Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (490)

Search Parameters:
Authors = Haibo Zhang

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1316 KiB  
Article
Development of Mid-Infrared Spectroscopy (MIR) Diagnostic Model for Udder Health Status of Dairy Cattle
by Xiaoli Ren, Chu Chu, Xiangnan Bao, Lei Yan, Xueli Bai, Haibo Lu, Changlei Liu, Zhen Zhang and Shujun Zhang
Animals 2025, 15(15), 2242; https://doi.org/10.3390/ani15152242 - 30 Jul 2025
Viewed by 196
Abstract
The somatic cell count (SCC) and differential somatic cell count (DSCC) are proxies for the udder health of dairy cattle, regarded as the criterion of mastitis identification with healthy, suspicious mastitis, mastitis, and chronic/persistent mastitis. However, SCC and DSCC are tested using flow [...] Read more.
The somatic cell count (SCC) and differential somatic cell count (DSCC) are proxies for the udder health of dairy cattle, regarded as the criterion of mastitis identification with healthy, suspicious mastitis, mastitis, and chronic/persistent mastitis. However, SCC and DSCC are tested using flow cytometry, which is expensive and time-consuming, particularly for DSCC analysis. Mid-infrared spectroscopy (MIR) enables qualitative and quantitative analysis of milk constituents with great advantages, being cheap, non-destructive, fast, and high-throughput. The objective of this study is to develop a dairy cattle udder health status diagnostic model of MIR. Data on milk composition, SCC, DSCC, and MIR from 2288 milk samples collected in dairy farms were analyzed using the CombiFoss 7 DC instrument (FOSS, Hilleroed, Denmark). Three MIR spectral preprocessing methods, six modeling algorithms, and three different sets of MIR spectral data were employed in various combinations to develop several diagnostic models for mastitis of dairy cattle. The MIR diagnostic model of effectively identifying the healthy and mastitis cattle was developed using a spectral preprocessing method of difference (DIFF), a modeling algorithm of Random Forest (RF), and 1060 wavenumbers, abbreviated as “DIFF-RF-1060 wavenumbers”, and the AUC reached 1.00 in the training set and 0.80 in the test set. The other MIR diagnostic model of effectively distinguishing mastitis and chronic/persistent mastitis cows was “DIFF-SVM-274 wavenumbers”, with an AUC of 0.87 in the training set and 0.85 in the test set. For more effective use of the model on dairy farms, it is necessary and worthwhile to gather more representative and diverse samples to improve the diagnostic precision and versatility of these models. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

18 pages, 2510 KiB  
Article
The Glutathione Peroxidase Gene Family in Chenopodium quinoa: Genome-Wide Identification, Classification, Gene Expression and Functional Analysis
by Jing Yang, Anna Xu, Kexin An, Lilong Wang, Taiping Luo, Xinyue Yu, Haibo Yin, Shanli Guo and Xia Zhang
Antioxidants 2025, 14(8), 940; https://doi.org/10.3390/antiox14080940 - 30 Jul 2025
Viewed by 229
Abstract
Glutathione peroxidase (GPX) is crucial in mediating plant responses to abiotic stresses. In this study, bioinformatics methods were used to identify the GPX gene family in quinoa. A total of 15 CqGPX genes were identified at the quinoa genome level and conducted preliminary [...] Read more.
Glutathione peroxidase (GPX) is crucial in mediating plant responses to abiotic stresses. In this study, bioinformatics methods were used to identify the GPX gene family in quinoa. A total of 15 CqGPX genes were identified at the quinoa genome level and conducted preliminary analysis on their protein characteristics, chromosome distribution, gene structure, conserved domain structure, cis-acting elements, and expression patterns. Phylogenetic analysis showed that the GPX genes of quinoa, Arabidopsis, soybean, rice, and maize were divided into three groups. Most of the CqGPXs had the three characteristic conserved motifs and other conserved sequences and amino acid residues. Six types of cis-acting elements were identified in the CqGPX gene promoter, with stress and hormone response-related cis-acting elements constituting the two main categories. Additionally, the expression patterns of CqGPX genes across various tissues and their responses to treatments with NaCl, PEG, CdCl2, and H2O2 were also investigated. The qRT-PCR results showed significant differences in the expression levels of the CqGPX genes under stress treatment at different time points. Consistently, the activity of glutathione peroxidase enzymes increased under stresses. Heterologous expression of CqGPX4 and CqGPX15 conferred stress tolerance to E. coli. This study will provide a reference for exploring the function of CqGPX genes. Full article
(This article belongs to the Special Issue Oxidative Stress in Plant Stress and Plant Physiology)
Show Figures

