One-Pot Synthesis of CuS/Co3S4@MWCNT Composite as a High-Efficiency Catalyst for the Hydrogen Evolution Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Preparation
2.3. Electrochemical Studies
2.4. Characterization
3. Results
3.1. Research on Crystal Properties
3.2. Morphological Identification
3.3. Investigation of X-Ray Photoelectron Spectroscopy (XPS) Characteristics of Crystals
3.4. The N2 Adsorption-Desorption Isotherm of the Material
3.5. Electrochemical Characterization of CuS/Co3S4@MWCNTs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, J.; Hu, L.; Zhao, P.; Lee, L.Y.S.; Wong, K.Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, L.; Li, J.; He, X.; Zheng, Y.; Sun, S.; Fang, X.; Zheng, D.; Luo, Y.; Wang, Y.; et al. Highefficiency overall alkaline seawater splitting: Using a nickel-iron sulfide nanosheet array as a bifunctional electrocatalyst. J. Mater. Chem. A 2023, 11, 1116–1122. [Google Scholar] [CrossRef]
- Cheng, F.; Liang, J.; Tao, Z.; Chen, J. Functional materials for rechargeable batteries. Adv. Mater. 2011, 23, 1695–1715. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, Q.; Sun, W.; Sun, K.; Shen, Y.; An, W.; Zhang, L.; Chen, H.; Zou, X. Nanostructured intermetallics: From rational synthesis to energy electrocatalysis. Chem. Synth. 2023, 3, 28. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Sun, C.; Xi, P.; Peng, S.; Gao, D.; Xue, D. Accelerated hydrogen evolution reaction in CoS2 by transition-metal doping. ACS Energy Lett. 2018, 3, 779–786. [Google Scholar] [CrossRef]
- Karuppasamy, K.; Bose, R.; Jothi, V.R.; Vikraman, D.; Jeong, Y.-T.; Arunkumar, P.; Velusamy, D.B.; Maiyalagan, T.; Alfantazi, A.; Kim, H.-S. High performance, 3D-hierarchical CoS2/CoSe@C nanohybrid as an efficient electrocatalyst for hydrogen evolution reaction. J. Alloys Compd. 2020, 838, 155537. [Google Scholar] [CrossRef]
- Aftab, U.; Tahira, A.; Samo, A.H.; Abro, M.I.; Baloch, M.M.; Kumar, M.; Ibupoto, Z.H. Mixed CoS2@Co3O4 composite material: An efficient nonprecious electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 13805–13813. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, M.; Wang, C.; Zhu, Y.; Li, N.; Pu, X.; Yu, A.; Zhai, J. Vertically aligned NiS2/CoS2/MoS2 nanosheet array as an efficient and low-cost electrocatalyst for hydrogen evolution reaction in alkaline media. Sci. Bull. 2020, 65, 359–366. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, L.; He, Y.; Zhu, H. Recent Advances in Transition-Metal-Sulfide-Based Bifunctional Electrocatalysts for Overall Water Splitting. J. Mater. Chem. A 2021, 9, 5320–5363. [Google Scholar] [CrossRef]
- Liang, Y.; Yang, Y.; Xu, K.; Yu, T.; Yao, S.; Peng, Q.; Yuan, C. Crystal plane dependent electrocatalytic performance of NiS2 nanocrystals for hydrogen evolution reaction. J. Catal. 2020, 381, 63–69. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, H.; Zhang, D.; Pi, M.; Feng, J.; Chen, S. Mn-doped NiP2 nanosheets as an efficient electrocatalyst for enhanced hydrogen evolution reaction at all pH values. J. Power Sources 2018, 387, 1–8. [Google Scholar] [CrossRef]
- Li, Z.; Shang, J.; Su, C.; Zhang, S.; Wu, M.; Guo, Y. Preparation of amorphous NiP-based catalysts for hydrogen evolution reactions. J. Fuel Chem. Technol. 2018, 46, 473–478. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, H.; Du, Y.; Yang, Y.; Liu, Y.; Wang, L. RuP4 decorated CoP acacia-like array: An efficiently electrocatalyst for hydrogen evolution reaction at acidic and alkaline condition. Appl. Surf. Sci. 2020, 534, 147626. [Google Scholar] [CrossRef]
