One-Pot Synthesis of CuS/Co3S4@MWCNT Composite as a High-Efficiency Catalyst for the Hydrogen Evolution Reaction
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Preparation
2.3. Electrochemical Studies
2.4. Characterization
3. Results
3.1. Research on Crystal Properties
3.2. Morphological Identification
3.3. Investigation of X-Ray Photoelectron Spectroscopy (XPS) Characteristics of Crystals
3.4. The N2 Adsorption-Desorption Isotherm of the Material
3.5. Electrochemical Characterization of CuS/Co3S4@MWCNTs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, J.; Hu, L.; Zhao, P.; Lee, L.Y.S.; Wong, K.Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, L.; Li, J.; He, X.; Zheng, Y.; Sun, S.; Fang, X.; Zheng, D.; Luo, Y.; Wang, Y.; et al. Highefficiency overall alkaline seawater splitting: Using a nickel-iron sulfide nanosheet array as a bifunctional electrocatalyst. J. Mater. Chem. A 2023, 11, 1116–1122. [Google Scholar] [CrossRef]
- Cheng, F.; Liang, J.; Tao, Z.; Chen, J. Functional materials for rechargeable batteries. Adv. Mater. 2011, 23, 1695–1715. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, Q.; Sun, W.; Sun, K.; Shen, Y.; An, W.; Zhang, L.; Chen, H.; Zou, X. Nanostructured intermetallics: From rational synthesis to energy electrocatalysis. Chem. Synth. 2023, 3, 28. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Sun, C.; Xi, P.; Peng, S.; Gao, D.; Xue, D. Accelerated hydrogen evolution reaction in CoS2 by transition-metal doping. ACS Energy Lett. 2018, 3, 779–786. [Google Scholar] [CrossRef]
- Karuppasamy, K.; Bose, R.; Jothi, V.R.; Vikraman, D.; Jeong, Y.-T.; Arunkumar, P.; Velusamy, D.B.; Maiyalagan, T.; Alfantazi, A.; Kim, H.-S. High performance, 3D-hierarchical CoS2/CoSe@C nanohybrid as an efficient electrocatalyst for hydrogen evolution reaction. J. Alloys Compd. 2020, 838, 155537. [Google Scholar] [CrossRef]
- Aftab, U.; Tahira, A.; Samo, A.H.; Abro, M.I.; Baloch, M.M.; Kumar, M.; Ibupoto, Z.H. Mixed CoS2@Co3O4 composite material: An efficient nonprecious electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 13805–13813. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, M.; Wang, C.; Zhu, Y.; Li, N.; Pu, X.; Yu, A.; Zhai, J. Vertically aligned NiS2/CoS2/MoS2 nanosheet array as an efficient and low-cost electrocatalyst for hydrogen evolution reaction in alkaline media. Sci. Bull. 2020, 65, 359–366. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, L.; He, Y.; Zhu, H. Recent Advances in Transition-Metal-Sulfide-Based Bifunctional Electrocatalysts for Overall Water Splitting. J. Mater. Chem. A 2021, 9, 5320–5363. [Google Scholar] [CrossRef]
- Liang, Y.; Yang, Y.; Xu, K.; Yu, T.; Yao, S.; Peng, Q.; Yuan, C. Crystal plane dependent electrocatalytic performance of NiS2 nanocrystals for hydrogen evolution reaction. J. Catal. 2020, 381, 63–69. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, H.; Zhang, D.; Pi, M.; Feng, J.; Chen, S. Mn-doped NiP2 nanosheets as an efficient electrocatalyst for enhanced hydrogen evolution reaction at all pH values. J. Power Sources 2018, 387, 1–8. [Google Scholar] [CrossRef]
- Li, Z.; Shang, J.; Su, C.; Zhang, S.; Wu, M.; Guo, Y. Preparation of amorphous NiP-based catalysts for hydrogen evolution reactions. J. Fuel Chem. Technol. 2018, 46, 473–478. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, H.; Du, Y.; Yang, Y.; Liu, Y.; Wang, L. RuP4 decorated CoP acacia-like array: An efficiently electrocatalyst for hydrogen evolution reaction at acidic and alkaline condition. Appl. Surf. Sci. 2020, 534, 147626. [Google Scholar] [CrossRef]