Figure 1

12 pages, 3174 KiB  
Article
Modeling and Control for an Aerial Work Quadrotor with a Robotic Arm
by Wenwu Zhu, Fanzeng Wu, Haibo Du, Lei Li and Yao Zhang
Actuators 2025, 14(7), 357; https://doi.org/10.3390/act14070357 - 21 Jul 2025
Viewed by 276
Abstract
This paper focuses on the integrated modeling and disturbance rejection of the aerial work quadrotor with a robotic arm. First, to address the issues of model incompleteness and parameter uncertainty commonly encountered in traditional Newton–Euler-based modeling approaches for such a system, the Lagrangian [...] Read more.
This paper focuses on the integrated modeling and disturbance rejection of the aerial work quadrotor with a robotic arm. First, to address the issues of model incompleteness and parameter uncertainty commonly encountered in traditional Newton–Euler-based modeling approaches for such a system, the Lagrangian energy conservation principle is adopted. By treating the quadrotor and robotic arm as a unified system, an integrated dynamic model is developed, which accurately captures the coupled dynamics between the aerial platform and the manipulator. The innovative approach fills the gap in existing research where model expressions are incomplete and parameters are ambiguous. Next, to reduce the adverse effects of the robotic arm’s motion on the entire system stability, a finite-time disturbance observer and a fast non-singular terminal sliding mode controller (FNTSMC) are designed. Lyapunov theory is used to prove the finite-time stability of the closed-loop system. It breaks through the limitations of the traditional Lipschitz framework and, for the first time at both the theoretical and methodological levels, achieves finite-time convergence control for the aerial work quadrotor with a robotic arm system. Finally, comparative simulations with the integral sliding mode controller (ISMC), sliding mode controller (SMC), and PID controller demonstrate that the proposed algorithm reduces the regulation time by more than 45% compared to ISMC and SMC, and decreases the overshoot by at least 68% compared to the PID controller, which improves the convergence performance and disturbance rejection capability of the closed-loop system. Full article
(This article belongs to the Special Issue Advanced Learning and Intelligent Control Algorithms for Robots)
Show Figures

Figure 1

16 pages, 1588 KiB  
Article
Seismic Fragility and Loss Assessment of a Multi-Story Steel Frame with Viscous Damper in a Corrosion Environment
by Wenwen Qiu, Haibo Wen, Chenhui Gong, Zhenkai Zhang, Wenjing Li and Shuo Li
Buildings 2025, 15(14), 2515; https://doi.org/10.3390/buildings15142515 - 17 Jul 2025
Viewed by 210
Abstract
Corrosion can accelerate the deterioration of the mechanical properties of steel structures. However, few studies have systematically evaluated its impact on seismic performance, particularly with respect to seismic economic losses. In this paper, the seismic fragility and loss assessment of a multi-story steel [...] Read more.
Corrosion can accelerate the deterioration of the mechanical properties of steel structures. However, few studies have systematically evaluated its impact on seismic performance, particularly with respect to seismic economic losses. In this paper, the seismic fragility and loss assessment of a multi-story steel frame with viscous dampers (SFVD) building are investigated through experimental and numerical analysis. Based on corrosion and tensile test results, OpenSees software 3.3.0 was used to model the SFVD, and the effect of corrosion on the seismic fragility was evaluated via incremental dynamic analysis (IDA). Then, the economic losses of the SFVD during different seismic intensities were assessed at various corrosion times based on fragility analysis. The results show that as the corrosion time increases, the mass and cross-section loss rate of steel increase, causing a decrease in mechanical property indices, and theprobability of exceedance of the SFVD in the limit state increases gradually with increasing corrosion time, with an especially significant impact on the collapse prevention (CP) state. Furthermore, the economic loss assessment based on fragility curves indicates that the economic loss increases with corrosion time. Thus, the aim of this paper is to provide guidance for the seismic design and risk management of steel frame buildings in coastal regions throughout their life cycle. Full article
Show Figures

