Constructing Layered/Tunnel Biphasic Structure via Trace W-Substitution in Tunnel-Type Cathode for Elevating Sodium Ion Storage
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
Materials Preparation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Usiskin, R.; Lu, Y.; Popovic, J.; Law, M.; Balaya, P.; Hu, Y.-S.; Maier, J. Fundamentals, Status and Promise of Sodium-Based Batteries. Nat. Rev. Mater. 2021, 6, 1020–1035. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Q.; Yao, Z.; Wang, J.; Sánchez-Lengeling, B.; Ding, F.; Qi, X.; Lu, Y.; Bai, X.; Li, B.; et al. Rational Design of Layered Oxide Materials for Sodium-Ion Batteries. Science 2020, 370, 708–711. [Google Scholar] [CrossRef] [PubMed]
- Namazbay, A.; Karlykan, M.; Rakhymbay, L.; Bakenov, Z.; Voronina, N.; Myung, S.-T.; Konarov, A. Towards High-Performance Sodium-Ion Batteries: A Comprehensive Review on NaxNiyFezMn1−(y+z)O2 Cathode Materials. Energy Storage Mater. 2025, 77, 104212. [Google Scholar] [CrossRef]
- Chong, P.; Zhou, Z.; Wang, K.; Zhai, W.; Li, Y.; Wang, J.; Wei, M. The Stabilizing of 1T-MoS2 for All-Solid-State Lithium-Ion Batteries. Batteries 2022, 9, 26. [Google Scholar] [CrossRef]
- Wang, J.; Seh, Z.W. The Design of Transition Metal Sulfide Cathodes for High-Performance Magnesium-Ion Batteries. Acc. Mater. Res. 2024, 5, 1329–1339. [Google Scholar] [CrossRef]
- Vasavan, H.N.; Saxena, S.; Srihari, V.; Das, A.K.; Gami, P.; Dagar, N.; Deswal, S.; Kumar, P.; Poswal, H.K.; Kumar, S. Elevating the Concentration of Na Ions to 1 in P2 Type Layered Oxide Cathodes. Adv. Funct. Mater. 2025, 2421733. [Google Scholar] [CrossRef]
- Barpanda, P.; Lander, L.; Nishimura, S.; Yamada, A. Polyanionic Insertion Materials for Sodium-Ion Batteries. Adv. Energy Mater. 2018, 8, 1703055. [Google Scholar] [CrossRef]
- Komenda, A.; Piątek, J. Prussian Blue Analogues in Sodium-Ion Batteries: Comparison with Lithium Technologies, Recent Advances, and Prospects. Renew. Sust. Energ. Rev. 2025, 217, 115677. [Google Scholar] [CrossRef]
- Zhanadilov, O.; Baiju, S.; Voronina, N.; Yu, J.H.; Kim, A.Y.; Jung, H.G.; Ihm, K.; Guillon, O.; Kaghazchi, P.; Myung, S.T. Impact of Transition Metal Layer Vacancy on the Structure and Performance of P2 Type Layered Sodium Cathode Material. Nanomicro Lett. 2024, 16, 239. [Google Scholar]
- Chae, M.S.; Elias, Y.; Aurbach, D. Tunnel-Type Sodium Manganese Oxide Cathodes for Sodium-Ion Batteries. ChemElectroChem 2021, 8, 798–811. [Google Scholar] [CrossRef]
- Sauvage, F.; Laffont, L.; Tarascon, J.-M.; Baudrin, E. Inorganic Chemistry-Study of the Insertion Deinsertion of Na0.44MnO2. Inorg. Chem. 2007, 46, 3289–3294. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, S.; Dar, J.A.; Joshi, A.; Paperni, A.; Taragin, S.; Maddegalla, A.; Sai Gautam, G.; Mukherjee, A.; Noked, M. Unveiling the Structural Integrity of Tunnel-Type Na0.44MnO2 Cathode for Sodium Ion Battery. J. Mater. Chem. A 2024, 12, 25109–25116. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, D.; Liu, Y.; Wang, J.; Li, Z.; Li, X.; Han, G.; Wei, Q.; Qu, B. Sodium Stoichiometry Tuning of the Biphasic-NaxMnO2 Cathode for High-Performance Sodium-Ion Batteries. Small 2023, 19, e2301141. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Zheng, W.; Zhao, A.; Zhao, Y.; Chen, K.; Zhou, X.; Zhang, H.; Li, Q.; Ai, X.; Yang, H.; et al. W-Doping Induced Efficient Tunnel-to-Layered Structure Transformation of Na0.44Mn1-xWxO2: Phase Evolution, Sodium-Storage Properties, and Moisture Stability. Adv. Energy Mater. 2023, 13, 2203802. [Google Scholar] [CrossRef]
