Hierarchic Branch Morphology, Needle Chlorophyll Content, and Needle and Branch Non-Structural Carbohydrate Concentrations (NSCs) Imply Young Pinus koraiensis Trees Exhibit Diverse Responses Under Different Light Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Research Design and Sampling
2.3. Measurement of Branch Morphology and Needle Chlorophyll Concentrations
2.4. Measurement of Non-Structural Carbohydrate Concentrations
2.5. Statistical Analysis
3. Results
3.1. Branch Morphology and Needle Chlorophyll Content of Pinus koraiensis Under Different Light Conditions
3.1.1. Branch Characteristics of Pinus koraiensis
3.1.2. Needle Chlorophyll Concentrations of Pinus koraiensis
3.2. Needle and Branch NSCs of Pinus koraiensis Under Different Light Conditions and Their Relationships
4. Discussion
4.1. There Is Some Evidence Showing That Branch Morphological Traits Are Linked with Light-Foraging Strategies
4.2. Weak Light Use by Needles Could Compensate for Less Light Foraging via Variation in Branch Traits
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giberti, G.S.; von Arx, G.; Giovannelli, A.; du Toit, B.; Unterholzner, L.; Bielak, K.; Carrer, M.; Uhl, E.; Bravo, F.; Tonon, G.; et al. The admixture of Quercus sp. in Pinus sylvestris stands influences wood anatomical trait responses to climatic variability and drought events. Front. Plant Sci. 2023, 14, 1213814. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Zhang, P.; Shen, H. Competition intensity affects growing season nutrient dynamics in Korean pine trees and their microhabitat soil in mixed forest. For. Ecol. Manag. 2023, 539, 121018. [Google Scholar] [CrossRef]
- Valladares, F.; Arrieta, S.; Aranda, I.; Lorenzo, D.; Sánchez-Gómez, D.; Tena, D.; Suárez, F.; Pardos, J.A. Shade tolerance, photoinhibition sensitivity and phenotypic plasticity of Ilex aquifolium in continental Mediterranean sites. Tree Physiol. 2005, 25, 1041–1052. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Khourchi, S.; Li, S.; Du, Y.; Delaplace, P. Unlocking the Multifaceted Mechanisms of Bud Outgrowth: Advances in Understanding Shoot Branching. Plants 2023, 12, 3628. [Google Scholar] [CrossRef] [PubMed]
- Rameau, C.; Bertheloot, J.; Leduc, N.; Andrieu, B.; Foucher, F.; Sakr, S. Multiple pathways regulate shoot branching. Front. Plant Sci. 2014, 5, 741. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Gu, X.; Chen, S.; Qi, Z.; Yu, J.; Zhou, Y.; Xia, X. Far-red light inhibits lateral bud growth mainly through enhancing apical dominance independently of strigolactone synthesis in tomato. Plant Cell Environ. 2023, 47, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.; Whitelam, G.C. The shade avoidance syndrome: Multiple responses mediated by multiple phytochromes. Plant Cell Environ. 1997, 20, 840–844. [Google Scholar] [CrossRef]
- Murchie, E.H.; Burgess, A.J. Casting light on the architecture of crop yield. Crop Environ. 2022, 1, 74–85. [Google Scholar] [CrossRef]
- Comeau, P.G. Effects of Aspen and Spruce Density on Size and Number of Lower Branches 20 Years after Thinning of Two Boreal Mixedwood Stands. Forests 2021, 12, 211. [Google Scholar] [CrossRef]