- Li, Y.W.; Lu, M.T.; Wu, Y.H.; Ji, Q.H.; Xu, H.; Gao, J.K.; Qian, G.D.; Zhang, Q.C. Morphology regulation of metal-organic framework-derived nanostructures for efficient oxygen evolution electrocatalysis. J. Mater. Chem. A 2020, 8, 18215–18219. [Google Scholar] [CrossRef]
- Weng, B.C.; Grice, C.R.; Meng, W.W.; Guan, L.; Xu, F.H.; Yu, Y.; Wang, C.L.; Zhao, D.W.; Yan, Y.F. Metal-organic framework-Derived CoWP@C Composite Nanowire electrocatalyst for efficient water splitting. ACS Energy Lett. 2018, 3, 1434–1442. [Google Scholar] [CrossRef]
- Li, Y.W.; Zhao, T.; Lu, M.T.; Wu, Y.H.; Xie, Y.B.; Xu, H.H.; Gao, J.K.; Yao, J.M.; Qian, G.D.; Zhang, Q.C. Enhancing oxygen evolution reaction through modulating electronic structure of trimetallic electrocatalysts derived from Metal-organic frameworks. Small 2019, 15, 1901940. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813. [Google Scholar] [CrossRef]
- Wang, A.; Wang, H.; Zhang, S.; Mao, C.; Song, J.; Niu, H.; Jin, B.; Tian, Y. Controlled synthesis of nickel sulfide/graphene oxide nanocomposite for high-performance supercapacitor. Appl. Surf. Sci. 2013, 282, 704–708. [Google Scholar] [CrossRef]
- Wu, Z.; Fang, B.; Bonakdarpour, A.; Sun, A.; Wilkinson, D.P.; Wang, D. WS2 nanosheets as a highly efficient electrocatalyst for hydrogen evolution reaction. Appl. Catal. B Environ. 2012, 125, 59–66. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, W.; Xi, P.; Xi, S.; Du, Y.; Gao, D.; Ding, J. Activating and optimizing activity of CoS2 for hydrogen evolution reaction through the synergic effect of N dopants and S vacancies. ACS Energy Lett. 2017, 2, 1022–1028. [Google Scholar] [CrossRef]
- Masar, M.; Urbanek, M.; Urbanek, P.; Machovska, Z.; Maslik, J.; Yadav, R.S.; Skoda, D.; Machovsky, M.; Kuritka, I. Synthesis, characterization and examination of photocatalytic performance of hexagonal covellite CuS nanoplates. Mater. Chem. Phys. 2019, 237, 121823. [Google Scholar] [CrossRef]
- Rodríguez-Reinoso, F. The role of carbon materials in heterogeneous catalysis. Carbon 1998, 36, 159–175. [Google Scholar] [CrossRef]
- Leary, R.; Westwood, A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 2011, 49, 741–772. [Google Scholar] [CrossRef]
- Wu, S.; Shen, X.; Zhu, G.; Zhou, H.; Ji, Z.; Ma, L.; Xu, K.; Yang, J.; Yuan, A. Metal organic framework derived NiFe@N-doped graphene microtube composites for hydrogen evolution catalyst. Carbon 2017, 116, 68–76. [Google Scholar] [CrossRef]
- Kong, D.; Wang, H.; Lu, Z.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900. [Google Scholar] [CrossRef]
- Wang, D.Y.; Gong, M.; Chou, H.L.; Pan, C.J.; Chen, H.A.; Wu, Y.; Lin, M.C.; Guan, M.; Yang, J.; Chen, C.W. Highly Active and Stable Hybrid Catalyst of Cobalt-Doped FeS2Nanosheets–Carbon Nanotubes for Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2015, 137, 1587–1592. [Google Scholar] [CrossRef]
- Duraisamy, S.; Ganguly, A.; Sharma, P.K.; Benson, J.; Davis, J.; Papakonstantinou, P. One-Step Hydrothermal Synthesis of Phase-Engineered MoS2/MoO3 Electrocatalysts for Hydrogen Evolution Reaction. ACS Appl. Nano Mater. 2021, 4, 2642–2656. [Google Scholar] [CrossRef]
- Ito, Y.; Cong, W.; Fujita, T.; Tang, Z.; Chen, M. High Catalytic Activity of Nitrogen and Sulfur Co-Doped Nanoporous Graphene in the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 2015, 54, 2131–2136. [Google Scholar] [CrossRef]
- Sekar, S.; Devi, S.B.; Maruthasalamoorthy, S.; Maiyalagan, T.; Kim, D.Y.; Lee, S.; Navamathavan, R. One-step facile hydrothermal synthesis of rGO-CoS2 nanocomposites for high performance HER electrocatalyst. Int. J. Hydrogen Energy 2022, 47, 40359–40367. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, Y.; Dai, K.; Wang, J.; Zhang, B.; Shen, X. NiCoP Nanowire@NiCo-Layered Double Hydroxides Nanosheet Heterostructure for Flexible Asymmetric Supercapacitors. Chem. Eng. J. 2020, 384, 123373. [Google Scholar] [CrossRef]