- Li, Y.W.; Lu, M.T.; Wu, Y.H.; Ji, Q.H.; Xu, H.; Gao, J.K.; Qian, G.D.; Zhang, Q.C. Morphology regulation of metal-organic framework-derived nanostructures for efficient oxygen evolution electrocatalysis. J. Mater. Chem. A 2020, 8, 18215–18219. [Google Scholar] [CrossRef]
- Weng, B.C.; Grice, C.R.; Meng, W.W.; Guan, L.; Xu, F.H.; Yu, Y.; Wang, C.L.; Zhao, D.W.; Yan, Y.F. Metal-organic framework-Derived CoWP@C Composite Nanowire electrocatalyst for efficient water splitting. ACS Energy Lett. 2018, 3, 1434–1442. [Google Scholar] [CrossRef]
- Li, Y.W.; Zhao, T.; Lu, M.T.; Wu, Y.H.; Xie, Y.B.; Xu, H.H.; Gao, J.K.; Yao, J.M.; Qian, G.D.; Zhang, Q.C. Enhancing oxygen evolution reaction through modulating electronic structure of trimetallic electrocatalysts derived from Metal-organic frameworks. Small 2019, 15, 1901940. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813. [Google Scholar] [CrossRef]
- Wang, A.; Wang, H.; Zhang, S.; Mao, C.; Song, J.; Niu, H.; Jin, B.; Tian, Y. Controlled synthesis of nickel sulfide/graphene oxide nanocomposite for high-performance supercapacitor. Appl. Surf. Sci. 2013, 282, 704–708. [Google Scholar] [CrossRef]
- Wu, Z.; Fang, B.; Bonakdarpour, A.; Sun, A.; Wilkinson, D.P.; Wang, D. WS2 nanosheets as a highly efficient electrocatalyst for hydrogen evolution reaction. Appl. Catal. B Environ. 2012, 125, 59–66. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, W.; Xi, P.; Xi, S.; Du, Y.; Gao, D.; Ding, J. Activating and optimizing activity of CoS2 for hydrogen evolution reaction through the synergic effect of N dopants and S vacancies. ACS Energy Lett. 2017, 2, 1022–1028. [Google Scholar] [CrossRef]
- Masar, M.; Urbanek, M.; Urbanek, P.; Machovska, Z.; Maslik, J.; Yadav, R.S.; Skoda, D.; Machovsky, M.; Kuritka, I. Synthesis, characterization and examination of photocatalytic performance of hexagonal covellite CuS nanoplates. Mater. Chem. Phys. 2019, 237, 121823. [Google Scholar] [CrossRef]
- Rodríguez-Reinoso, F. The role of carbon materials in heterogeneous catalysis. Carbon 1998, 36, 159–175. [Google Scholar] [CrossRef]
- Leary, R.; Westwood, A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 2011, 49, 741–772. [Google Scholar] [CrossRef]
- Wu, S.; Shen, X.; Zhu, G.; Zhou, H.; Ji, Z.; Ma, L.; Xu, K.; Yang, J.; Yuan, A. Metal organic framework derived NiFe@N-doped graphene microtube composites for hydrogen evolution catalyst. Carbon 2017, 116, 68–76. [Google Scholar] [CrossRef]
- Kong, D.; Wang, H.; Lu, Z.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900. [Google Scholar] [CrossRef]
- Wang, D.Y.; Gong, M.; Chou, H.L.; Pan, C.J.; Chen, H.A.; Wu, Y.; Lin, M.C.; Guan, M.; Yang, J.; Chen, C.W. Highly Active and Stable Hybrid Catalyst of Cobalt-Doped FeS2Nanosheets–Carbon Nanotubes for Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2015, 137, 1587–1592. [Google Scholar] [CrossRef]
- Duraisamy, S.; Ganguly, A.; Sharma, P.K.; Benson, J.; Davis, J.; Papakonstantinou, P. One-Step Hydrothermal Synthesis of Phase-Engineered MoS2/MoO3 Electrocatalysts for Hydrogen Evolution Reaction. ACS Appl. Nano Mater. 2021, 4, 2642–2656. [Google Scholar] [CrossRef]
- Ito, Y.; Cong, W.; Fujita, T.; Tang, Z.; Chen, M. High Catalytic Activity of Nitrogen and Sulfur Co-Doped Nanoporous Graphene in the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 2015, 54, 2131–2136. [Google Scholar] [CrossRef]
- Sekar, S.; Devi, S.B.; Maruthasalamoorthy, S.; Maiyalagan, T.; Kim, D.Y.; Lee, S.; Navamathavan, R. One-step facile hydrothermal synthesis of rGO-CoS2 nanocomposites for high performance HER electrocatalyst. Int. J. Hydrogen Energy 2022, 47, 40359–40367. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, Y.; Dai, K.; Wang, J.; Zhang, B.; Shen, X. NiCoP Nanowire@NiCo-Layered Double Hydroxides Nanosheet Heterostructure for Flexible Asymmetric Supercapacitors. Chem. Eng. J. 2020, 384, 123373. [Google Scholar] [CrossRef]