- Roychoudhry, S.; Kepinski, S. Shoot and root branch growth angle control-the wonderfulness of lateralness. Curr. Opin. Plant Biol. 2015, 23, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Grimm, B. Connecting Chlorophyll Metabolism with Accumulation of the Photosynthetic Apparatus. Trends Plant Sci. 2021, 26, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, C.; Jin, Z.; Yang, Z.; Li, Y. Leaf anatomy, photosynthesis, and chloroplast ultrastructure of Heptacodium miconioides seedlings reveal adaptation to light environment. Environ. Exp. Bot. 2022, 195, 1–11. [Google Scholar] [CrossRef]
- Hoch, G.; Richter, A.; Körner, C. Non-structural carbon compounds in temperate forest trees. Plant Cell Environ. 2003, 26, 1067–1081. [Google Scholar] [CrossRef]
- Wang, N.; Ji, T.; Liu, X.; Li, Q.; Sairebieli, K.; Wu, P.; Song, H.; Wang, H.; Du, N.; Zheng, P.; et al. Defoliation Significantly Suppressed Plant Growth Under Low Light Conditions in Two Leguminosae Species. Front. Plant Sci. 2022, 12, 777328. [Google Scholar] [CrossRef] [PubMed]
- Veneklaas, E.J.; den Ouden, F. Dynamics of non-structural carbohydrates in two Ficus species after transfer to deep shade. Environ. Exp. Bot. 2005, 54, 148–154. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, Z.; Wang, Z.; Chen, Y.; Wen, Z.; Liu, B.; Tigabu, M. Responses of leaf morphology, NSCs contents and C:N:P stoichiometry of Cunninghamia lanceolata and Schima superba to shading. BMC Plant Biol. 2020, 20, 354. [Google Scholar] [CrossRef] [PubMed]
- Gommers, C.M.; Visser, E.J.; St Onge, K.R.; Voesenek, L.A.; Pierik, R. Shade tolerance: When growing tall is not an option. Trends Plant Sci. 2013, 18, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Casal, J.J.; Fankhauser, C. Shade avoidance in the context of climate change. Plant Physiol. 2023, 191, 1475–1491. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wang, W.; Zhang, N.; Cai, Y.; Liang, Y.; Meng, X.; Yuan, Y.; Li, J.; Wu, D.; Wang, Y. LAZY2 controls rice tiller angle through regulating starch biosynthesis in gravity-sensing cells. New Phytol. 2021, 231, 1073–1087. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, G.G.; Zhang, T.; Yuan, J.; Yu, L.; Zhu, J.; Yan, Q. Use of direct seeding and seedling planting to restore Korean pine (Pinus koraiensis Sieb. Et Zucc.) in secondary forests of Northeast China. For. Ecol. Manag. 2021, 493, 119243. [Google Scholar] [CrossRef]
- Li, W.; Li, B.; Ma, X.; Saha, S.; Wu, H.; Zhang, P.; Shen, H. Physiological and biochemical traits of needles imply that understory light conditions in the growing season may be favorable to Pinus koraiensis trees. Forests 2023, 14, 1333. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, K.; Sun, Y.; Yan, Q. Response of Pinus koraiensis seedling growth to different light conditions based on the assessment of photosynthesis in current and one-year-old needles. J. For. Res. 2014, 25, 53–62. [Google Scholar] [CrossRef]
- Shen, H.L.; Cong, J.; Zhang, P.; Zhang, Q.; Fan, S.H.; Yang, W.H.; Liu, S.R. Effect of opening degree regulation on diameter and height increment and aboveground biomass of Korean pine trees planted under secondary forest. Chin. J. Appl. Ecol. 2011, 22, 2781–2791. [Google Scholar] [CrossRef]
- Yu, D.-P.; Zhou, W.-M.; Zhou, L.; Dai, L.-M. Exploring the history of the management theory and technology of broad—Leaved Korean pine (Pinus koraiensis Sieb. et Zucc.) forest in Changbai Mountain Region, Northeast China. Chin. J. Appl. Ecol. 2019, 30, 1426–1434. [Google Scholar]
