub-steps of which are:

DV ¥ (xn)
Y =T G ) — Tn¥ (2
S ( ¥ (yn) (¥ (xn) + ¥ (yn)) )
T (Y (o) — 2T (x0)) (¥ (xn) + (7 = 2)¥ (yn)) /)
¥ (zn)
=z, — , (78
Yl =2 T[Zn,yn] + \Ij[zn,}/nz xn|(zn — yn) +‘P[Zn/yn/ Xn, Xn](zn — yn)(zn — Xn) (78)
where T,y € Rand T, is calculated as T}, = ;él,g’;))

Table 1. Test problems, their zeros and initial approximations.

Test Function ¥ () Root (%) Initial Approx. (fo)
Yi(t) = +t*+42 15 &~ 1.3474 1.4
2(t) = (t -1)2 -1 &~ 2.0000 25
Y3 (t) = te'” —sint + 3cost +5 F~—1.2076 -1.3
Yu(t) = t10 + 34212 — &~ —0.8420 0.5
Y5(t) =e (148 + t6)(t —2) &~ 2.0000 22

Planck’s radiation law problem: It calculates the energy density within an isothermal
blackbody and is given by [12]:

-5
o) = T 79)
eABT — 1
where A is the wavelength of the radiation, T is the absolute temperature of the blackbody,
B is the Boltzmann constant, P is the Planck constant and c is the speed of light. We are
interested in determining the wavelength A that corresponds to the maximum energy
density v(A). From (79), we obtain

-6 cP e/\BT
o) = (3P A ABTZ 5, (80)
eABT — 1 eABT -1

so that the maxima of v occur when

7P
ABT

EPTi = 5. (81)

AB —

=la
g

x
—_

After that, if t = ABT, then (81) is satisfied if
Ye(t) =e '+ é —1;tg =47, (82)

Thus, the solutions to the equation ¥4(t) = 0 provide the maximum wavelength of
radiation, denoted as A, as determined by the following formula:

cP

~ BT 5

where t* is a solution of (82).
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In Table 1, we have considered five distinct nonlinear functions, displaying their roots
(¢) and their initial approximations (tp). The formula of computational order of convergence
(COCQ) is given by [13]:
log|¥ (tn) /¥ (tn—1)]
COC = .
log|¥ (ty—1)/¥ (ts—2)|

All the compared results are given in Table 2. Table 2 contains the absolute differences
between the last two consecutive iterations (|t, — t,_1|) and the absolute residual error
(¥ (t1)|) of up to three iterations for each function along with the COC for the proposed
methods in comparison to some well-known existing methods. All computations presented
here have been performed in MATHEMATICA 12.2. The findings showcased in Table 2
validate the theoretical results of the newly proposed methods, highlighting their efficiency
in comparison to some well-known iterative methods. Also, the errors in consecutive
iterations have been presented though Figure 1.

terations (n terations (n)

(d) ¥4 (1) (&) ¥s(t) 20

Figure 1. Comparison of the methods based on the error in consecutive iterations, |, —f,_1|, after
the first three full iterations.

From Table 2, it is confirmed that the accuracy of the results improved not only com-
pared to the without-memory scheme but also with some well-used with-memory schemes.

Table 2. Comparisons of test methods after three (1 = 3) iterations.

Method ‘Y(t) |t1 — i'()l |t2 — t1| |i'3 — i'zl |Y(t3)| cocC
SAS8 ¥ (t) 0.052572 1.8816 x 10~ 6.0796 x 1078 2.6750 x 10768 8.0000
NWM9 Y¥i(t) 0.052572 3.7554 x 10°11 12228 x 107%  1.8634 x 10785 9.0000
NAJJ10 Y¥1(t) 0.052572 1.7028 x 10710 2.8001 x 107 1.4992 x 10~ 10.0000
XT10 Y¥1(t) 0.052572 6.9169 x 10710 57293 x 10°%%  3.2266 x 107922 10.0000
NJ10 ¥ (t) 0.052572 1.4825 x 10710 3.6951 x 107190 12667 x 109 10.0000
NWM10 ¥i(t) 0.052572 5.4649 x 10711 9.9261 x 107104  1.4371 x 1010% 10.0000
SAS8 ¥, (t) 0.50011 1.1417 x 10~%  1.4980 x 10732 3.9438 x 10725 8.0000
NWM9 ¥y (t) 0.50017 1.7331 x 1074 1.3929 x 107%  1.9497 x 107315 9.0000
NAJJ10 Yo (t) 0.45491 45088 x 1072 1.2500 x 101 1.3803 x 1010 10.0000
XT10 ¥ (t) 0.50099 9.9027 x 10~% 11220 x 10731 1.1714 x 107310 10.0000
NJ10 ¥, (t) 0.49962 3.7910 x 107%  3.0109 x 10736 9.0709 x 10~3% 10.0000
NWM10 2163 0.50019 1.9492 x 1074 9.1392 x 10738 1.4053 x 107370 10.0000
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Table 2. Cont.