Figure 1

14 pages, 1990 KiB  
Article
Hierarchic Branch Morphology, Needle Chlorophyll Content, and Needle and Branch Non-Structural Carbohydrate Concentrations (NSCs) Imply Young Pinus koraiensis Trees Exhibit Diverse Responses Under Different Light Conditions
by Bei Li, Wenkai Li, Sudipta Saha, Xiao Ma, Yang Liu, Haibo Wu, Peng Zhang and Hailong Shen
Horticulturae 2025, 11(7), 844; https://doi.org/10.3390/horticulturae11070844 - 17 Jul 2025
Viewed by 291
Abstract
Research on young trees’ adaptation to shade has predominantly focused on leaf-level responses, overlooking critical structural and functional adaptations in branch systems. In this study, we address this gap by investigating hierarchical branch morphology–physiology integration in 20-year-old Pinus koraiensis specimens across four distinct [...] Read more.
Research on young trees’ adaptation to shade has predominantly focused on leaf-level responses, overlooking critical structural and functional adaptations in branch systems. In this study, we address this gap by investigating hierarchical branch morphology–physiology integration in 20-year-old Pinus koraiensis specimens across four distinct light conditions classified by photosynthetic photon flux density (PPFD): three in the understory (low light, LL: 0–25 μmol/m2/s; moderate light, ML: 25–50 μmol/m2/s; and high levels of light, HL: 50–100 μmol/m2/s) and one under full light as a control (FL: 1300–1700 μmol/m2/s). We measured branch base diameter, length, and angle as well as chlorophyll and NSCs content in branches and needles. Branch base diameter and length were more than 1.5-fold higher in the FL Korean pine trees compared to the understory-grown ones, while the branching angle and ratio in the LL Korean pine trees were more than two times greater than those in the FL trees. As light levels increased, Chlorophyll a and b and total chlorophyll (Chla, Chlb, and Chl) concentrations in the needles all significantly decreased. Starch, glucose, and NSC (Starch + Soluble Sugars) concentrations in both needles and branches were the highest in the trees under FL and lowest under ML (except for soluble sugars in branches). Understory young P. koraiensis trees morphologically and physiologically adapt to limited light conditions, growing to be more horizontal, synthesizing more chlorophyll in needles, and attempting to increase their light-foraging ability. We recommend gradually expanding growing spaces to increase light availability for 20-year-old Korean pine trees grown under canopy level. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