- Chen, D.-K.; Zhou, X.-F.; Ding, B.-Y.; Hu, Z.-C.; Zhu, N.; Wang, Y.-H.; Zhao, H.-X.; Ju, Y.-G.; Jin, Y.-Y. Research on natural secondary forest in Heilongjiang province-the management approach of planting conifers and conservating deciduous trees. J. North-East. For. Inst. 1984, 12, 1–12. [Google Scholar] [CrossRef]
- Chen, D.-K.; Zhou, X.; Ding, B.; Hu, Z.-C.; Zhu, N.; Wang, Y.-H.; Zhao, H.-X.; Ju, Y.-G.; Jin, Y.-Y. Research on natural secondary forest in Heilongjiang province-the dynamic management system. J. North-East. For. Inst. 1985, 13, 1–18. [Google Scholar]
- Zhang, Q.; Fan, S.-H.; Shen, H.-L. Research and development on the growth environment of the young tree of Pinus koraiensis in Pinus koraiensis-broadleaved mixed forest. For. Res. 2003, 16, 216–224. [Google Scholar]
- Zhou, G.; Xu, W.-Z.; Wan, J.; Wang, Y.-N.; Liu, L.-T.; Liu, Q.-J. Seasonal dynamics of energy and nutrients of Pinus koraiensis seedlings in different successional stages of broadleaved Korean pine forest in Changbai Mountain, China. Chin. J. Appl. Ecol. 2021, 32, 1663–1672. [Google Scholar]
- Sun, Y.; Zhu, J.; Sun, O.J.; Yan, Q. Photosynthetic and growth responses of Pinus koraiensis seedlings to canopy openness: Implications for the restoration of mixed-broadleaved Korean pine forests. Environ. Exp. Bot. 2016, 129, 118–126. [Google Scholar] [CrossRef]
- He, J.; Xü, X.; Li, S.H.; Mi, H.L.; Zhang, Y.P.; Zhao, T.C.; Ma, Y.M. Effects of water stress on photosynthetic pigment in leaves and chlorophyll fluorescence of Cynanchum komarovii. Acta Bot. Boreali-Occident. Sin. 2004, 24, 1594–1598, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Hansen, J.; Møller, I. Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Anal. Biochem. 1975, 68, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.-J.; Kim, H.-R.; Roy, S.K.; Kim, H.-J.; Boo, H.-O.; Woo, S.-H.; Kim, H.-H. Effects of Temperature, Light Intensity and DIF on Growth Characteristics in Platycodon grandiflorum. J. Crop Sci. Biotechnol. 2019, 22, 379–386. [Google Scholar] [CrossRef]
- Duchemin, L.; Eloy, C.; Badel, E.; Moulia, B. Tree crowns grow into self-similar shapes controlled by gravity and light sensing. J. R. Soc. Interface 2018, 15, 20170976. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Huang, Z.; Ma, X.; Wang, Z.; Xing, X.; Liu, B. Changes of seediling frowth and C, N, P stochiometric characteristics in Chinese fir under shading. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2022, 46, 74–82, (In Chinese with English Abstract). [Google Scholar]
- Li, Y.; Zhang, X.; Cai, K.; Zhang, Q.; Jiang, L.; Li, H.; Lv, Y.; Qu, G.; Zhao, X. Comparative Transcriptomic and Metabolic Analyses Reveal the Coordinated Mechanisms in Pinus koraiensis under Different Light Stress Conditions. Int. J. Mol. Sci. 2022, 23, 9556. [Google Scholar] [CrossRef] [PubMed]
- Giglou, R.H.; Giglou, M.T.; Estaji, A.; Bovand, F.; Ghorbanpour, M. Light-emitting diode irradiation and glycine differentially affect photosynthetic performance of black henbane (Hyoscyamus niger L.). S. Afr. J. Bot. 2023, 155, 230–240. [Google Scholar] [CrossRef]
- Minotta, G.; Pinzauti, S. Effects of light and soil fertility on growth, leaf chlorophyll content and nutrient use efficiency of beech (Fagus syluatica L.) seedlings. For. Ecol. Manag. 1996, 86, 61–71. [Google Scholar] [CrossRef]
- Franklin, K.A. Shade avoidance. New Phytol. 2008, 179, 930–944. [Google Scholar] [CrossRef] [PubMed]