Method |t1 — t()| |t2 — t1| |t3 — i’zl |‘Y(t3)| COoC
SAS8 ) 0.092352 33415 x 1077 7.0947 x 1079  5.9503 x 10~ 8.0000
NWM9 (t) 0.092352 2.0992 x 10713 1.3500 x 10113 5.1492 x 101014 9.0000
NAJJ10 (t) 0.092352 21365 x 1077 5.7705 x 10798 6.2041 x 1075 9.9998
XT10 (t) 0.092352 4.0647 x 1078 2.0381 x 1077 1.5813 x 10~747 10.0000
NJ10 (t) 0.092352 6.0884 x 1077 2.3054 x 109 55259 x 1076% 10.0000
NWM10 (t) 0.092352 3.6090 x 10713 81902 x 10712 1.7585 x 10~ 11% 9.8171
SAS8 (t) 0.11586 15156 x 1078 1.7097 x 1079  1.6721 x 107502 8.0000
NWM9 (t) 0.11586 9.0694 x 1077 8.1008 x 107! 2.5001 x 10~630 9.0000
NAJJ10 (t) 0.11586 1.3769 x 1077 1.6706 x 10768 2.2752 x 10675 9.9994
XT10 (t) 0.11586 42295 x 107 1.7971 x 10756 8.4556 x 1055 10.0000
NJ10 (t) 0.11586 1.0998 x 107 7.3656 x 1070  1.2708 x 10758 10.0000
NWM10 (t) 0.11586 1.2105 x 1078 84012 x 10776 1.2490 x 107736 9.8123
SAS8 (1) 0.19945 54711 x 107%  1.2977 x 1072 1.7276 x 107198 8.0000
NWM9 (t) 0.19960 39880 x 107%  7.3134 x 10730 2.2584 x 10261 9.0000
NAJJ10 (t) 0.19052 94828 x 1073 54826 x 10720 4.7445 x 107192 9.9999
XT10 (t) 0.19645 35515 x 1073 1.0600 x 1072 2.1623 x 1072% 10.0000
NJ10 (t) 0.21542 1.5421 x 1072 1.6064 x 10~18  1.4753 x 10717 9.9997
NWM10 (t) 0.19960 4.0057 x 107%  3.0366 x 10732 1.3881 x 10731 9.8064
SAS8 Y (t) 0.26511 57168 x 10714 1.4599 x 10~115  5.0965 x 10792 8.0000
NWM9 Yo (t) 0.26511 1.1062 x 10713 3.0900 x 107126 1.0209 x 10~11% 9.0000
NAJJ10 Ye(t) 0.26512 95231 x 107°  2.0821 x 1070  1.0163 x 107%% 10.0060
XT10 Ye(t) 0.26511 3.9258 x 1077 1.9159 x 10~%*  1.6477 x 1094 10.0000
NJ10 Yo (t) 0.26511 7.7470 x 10712 1.2437 x 107119 2.3307 x 101198 10.0000
NWM10 Ye(t) 0.26511 1.1664 x 10713 21891 x 10138 7.6955 x 101361 9.8168

4. Conclusions

In this manuscript, we have introduced three-step with memory iterative techniques
for solving nonlinear equations by introducing single and double self-accelerating pa-
rameters. The primary goal is to enhance the convergence order of the optimal eighth
method without requiring additional computations. This is achieved by introducing self-
acceleration parameters and their estimates in the eighth-order method. The estimates of
these self-accelerating parameters are calculated using the Hermite interpolating polyno-
mial. The inclusion of parameters increases the R-order of convergence of the with-memory
methods NWM9 and NWM10 from 8 to 9 and 10, respectively. The results show that the
suggested techniques NWM9 and NWM10 have faster convergence and smaller asymptotic
constant values than other current approaches. Furthermore, the overall performance of
the newly presented approach is outstanding, with a quick convergence speed that makes
it a promising alternative for solving nonlinear equations.

By applying the discussed approach, the interested researcher may extend well-known
higher optimal order without-memory iterative methods to with-memory algorithms along
with single or multi self-accelerating parameters for achieving improved efficiency for
single or multivariate functions.
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