Cellular and Molecular Mechanisms of Liver Diseases

A special issue of Cells (ISSN 2073-4409). This special issue belongs to the section "Cellular Pathology".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 1913

Special Issue Editor


E-Mail Website
Guest Editor
Department of Radiation Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
Interests: liver cancer; fatty liver diseases; role of obesity in cancers; cancer biology; pharmacology

Special Issue Information

Dear Colleagues,

The liver is the largest internal organ and gland in the human body. It performs many vital functions to keep the body pure from toxins and harmful substances; thus, it is considered a central organ for metabolic homeostasis. Liver diseases account for two million deaths annually. The major risk factors include prolonged excessive alcohol consumption, chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections, autoimmune hepatitis, drug-induced liver injury, diabetes mellitus, obesity, and other metabolic diseases.

Liver injury induced by these risk factors is often reversible at early stages since normally quiescent hepatocytes can proliferate and restore normal liver mass and functions. However, persistent injury increases cellular damage, oxidative stress, and inflammation, which can lead to liver fibrosis, progress to cirrhosis, and may ultimately result in liver cancer. In addition, genetic and epigenetic alterations are involved in the development and progression of liver diseases.

This Special Issue will publish original articles and review articles in basic, translational research concerning Cellular and Molecular Mechanisms of all aspects of liver diseases.

Dr. Jieyun Jiang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cells is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • liver
  • alcoholic liver disease (ALD)
  • viral hepatitis
  • metabolic associated steatotic liver disease (MASLD)
  • autoimmune hepatitis
  • drug-induced liver injury
  • liver fibrosis and cirrhosis
  • liver cancer
  • cellular and molecular mechanisms

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 5739 KiB  
Article
Development and Validation of AAV-Mediated Liver, Liver-VAT, and Liver-Brain SORT and Therapeutic Regulation of FASN in Hepatic De Novo Lipogenesis
by Ratulananda Bhadury, Mohammad Athar, Pooja Mishra, Chayanika Gogoi, Shubham Sharma and Devram S. Ghorpade
Cells 2025, 14(5), 372; https://doi.org/10.3390/cells14050372 - 4 Mar 2025
Viewed by 1450
Abstract
Hepatic lipogenesis combined with elevated endoplasmic reticulum (ER) stress is central to non-alcoholic steatohepatitis (NASH). However, the therapeutic targeting of key molecules is considerably less accomplished. Adeno-associated virus (AAV)-mediated gene therapies offer a new solution for various human ailments. Comprehensive bio-functional validation studies [...] Read more.
Hepatic lipogenesis combined with elevated endoplasmic reticulum (ER) stress is central to non-alcoholic steatohepatitis (NASH). However, the therapeutic targeting of key molecules is considerably less accomplished. Adeno-associated virus (AAV)-mediated gene therapies offer a new solution for various human ailments. Comprehensive bio-functional validation studies are essential to assess the impact of AAVs in the target organ for developing both preclinical and clinical gene therapy programs. Here, we have established a robust and efficient protocol for high-titer AAV production to enable detailed Selective ORgan Targeting (SORT) of AAV1, 5, 7, and 8 in vivo. Our results for in vivo SORT showed single organ (liver) targeting by AAV8, no organ targeting by AAV1, and dual organ transduction (liver-brain and liver-VAT) by AAV5 and AAV7. Using a human dataset and preclinical murine models of NASH, we identified an inverse correlation between ER stress-triggered CRELD2 and the de novo lipogenesis driver FASN. Furthermore, liver-specific silencing of CRELD2 via AAV8-shCreld2 strongly supports the contribution of CRELD2 to de novo lipogenesis through FASN regulation. Thus, our study demonstrates a robust method for producing clinically translatable AAVs that could be readily adapted for liver and/or liver-VAT or liver-brain targeted gene therapy. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Liver Diseases)
Show Figures

Figure 1

Back to TopTop