- Morelli, L.; Paulisic, S.; Qin, W.; Iglesias-Sanchez, A.; Roig-Villanova, I.; Florez-Sarasa, I.; Rodriguez-Concepcion, M.; Martinez-Garcia, J.F. Light signals generated by vegetation shade facilitate acclimation to low light in shade-avoider plants. Plant Physiol. 2021, 186, 2137–2151. [Google Scholar] [CrossRef] [PubMed]
- Molina-Contreras, M.J.; Paulisic, S.; Then, C.; Moreno-Romero, J.; Pastor-Andreu, P.; Morelli, L.; Roig-Villanova, I.; Jenkins, H.; Hallab, A.; Gan, X.; et al. Photoreceptor Activity Contributes to Contrasting Responses to Shade in Cardamine and Arabidopsis Seedlings. Plant Cell 2019, 31, 2649–2663. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.; Walters, R.G.; Jansson, S.; Horton, P. Acclimation of Arabidopsis thaliana to the light environment: The existence of separate low light and high light responses. Planta 2001, 213, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Moosavi-Nezhad, M.; Alibeigi, B.; Estaji, A.; Gruda, N.S.; Aliniaeifard, S. Growth, Biomass Partitioning, and Photosynthetic Performance of Chrysanthemum Cuttings in Response to Different Light Spectra. Plants 2022, 11, 3337. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.M.; Gardiner, E.S.; Vaughn, K.C. High-light acclimation in Quercus robur L. seedlings upon over-topping a shaded environment. Environ. Exp. Bot. 2012, 78, 25–32. [Google Scholar] [CrossRef]
- Poorter, L. Growth responses of 15 rain-forest tree species to a light gradient: The relative importance of morphological and physiological traits. Funct. Ecol. 1999, 13, 396–410. [Google Scholar] [CrossRef]
- Hartmann, H.; Trumbore, S. Understanding the roles of nonstructural carbohydrates in forest trees—From what we can measure to what we want to know. New Phytol. 2016, 211, 386–403. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Jin, G.; Liu, Z. Dynamic variation of non-structural carbohydrates in branches and leaves of temperate broad-leaved tree species over a complete life history. Front. For. Glob. Change 2023, 6, 1130604. [Google Scholar] [CrossRef]
- Poorter, L.; Kitajima, K. Carbohydrate storage and light requirements of tropical moist and dry forest tree species. Ecology 2007, 88, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.A.; Kitajima, K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. J. Ecol. 2007, 95, 383–395. [Google Scholar] [CrossRef]
- Zepeda, A.C.; Heuvelink, E.; Marcelis, L.F.M.; Hammer, G. Carbon storage in plants: A buffer for temporal light and temperature fluctuations. In Silico Plants 2023, 5, diac020. [Google Scholar] [CrossRef]
- Furze, M.E.; Huggett, B.A.; Aubrecht, D.M.; Stolz, C.D.; Carbone, M.S.; Richardson, A.D. Whole-tree nonstructural carbohydrate storage and seasonal dynamics in five temperate species. New Phytol. 2019, 221, 1466–1477. [Google Scholar] [CrossRef] [PubMed]
- Chapin, F.S., III; Schulze, E.-D.; Mooney, H.A. The ecology and economics of storage in plants. Annu. Rev. Ecol. Syst. 1990, 21, 423–447. [Google Scholar] [CrossRef]
- Beaudet, M.; Messier, C. Growth and morphological responses of yellow birch, sugar maple, and beech seedlings growing under a natural light gradient. Can. J. For. Res. 1998, 28, 1007–1015. [Google Scholar] [CrossRef]
- Signori-Mueller, C.; Oliveira, R.S.; Barros, F.d.V.; Tavares, J.V.; Gilpin, M.; Carvalho Diniz, F.; Marca Zevallos, M.J.; Salas Yupayccana, C.A.; Acosta, M.; Bacca, J.; et al. Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nat. Commun. 2021, 12, 2310. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tang, M.; Song, Y.C.; Zargar, M.; Chen, M.X.; Lin, S.Y.; Zhu, F.Y.; Song, T. Unlocking bamboo’s fast growth: Exploring the vital role of non-structural carbohydrates (NSCs). Plant J. 2025, 122, e70147. [Google Scholar] [CrossRef] [PubMed]