- Wong, K.H.; Zhang, M.; Yang, T.; Ma, Q.; Dai, S.; Wei, J.; Veerasubramani, G.K.; AlHammadi, A.A.; Karanikolos, G.; Bekyarova, E.; et al. Modification Strategy for Advanced Mn-Based Layered Transition Metal Oxide Cathode for Sodium-Ion Batteries. Energy Storage Mater. 2024, 71, 103549. [Google Scholar] [CrossRef]
- Azambou, C.I.; Obiukwu, O.O.; Tsobnang, P.K.; Kenfack, I.T.; Kalu, E.E.; Oguzie, E.E. Electrochemical Performance and Structural Evolution of Layered Oxide Cathodes Materials for Sodium-Ion Batteries: A Review. J. Energy Storage 2024, 94, 112506. [Google Scholar] [CrossRef]
- Li, R.; Qin, X.; Li, X.; Zhu, J.; Zheng, L.R.; Li, Z.; Zhou, W. High-Entropy and Multiphase Cathode Materials for Sodium-Ion Batteries. Adv. Funct. Mater. 2024, 14, 2400127. [Google Scholar] [CrossRef]
- Wang, B.; Ma, J.; Wang, K.; Wang, D.; Xu, G.; Wang, X.; Hu, Z.; Pao, C.W.; Chen, J.L.; Du, L.; et al. High-Entropy Phase Stabilization Engineering Enables High-Performance Layered Cathode for Sodium-Ion Batteries. Adv. Funct. Mater. 2024, 14, 2401090. [Google Scholar] [CrossRef]
- Yuan, T.; Li, P.; Sun, Y.; Che, H.; Zheng, Q.; Zhang, Y.; Huang, S.; Qiu, J.; Pang, Y.; Yang, J.; et al. Refining O3-Type Ni/Mn-Based Sodium-Ion Battery Cathodes via “Atomic Knife” Achieving High Capacity and Stability. Adv. Funct. Mater. 2025, 35, 2414627. [Google Scholar] [CrossRef]
- Gupta, Y.; Siwatch, P.; Karwasra, R.; Sharma, K.; Tripathi, S.K. Recent Progress of Layered Structured P2- and O3-Type Transition Metal Oxides as Cathode Material for Sodium-Ion Batteries. Renew. Sust. Energ. Rev. 2024, 192, 114167. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, S.; Li, H.; Zhai, T.; Li, H. Air Sensitivity of Electrode Materials in Li/Na Ion Batteries: Issues and Strategies. InfoMat 2022, 4, 12305. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Q.; Zhao, X.; Mu, D.; Tan, G.; Li, L.; Chen, R.; Wu, F. Structure Evolution of Layered Transition Metal Oxide Cathode Materials for Na-Ion Batteries: Issues, Mechanism and Strategies. Mater. Today 2023, 62, 271–295. [Google Scholar] [CrossRef]
- Li, Y.; Mazzio, K.A.; Yaqoob, N.; Sun, Y.; Freytag, A.I.; Wong, D.; Schulz, C.; Baran, V.; Mendez, A.S.J.; Schuck, G.; et al. Competing Mechanisms Determine Oxygen Redox in Doped Ni-Mn Based Layered Oxides for Na-Ion Batteries. Adv. Mater. 2024, 36, e2309842. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.Y.; Kim, J.; Oh, G.; Alfaruqi, M.H.; Hwang, J.Y.; Sun, Y.K. High-Voltage Stability of O3-Type Sodium Layered Cathode Enabled by Preferred Occupation of Na in the OP2 Phase. Energy Storage Mater. 2023, 61, 102908. [Google Scholar] [CrossRef]