16 pages, 3252 KiB  
Article
Chlorella pyrenoidosa Polysaccharide CPP-3a Promotes M1 Polarization of Macrophages via TLR4/2-MyD88-NF-κB/p38 MAPK Signaling Pathways
by Yihua Pi, Qingxia Yuan, Shaoting Qin, Chundie Lan, Qingdong Nong, Chenxia Yun, Haibo Tang, Jing Leng, Jian Xiao, Longyan Zhao and Lifeng Zhang
Mar. Drugs 2025, 23(7), 290; https://doi.org/10.3390/md23070290 - 16 Jul 2025
Viewed by 412
Abstract
The immunomodulatory polysaccharide CPP-3a, purified from Chlorella pyrenoidosa, was investigated for its effects on RAW264.7 macrophages and underlying mechanisms, revealing that CPP-3a significantly enhanced phagocytic capacity and nitric oxide production while upregulating pro-inflammatory cytokines TNF-α and IL-6 and elevating the co-stimulatory molecule [...] Read more.
The immunomodulatory polysaccharide CPP-3a, purified from Chlorella pyrenoidosa, was investigated for its effects on RAW264.7 macrophages and underlying mechanisms, revealing that CPP-3a significantly enhanced phagocytic capacity and nitric oxide production while upregulating pro-inflammatory cytokines TNF-α and IL-6 and elevating the co-stimulatory molecule CD86, collectively driving robust M1 polarization. Mechanistically, TLR4-, TLR2-specific inhibitors, and TLR4-knockout cells confirmed TLR4 as the primary receptor for CPP-3a, with TLR2 playing a secondary role in cytokine modulation. CPP-3a activated NF-κB and p38 MAPK signaling pathways via the MyD88-dependent pathway, evidenced by phosphorylation of NF-κB/p65 with its nuclear translocation and increased phosphorylation of p38 MAPK, with these signaling activations further validated by specific pathway inhibitors that abolished M1 polarization phenotypes. Collectively, CPP-3a emerges as a potent TLR4-targeted immunomodulator with adjuvant potential for inflammatory and infectious diseases. Full article
(This article belongs to the Special Issue Marine Natural Products as Regulators in Cell Signaling Pathway)
Show Figures

Graphical abstract

20 pages, 624 KiB  
Article
The Effect of Developmental Characteristics of Adolescents’ Perceived Social Support on Social–Emotional Competence from a Cumulative Ecological Resources Theory Perspective
by Chao Ma, Chanjuan Zhang, Wenyin Zhao and Haibo Yu
Behav. Sci. 2025, 15(7), 921; https://doi.org/10.3390/bs15070921 - 8 Jul 2025
Viewed by 403
Abstract
Cumulative Ecological Resources Theory offers an integrative perspective for social–emotional interventions by overcoming the traditional dichotomy between internal and external resources. As a crucial ecological resource, perceived social support is known to be heterogeneous, yet its mechanism of influence on social–emotional competence remains [...] Read more.
Cumulative Ecological Resources Theory offers an integrative perspective for social–emotional interventions by overcoming the traditional dichotomy between internal and external resources. As a crucial ecological resource, perceived social support is known to be heterogeneous, yet its mechanism of influence on social–emotional competence remains to be clarified. This study investigates the effect of developmental characteristics of adolescents’ perceived social support on social–emotional competence. A six-month longitudinal study tracked 995 adolescents using the Multidimensional Scale of Perceived Social Support and the Delaware Social and Emotional Competency Scale. Based on the results, (1) the adolescents’ perceived social support could be categorized into four types: Poor, Moderate, Rich, and Separated; (2) the Poor type exhibited greater category mobility, whereas the Moderate and Rich types demonstrated higher stability; some adolescents in the Poor, Moderate, and Rich types transitioned to the Separated type; and adolescents in the Separated type were more likely to transition to the Moderate type; (3) gender, age, and boarding status influenced the transition in perceived social support categories; (4) the transition pattern of transitioning to or remaining within the Rich type positively predicted social–emotional competence at T2. The findings support the Cumulative Ecological Resource Theory by revealing heterogeneity in adolescents’ perceived social support and demonstrating that trajectories toward higher resource accumulation significantly enhance social–emotional competence. Full article
Show Figures