Light Levels | Longitude (E) | Latitude (N) | Altitude (m) | Tree Species Composition |
---|---|---|---|---|
LL | 127.53° | 45.32° | 312 | Ulmus pumila L., Fraxinus mandshurica Rupr., Quercus mongolica Fisch. ex Ledeb., Acer pictum Thunb. subsp. mono (Maxim.) H. Ohashi, Tilia amurensis Rupr., Juglans mandshurica Maxim., Phellodendron amurense Rupr., A. tegmentosum Maxim., Betula platyphylla Suk., A. tataricum subsp. ginnala (Maxim.) Wesmael |
ML | 127.53° | 45.32° | 319 | U. pumila L., F. mandshurica Rupr., Q. mongolica Fisch. ex Ledeb., A. pictum Thunb. subsp. mono (Maxim.), Pinus koraiensis, Tilia mandshurica Rupr. et maxim., Populus davidiana Dode, P. koreana Rehd., B. platyphylla Suk. |
HL | 127.53° | 45.32° | 294 | U. pumila L., F. mandshurica Rupr., Q. mongolica Fisch. ex Ledeb., A. pictum Thunb. subsp. mono (Maxim.), T. amurensis Rupr., Juglans mandshurica Maxim., P. koraiensis, P. amurense Rupr., Syringa reticulata subsp. amurensis (Rupr.) P. S. Green & M. C. Chang, Styphnolobium japonicum (L.) Schott. |
FL | 127.57° | 45.27° | 300 | U. pumila L., F. mandshurica Rupr., Q. mongolica Fisch. ex Ledeb., A. pictum Thunb. subsp. mono (Maxim.), Tilia amurensis Rupr., J. mandshurica Maxim., P. koraiensis, P. amurense Rupr., B. platyphylla Suk., Aralia elata (Miq.) Seem. |
Light Levels | PPFD (μmol/m2/s) | Height (m) | DBH (cm) | Tree Age (Yr) |
---|---|---|---|---|
LL | <25 | 2.48 ± 0.24 b | 2.02 ± 0.46 b | 22 |
ML | 25–50 | 2.40 ± 0.05 b | 1.84 ± 0.34 b | 22 |
HL | 50–100 | 2.38 ± 0.16 b | 1.79 ± 0.45 b | 22 |
FL | 1300–1700 | 3.21 ± 0.08 a | 4.47 ± 0.85 a | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Li, W.; Saha, S.; Ma, X.; Liu, Y.; Wu, H.; Zhang, P.; Shen, H. Hierarchic Branch Morphology, Needle Chlorophyll Content, and Needle and Branch Non-Structural Carbohydrate Concentrations (NSCs) Imply Young Pinus koraiensis Trees Exhibit Diverse Responses Under Different Light Conditions. Horticulturae 2025, 11, 844. https://doi.org/10.3390/horticulturae11070844
Li B, Li W, Saha S, Ma X, Liu Y, Wu H, Zhang P, Shen H. Hierarchic Branch Morphology, Needle Chlorophyll Content, and Needle and Branch Non-Structural Carbohydrate Concentrations (NSCs) Imply Young Pinus koraiensis Trees Exhibit Diverse Responses Under Different Light Conditions. Horticulturae. 2025; 11(7):844. https://doi.org/10.3390/horticulturae11070844
Chicago/Turabian StyleLi, Bei, Wenkai Li, Sudipta Saha, Xiao Ma, Yang Liu, Haibo Wu, Peng Zhang, and Hailong Shen. 2025. "Hierarchic Branch Morphology, Needle Chlorophyll Content, and Needle and Branch Non-Structural Carbohydrate Concentrations (NSCs) Imply Young Pinus koraiensis Trees Exhibit Diverse Responses Under Different Light Conditions" Horticulturae 11, no. 7: 844. https://doi.org/10.3390/horticulturae11070844
APA StyleLi, B., Li, W., Saha, S., Ma, X., Liu, Y., Wu, H., Zhang, P., & Shen, H. (2025). Hierarchic Branch Morphology, Needle Chlorophyll Content, and Needle and Branch Non-Structural Carbohydrate Concentrations (NSCs) Imply Young Pinus koraiensis Trees Exhibit Diverse Responses Under Different Light Conditions. Horticulturae, 11(7), 844. https://doi.org/10.3390/horticulturae11070844