- Saranya, M.; Ramachandran, R.; Kollu, P.; Jeong, S.K.; Grace, A.N. A template-free facile approach for the synthesis of CuS-rGO nanocomposites towards enhanced photocatalytic reduction of organic contaminants and textile effluents. RSC Adv. 2015, 5, 15831–15840. [Google Scholar] [CrossRef]
- Shu, Q.W.; Li, C.M.; Gao, P.F.; Gao, M.X.; Huang, C.Z. Porous hollow CuS nanospheres with prominent peroxidase-like activity prepared in large scale by a one-pot controllable hydrothermal step. RSC Adv. 2015, 5, 17458–17465. [Google Scholar] [CrossRef]
- Xu, Y.C.; Yang, C.H.; Deng, Q.H.; Zhou, Y.M.; Mao, C.F.; Song, Y.C.; Zhu, M.; Zhang, Y.W. Bi-Porphyrins MOF with confinement and ion-attracting effects in concert with RuO2-doped CNT as efficient electrocatalysts for HER in acidic and alkaline media. Appl. Surf. Sci. 2023, 612, 155870. [Google Scholar] [CrossRef]
- Sun, X.; Huo, J.; Yang, Y.; Xu, L.; Wang, S.Y. The Co3O4 nanosheet array as support for MoS2 as highly efficient electrocatalysts for hydrogen evolution reaction. JEC 2017, 6, 1136–1139. [Google Scholar] [CrossRef]
- Yao, Y.; He, J.; Yang, X.; Peng, L.; Zhu, X.; Li, K.; Qu, M. Superhydrophilic/underwater superaerophobic self-supporting CuS/Cu foam electrode for efficient oxygen evolution reaction. Colloids Surf. A 2022, 634, 127934. [Google Scholar] [CrossRef]
- Chen, L.; Chen, H.; Wu, L.; Li, G.; Tao, K.; Han, L. Zeolitic Imidazolate Framework-Derived Co3S4@NiFe-LDH Core-hell Heterostructure as Efficient Bifunctional Electrocatalyst for Water Splitting. ACS Appl. Mater. 2024, 16, 8751–8762. [Google Scholar] [CrossRef]
- Fan, Y.J.; Ai, T.T.; Bao, W.W.; Han, J.; Jiang, P.; Deng, Z.F.; Wei, X.L.; Zou, X.Y. Ru doping Co3S4 induced electron and morphology double regulation to promote the kinetics of the bifunctional catalytic reaction. Appl. Surf. Sci. 2025, 689, 162361. [Google Scholar] [CrossRef]
Electrolytic Material | Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Mean Aperture (nm) |
---|---|---|---|
CuS/Co3S4@MWCNTs | 12.8585 | 0.079 | 32.74 |
Electrocatalyst (Catalyst–Substrate) | Electrolyte | Counter Electrode | η (mV)@–10 mA·cm–2 geo | Tafel Slope (mV·dec –1) | Refs. |
---|---|---|---|---|---|
CuS/Co3S4@MWCNTs | 1.0 M KOH | Pt wire | 423 | 76.2 | This work |
NiS2 HMSs | 1.0 M KOH | Pt wire | 219 | 157 | [9] |
rGo-CoS2 | 1.0 M KOH | Pt wire | 377 | 121 | [28] |
MoS2/Co3S4 | 1.0 M KOH | Platinum mesh | 170 | 85 | [34] |
CuS/Cu | 0.5 M H2SO4 | Platinum (Pt) foil (1 cm2) | 134 | 114 | [35] |
Co3S4@NiFe-200/NF | 1.0 M KOH | Pt wire | 95 | 84 | [36] |
Ru-Co3S4/NF | 1.0 M KOH | Pt wire | 205 | 50.4 | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Sun, M.; Guo, H.; Su, M. One-Pot Synthesis of CuS/Co3S4@MWCNT Composite as a High-Efficiency Catalyst for the Hydrogen Evolution Reaction. Crystals 2025, 15, 505. https://doi.org/10.3390/cryst15060505
Zhang X, Sun M, Guo H, Su M. One-Pot Synthesis of CuS/Co3S4@MWCNT Composite as a High-Efficiency Catalyst for the Hydrogen Evolution Reaction. Crystals. 2025; 15(6):505. https://doi.org/10.3390/cryst15060505
Chicago/Turabian StyleZhang, Xinyuan, Meng Sun, Haibo Guo, and Ming Su. 2025. "One-Pot Synthesis of CuS/Co3S4@MWCNT Composite as a High-Efficiency Catalyst for the Hydrogen Evolution Reaction" Crystals 15, no. 6: 505. https://doi.org/10.3390/cryst15060505
APA StyleZhang, X., Sun, M., Guo, H., & Su, M. (2025). One-Pot Synthesis of CuS/Co3S4@MWCNT Composite as a High-Efficiency Catalyst for the Hydrogen Evolution Reaction. Crystals, 15(6), 505. https://doi.org/10.3390/cryst15060505