Figure 1

14 pages, 6079 KiB  
Article
Genome-Wide Identification of the LEA Gene Family in Myricaria laxiflora and Its Responses to Abiotic Stress
by Di Wu, Tonghua Zhang, Linbao Li, Haibo Zhang, Yang Su, Jinhua Wu, Junchen Wang, Chunlong Li and Guiyun Huang
Genes 2025, 16(7), 763; https://doi.org/10.3390/genes16070763 - 29 Jun 2025
Viewed by 401
Abstract
Background: The late embryogenesis abundant (LEA) gene family plays a critical role in abiotic stress tolerance during plant growth and development. Myricaria laxiflora, as a key pioneer species in the extreme hydrological fluctuation zone of the Yangtze River, has evolved unique [...] Read more.
Background: The late embryogenesis abundant (LEA) gene family plays a critical role in abiotic stress tolerance during plant growth and development. Myricaria laxiflora, as a key pioneer species in the extreme hydrological fluctuation zone of the Yangtze River, has evolved unique adaptation mechanisms potentially linked to gene family evolution. However, the molecular mechanisms underlying how the LEA gene family responds to alternating flooding–drought cycles remain unclear. Methods and Results: In this study, we identified 31 LEA genes through whole-genome and transcriptome analyses using bioinformatics approaches, and classified them into nine subfamilies based on protein sequence similarity. These genes were distributed across 12 chromosomes. Our analysis revealed that LEA promoters contain cis-acting elements associated with anaerobic induction, abscisic acid (ABA) response, and combined low-temperature/light stress, suggesting their role in a multi-tiered environmental signal integration network. Spatio-temporal expression profiling further indicated that root-specific LEA genes maintain cellular integrity via membrane lipid binding, while leaf-predominant members cooperate with the antioxidant system to mitigate photoinhibition damage. Conclusions: This study elucidates the dynamic regulatory mechanisms of the LEA gene family during flooding-drought adaptation in M. laxiflora, providing molecular targets for ecological restoration in the Yangtze River Basin. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

15 pages, 6776 KiB  
Article
Evolution of Frictional Wear Behavior of C/C-CuNi Composites by Arc Discharge
by Xizong Liu, Yulei Zhang, Heng Wu, Dongsheng Zhang, Jiaqi Liu and Haibo Ouyang
Lubricants 2025, 13(7), 282; https://doi.org/10.3390/lubricants13070282 - 23 Jun 2025
Viewed by 476
Abstract
This study fabricated a C/C-CuNi composite using the hydrothermal co-deposition method and investigated its friction and wear behavior as well as the underlying mechanisms after being subjected to arc discharge ablation. The results indicate that the graphitization degree of the material matrix was [...] Read more.
This study fabricated a C/C-CuNi composite using the hydrothermal co-deposition method and investigated its friction and wear behavior as well as the underlying mechanisms after being subjected to arc discharge ablation. The results indicate that the graphitization degree of the material matrix was significantly enhanced after arc discharge ablation, accompanied by a transformation in the carbon microstructure. Carbon nanotubes and graphene structures were generated in the arc ablation zone. Under low arc discharge density, limited pits and open pores are formed on the material surface, with the generated graphene structures effectively reducing friction. Specifically, CN-5 exhibited a stable friction coefficient, a wear rate of 5.2 mg/km, and partial self-repair capability. In contrast, CN-10, under high arc discharge density, suffered from structural collapse, matrix-fiber debonding, and extensive open pores, leading to increased surface roughness. The combined effects of frictional heat and Joule heating elevated the wear surface temperature, triggering matrix oxidation and a sharp rise in wear rate to 14.7 mg/km. The wear mechanisms of C/C-CuNi composites under continuous arc conditions involve arc erosion wear, oxidative wear, abrasive wear, and adhesive wear. Full article
Show Figures

Figure 1

20 pages, 4321 KiB  
Article
DSS-MobileNetV3: An Efficient Dynamic-State-Space- Enhanced Network for Concrete Crack Segmentation
by Haibo Li, Yong Cheng, Qian Zhang and Lingkun Chen
Buildings 2025, 15(11), 1905; https://doi.org/10.3390/buildings15111905 - 1 Jun 2025
Cited by 1 | Viewed by 514
Abstract
Crack segmentation is crucial for health monitoring and preventive maintenance of concrete structures. However, the complex morphologies of cracks and the limited resources of mobile devices pose challenges for accurate and efficient segmentation. To address this, we propose an efficient dynamic-state-space-enhanced network termed [...] Read more.
Crack segmentation is crucial for health monitoring and preventive maintenance of concrete structures. However, the complex morphologies of cracks and the limited resources of mobile devices pose challenges for accurate and efficient segmentation. To address this, we propose an efficient dynamic-state-space-enhanced network termed DSS-MobileNetV3 for crack segmentation. The DSS-MobileNetV3 adopts a U-shaped encoder–decoder architecture, and a dynamic-state-space (DSS) block is designed into the encoder to improve the MobileNetV3 bottleneck module in modeling global dependencies. The DSS block improves the MobileNetV3 model in structural perception and global dependency modeling for complex crack morphologies by integrating dynamic snake convolution and a state space model. The decoder utilizes the upsampling and depthwise separable convolution to progressively decode and efficiently restore the spatial resolution. In addition, to suppress complex noise in the image background and highlight crack textures, the strip pooling module is introduced into the skip connection between the encoder and decoder for performance enhancement. Extensive experiments are conducted on three public crack datasets, and the proposed DSS-MobileNetV3 achieves SOTA performance in both accuracy and efficiency. Full article
Show Figures