- Saranya, M.; Ramachandran, R.; Kollu, P.; Jeong, S.K.; Grace, A.N. A template-free facile approach for the synthesis of CuS-rGO nanocomposites towards enhanced photocatalytic reduction of organic contaminants and textile effluents. RSC Adv. 2015, 5, 15831–15840. [Google Scholar] [CrossRef]
- Shu, Q.W.; Li, C.M.; Gao, P.F.; Gao, M.X.; Huang, C.Z. Porous hollow CuS nanospheres with prominent peroxidase-like activity prepared in large scale by a one-pot controllable hydrothermal step. RSC Adv. 2015, 5, 17458–17465. [Google Scholar] [CrossRef]
- Xu, Y.C.; Yang, C.H.; Deng, Q.H.; Zhou, Y.M.; Mao, C.F.; Song, Y.C.; Zhu, M.; Zhang, Y.W. Bi-Porphyrins MOF with confinement and ion-attracting effects in concert with RuO2-doped CNT as efficient electrocatalysts for HER in acidic and alkaline media. Appl. Surf. Sci. 2023, 612, 155870. [Google Scholar] [CrossRef]
- Sun, X.; Huo, J.; Yang, Y.; Xu, L.; Wang, S.Y. The Co3O4 nanosheet array as support for MoS2 as highly efficient electrocatalysts for hydrogen evolution reaction. JEC 2017, 6, 1136–1139. [Google Scholar] [CrossRef]
- Yao, Y.; He, J.; Yang, X.; Peng, L.; Zhu, X.; Li, K.; Qu, M. Superhydrophilic/underwater superaerophobic self-supporting CuS/Cu foam electrode for efficient oxygen evolution reaction. Colloids Surf. A 2022, 634, 127934. [Google Scholar] [CrossRef]
- Chen, L.; Chen, H.; Wu, L.; Li, G.; Tao, K.; Han, L. Zeolitic Imidazolate Framework-Derived Co3S4@NiFe-LDH Core-hell Heterostructure as Efficient Bifunctional Electrocatalyst for Water Splitting. ACS Appl. Mater. 2024, 16, 8751–8762. [Google Scholar] [CrossRef]
- Fan, Y.J.; Ai, T.T.; Bao, W.W.; Han, J.; Jiang, P.; Deng, Z.F.; Wei, X.L.; Zou, X.Y. Ru doping Co3S4 induced electron and morphology double regulation to promote the kinetics of the bifunctional catalytic reaction. Appl. Surf. Sci. 2025, 689, 162361. [Google Scholar] [CrossRef]
Electrolytic Material | Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Mean Aperture (nm) |
---|---|---|---|
CuS/Co3S4@MWCNTs | 12.8585 | 0.079 | 32.74 |
Electrocatalyst (Catalyst–Substrate) | Electrolyte | Counter Electrode | η (mV)@–10 mA·cm–2 geo | Tafel Slope (mV·dec –1) | Refs. |
---|---|---|---|---|---|
CuS/Co3S4@MWCNTs | 1.0 M KOH | Pt wire | 423 | 76.2 | This work |
NiS2 HMSs | 1.0 M KOH | Pt wire | 219 | 157 | [9] |
rGo-CoS2 | 1.0 M KOH | Pt wire | 377 | 121 | [28] |
MoS2/Co3S4 | 1.0 M KOH | Platinum mesh | 170 | 85 | [34] |
CuS/Cu | 0.5 M H2SO4 | Platinum (Pt) foil (1 cm2) | 134 | 114 | [35] |
Co3S4@NiFe-200/NF | 1.0 M KOH | Pt wire | 95 | 84 | [36] |
Ru-Co3S4/NF | 1.0 M KOH | Pt wire | 205 | 50.4 | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Sun, M.; Guo, H.; Su, M. One-Pot Synthesis of CuS/Co3S4@MWCNT Composite as a High-Efficiency Catalyst for the Hydrogen Evolution Reaction. Crystals 2025, 15, 505. https://doi.org/10.3390/cryst15060505
Zhang X, Sun M, Guo H, Su M. One-Pot Synthesis of CuS/Co3S4@MWCNT Composite as a High-Efficiency Catalyst for the Hydrogen Evolution Reaction. Crystals. 2025; 15(6):505. https://doi.org/10.3390/cryst15060505
Chicago/Turabian StyleZhang, Xinyuan, Meng Sun, Haibo Guo, and Ming Su. 2025. "One-Pot Synthesis of CuS/Co3S4@MWCNT Composite as a High-Efficiency Catalyst for the Hydrogen Evolution Reaction" Crystals 15, no. 6: 505. https://doi.org/10.3390/cryst15060505
APA StyleZhang, X., Sun, M., Guo, H., & Su, M. (2025). One-Pot Synthesis of CuS/Co3S4@MWCNT Composite as a High-Efficiency Catalyst for the Hydrogen Evolution Reaction. Crystals, 15(6), 505. https://doi.org/10.3390/cryst15060505