Figure 1

18 pages, 4831 KiB  
Article
Spatial and Temporal Variation Characteristics of Air Pollutants in Coastal Areas of China: From Satellite Perspective
by Xinrong Yan, Juanle Wang, Fang Wu, Jing Bai, Xun Zhang, Guiping Li and Haibo Fei
Remote Sens. 2025, 17(11), 1861; https://doi.org/10.3390/rs17111861 - 27 May 2025
Cited by 1 | Viewed by 525
Abstract
Under increasingly stringent global policies aimed at reducing emissions from shipping, the impact of maritime activities on air quality has garnered significant attention. However, the absence of comprehensive macro-evaluation methods and a limited understanding of regional-scale pollutant emissions introduce substantial uncertainties in assessing [...] Read more.
Under increasingly stringent global policies aimed at reducing emissions from shipping, the impact of maritime activities on air quality has garnered significant attention. However, the absence of comprehensive macro-evaluation methods and a limited understanding of regional-scale pollutant emissions introduce substantial uncertainties in assessing emission reduction effectiveness and identifying pollution sources. In this study, we utilized Sentinel-5P satellite data from 2019 to 2024 to examine the spatiotemporal characteristics of six air pollutants (SO2, NO2, HCHO, O3, CO, and CH4) in China’s coastal areas. We further investigated the correlation between ship density and pollutant concentrations and analyzed the distribution of pollutant concentrations in major coastal ports across China. The results indicate the following: (1) The concentrations of SO2, HCHO, and CH4 exhibited a continuous increasing trend, whereas NO2, CO, and O3 remained relatively stable or showed a slight decline. All six pollutants demonstrated obvious seasonal variations, with NO2 and HCHO following a double-peak pattern and O3, SO2, CH4, and CO exhibiting a single-peak pattern. (2) Pollutant concentrations were higher along the northern coast (Yellow Sea and Bohai Sea) and relatively lower in the South China Sea region. Specifically, NO2, SO2, and O3 were higher in the Bohai Sea region; HCHO and CO were more concentrated in the northern coastal area; and CH4 was elevated in the north and certain ports of the Yangtze River Delta. (3) Ship density displayed a significant positive correlation with NO2, SO2, HCHO, CO, and CH4, indicating that ship emissions are an important source of these pollutants. Although O3 is not directly emitted by ships, a positive correlation was observed in certain ship-dense areas, primarily due to photochemical reactions involving NO2 and volatile organic compounds (VOCs). (4) Higher concentrations of NO2, SO2, HCHO, CO, and CH4 were observed in northern ports (e.g., Tianjin Xingang, Qinhuangdao, Tangshan, and Dalian), whereas southern Chinese ports (e.g., Shenzhen, Xiamen, and Haikou) exhibited lower pollution levels. These findings provide a scientific foundation for coastal air pollution control and highlight the necessity of ship emission regulation and integrated multi-pollutant management. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

19 pages, 2371 KiB  
Article
Experimental and Simulation-Based Development of Heat-Transfer Correlations for Cyclopentane PCHE
by Xiaogang Qin, Haibo Xu, Hongfei Zhang, Ming Zhang, Lin Sun and Xuan Wang
Energies 2025, 18(11), 2744; https://doi.org/10.3390/en18112744 - 26 May 2025
Viewed by 649
Abstract
Within the energy sector, the potential to effectively harness the considerable energy present in gas turbine waste heat via an organic Rankine cycle (ORC) could markedly improve overall energy efficiency. This investigation centers on a printed-circuit heat exchanger (PCHE) utilizing cyclopentane as the [...] Read more.
Within the energy sector, the potential to effectively harness the considerable energy present in gas turbine waste heat via an organic Rankine cycle (ORC) could markedly improve overall energy efficiency. This investigation centers on a printed-circuit heat exchanger (PCHE) utilizing cyclopentane as the working fluid. The study employs a combination of experimental techniques and computational fluid dynamics (CFD) simulations to conduct an in-depth analysis of the PCHE’s performance, leading to the successful development of a highly accurate heat-transfer correlation. A thorough comparison of experimental and simulation data is carried out to examine the temperature and pressure distributions within the heat exchanger. The maximum deviation between experimental and correlation-estimated data is within 20% (hot fluid: 15%; cold fluid: 18%). These findings offer essential theoretical insights and practical guidance for optimizing and ensuring the stable operation of waste-heat recovery systems. Full article
(This article belongs to the Topic Heat and Mass Transfer in Engineering)
Show Figures

Figure 1

13 pages, 2971 KiB  
Article
One-Pot Synthesis of CuS/Co3S4@MWCNT Composite as a High-Efficiency Catalyst for the Hydrogen Evolution Reaction
by Xinyuan Zhang, Meng Sun, Haibo Guo and Ming Su
Crystals 2025, 15(6), 505; https://doi.org/10.3390/cryst15060505 - 26 May 2025
Viewed by 511
Abstract
Pursuing cost-effective non-precious metal electrocatalysts is a key challenge in the field of sustainable energy conversion. Transition metal dichalcogenides, known for their unique electronic structure, demonstrate superior electrocatalytic capabilities for the hydrogen evolution reaction (HER), yet their effectiveness is still lacking. In the [...] Read more.
Pursuing cost-effective non-precious metal electrocatalysts is a key challenge in the field of sustainable energy conversion. Transition metal dichalcogenides, known for their unique electronic structure, demonstrate superior electrocatalytic capabilities for the hydrogen evolution reaction (HER), yet their effectiveness is still lacking. In the present study, a CuS/Co3S4@MWCNT composite was fabricated via single-step hydrothermal synthesis for HER applications. This catalyst exploited the synergistic effects between CuS and Co3S4 to increase edge site functionalities and metallic conductivity, thereby resulting in high catalytical activity within the material. Furthermore, the incorporation of multi-walled carbon nanotubes (MWCNTs) into the composite effectively enhanced electron transfer kinetics throughout the HER process. Notably, thiourea serves a dual function in this synthesis, acting both as a reducing agent and as a sulfur source for the formation of metal sulfides. When evaluated in a 1 M KOH alkaline electrolyte, the synthesized nanocomposite exhibited a minimal overpotential of 300 mV to reach a current density of 10 mA/cm2, and a Tafel slope of merely 76.2 mV/dec, indicative of its good HER catalytic activity. These findings underscore the composite’s potential for application in hydrogen production technologies. Full article
Show Figures

Figure 1

22 pages, 6367 KiB  
Article
Extraction, Purification, Component Analysis and Bioactivity of Polyphenols from Artemisia dracunculus L.
by Lin Chen, Buhailiqiemu Abudureheman, Omar Anwar, Emran Abdugini, Jianlin Zhang, Rui Tang, Zhihui Gao, Haibo Pan and Xingqian Ye
Foods 2025, 14(10), 1823; https://doi.org/10.3390/foods14101823 - 21 May 2025
Viewed by 542
Abstract
A. dracunculus L., is a species of traditional Chinese medicine herbs, widely distributed northwestern China and used as antidiabetic, antibacterial etc., but the active compounds and their abundance have not been systematically investigated. This research focused on the following: (i) optimizing polyphenol extraction/purification [...] Read more.
A. dracunculus L., is a species of traditional Chinese medicine herbs, widely distributed northwestern China and used as antidiabetic, antibacterial etc., but the active compounds and their abundance have not been systematically investigated. This research focused on the following: (i) optimizing polyphenol extraction/purification from A. dracunculus; (ii) UPLC-QE-based profiling of polyphenolic composition; (iii) FT-IR-assisted structural elucidation; and (iv) functional assessment of antioxidant and antibacterial properties. The results showed that the highest extraction yield of crude polyphenols of A. dracunculus (CPA) reached 5.02 ± 0.04% at an ethanol concentration of 70% of 70 °C with a solid-to-liquid ratio of 1:20 (g/mL). The D101 macroporous resin is the best one for polyphenolpurification of A. dracunculus (PPA), with a purification efficiency of 60.48 ± 1.87%. UPLC-QE analysis identified 36 polyphenolic compounds in PPA, in whic the content of protocatechuic acid is the highest at 1338.05 ± 1.83 ng/mg. The absorption peaks at 1691 cm−1 (carbonyl, C=O), 1605 cm−1and 1518 cm−1 (aromatic C=C), as well as 1275 cm−1 and 1369 cm−1 (C-O stretching), indicated the presence of phenolic acids, flavonoids and tannins in PPA by FT-IR. PPA exhibited significant antioxidant activity, which reached 81.73 ± 1.43% for DPPH, 87.11 ± 1.57% for hydroxyl and 85.74 ± 1.52% for ABTS+. It also demonstrated strong antibacterial activity against nine common pathogenic bacteria, but not to Escherichia coli. A. dracunculus polyphenols demonstrate potent bioactive properties, suggesting potential applications in functional foods and natural preservatives. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

15 pages, 13338 KiB  
Article
Constructing Layered/Tunnel Biphasic Structure via Trace W-Substitution in Tunnel-Type Cathode for Elevating Sodium Ion Storage
by Wenjing Shi, Hengxiang Li, Zihan Wang, Lingyang Liu, Yixin Feng, Rui Qiao, Ding Zhang, Haibo Li, Zhaoyang Wang and Pengfang Zhang
Molecules 2025, 30(10), 2175; https://doi.org/10.3390/molecules30102175 - 15 May 2025
Viewed by 420
Abstract
Tunnel-type Na0.44MnO2 is extensively regarded as an appealing cathode for sodium-ion batteries due to its cost-effectiveness and excellent cycling performance. However, low theoretical capacity, resulting from insufficient Na+ storage sites, hinders its practical application. Herein, the strategy of constructing [...] Read more.
Tunnel-type Na0.44MnO2 is extensively regarded as an appealing cathode for sodium-ion batteries due to its cost-effectiveness and excellent cycling performance. However, low theoretical capacity, resulting from insufficient Na+ storage sites, hinders its practical application. Herein, the strategy of constructing a tunnel-phase-dominated layered/tunnel biphasic compound was proposed via trace W-substitution and the co-precipitation method. Experimental analysis reveals that W-introduction can effectively redistribute electronic configuration, induce tunnel-to-layered structure evolution, accelerate Na+ (de)intercalation kinetics, and enhance structural stability. The optimized layered/tunnel Na0.44Mn0.99W0.01O2 cathode integrates the superiorities of the layered and tunnel structures, delivering a high capacity of 153.1 mAh g−1 at 0.1 C and outstanding cycle life, with 71% capacity retention over 600 cycles at 5 C. Significantly, the full cell assembled with the Na0.44Mn0.99W0.01O2 cathode and a commercial hard carbon anode exhibits a competitive energy density of 183.2 Wh kg−1, along with a remarkable capacity retention of 75.5% over 200 cycles at 1 C. This work not only highlights the superior sodium storage performance of biphasic composites owing to the synergistic effects between layered and tunnel structures, but also unveils new possibilities for constructing high-performance hybrid cathodes that predominantly consist of the tunnel phase using a suitable design strategy. Full article
Show Figures

Graphical abstract

Back to TopTop