- Zhang, H.; Xiang, Y.; Liu, B.; Li, G.; Dun, C.; Huang, H.; Zou, Q.; Xiong, L.; Wu, X. Fe Doping Mechanism of Na0.44MnO2 tunnel Phase Cathode Electrode in Sodium-Ion Batteries. J. Colloid Interf. Sci. 2024, 661, 389–400. [Google Scholar] [CrossRef]
- Jeong, S.H.; Kim, I.-K.; Eom, S.; Hwang, H.; Jung, Y.H.; Kim, J.-H. Engineering the Local Chemistry through Fe Substitution in Layered P2-Na0.7Ni0.2Co0.2Mn0.6O2 for High-Performance Sodium-Ion batteries. Energy Storage Mater. 2025, 75, 104041. [Google Scholar] [CrossRef]
- Shi, W.J.; Li, H.X.; Zhang, D.; Du, F.H.; Zhang, Y.H.; Wang, Z.Y.; Zhang, X.H.; Zhang, P.F. Insights into Unrevealing the Effects of the Monovalent Cation Substituted Tunnel-Type Cathode for High-Performance Sodium-Ion Batteries. Chem. Eng. J. 2023, 477, 146976. [Google Scholar] [CrossRef]
- Ding, F.; Wang, H.; Zhang, Q.; Zheng, L.; Guo, H.; Yu, P.; Zhang, N.; Guo, Q.; Xie, F.; Dang, R.; et al. Tailoring Electronic Structure to Achieve Maximum Utilization of Transition Metal Redox for High-Entropy Na Layered Oxide Cathodes. J. Am. Chem. Soc. 2023, 145, 13592–13602. [Google Scholar] [CrossRef]
- Liu, H.; Feng, R.; Hussain, F.; Liu, Y.; Wang, L.; Fan, Q.; Ni, M.; Qiu, C.; Sun, M.; Wang, J.; et al. Ultrafast and Highly Efficient Sodium Ion Storage in Manganese-Based Tunnel-Structured Cathode. Adv. Funct. Mater. 2024, 45, 2404442. [Google Scholar] [CrossRef]
- Sengupta, A.; Kumar, A.; Bano, A.; Ahuja, A.; Lohani, H.; Akella, S.H.; Kumari, P.; Noked, M.; Major, D.T.; Mitra, S. Unleashing the Impact of Nb-Doped, Single Crystal, Cobalt-Free P2-Type Na0.67Ni0.33Mn0.67O2 on Elevating the Cycle Life of Sodium-Ion Batteries. Energy Storage Mater. 2024, 69, 103435. [Google Scholar] [CrossRef]
- Liu, H.; Kong, L.; Wang, H.; Li, J.; Wang, J.; Zhu, Y.; Li, H.; Jian, Z.; Jia, X.; Su, Y.; et al. Reviving Sodium Tunnel Oxide Cathodes Based on Structural Modulation and Sodium Compensation Strategy Toward Practical Sodium-Ion Cylindrical Battery. Adv. Mater. 2024, 36, e2407994. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.R.; Zhang, Y.H.; Wu, Z.; Tian, J.; Wang, H.; Zhao, H.; Xu, S.; Chen, L.; Duan, X.; Zhang, D.; et al. Stabilized O3-Type Layered Sodium Oxides with Enhanced Rate Performance and Cycling Stability by Dual-Site Ti4+/K+ Substitution. Adv. Sci. 2023, 10, e2304067. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Hu, Q.; Ran, Q.; Li, L.; Cai, G.; Xie, H.; Liu, X. Mo6+ Bifunctional Substitution of P2-Type Manganese Oxide for High Performance Sodium-Ion Batteries. Chem. Eng. J. 2024, 493, 152405. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Q.Q.; Yu, J.; Guo, J.X.; Mo, N.K.; Li, H.W.; Su, Y.; Zhao, S.; Zhu, Y.F.; Chu, H.; et al. Constructing Layered/Tunnel Interlocking Oxide Cathodes for Sodium-Ion Batteries Based on Breaking Mn3+/Mn4+ Equilibrium in Na0.44MnO2 via Trace Mo Doping. Compos. Part B Eng. 2024, 284, 111664. [Google Scholar] [CrossRef]
- Liu, G.; Xu, W.; Wu, J.; Li, Y.; Chen, L.; Li, S.; Ren, Q.; Wang, J. Unlocking High-Rate O3 Layered Oxide Cathode for Na-Ion Batteries via Ion Migration Path Modulation. J. Energy Chem. 2023, 83, 53–61. [Google Scholar] [CrossRef]
- Hu, H.; He, H.C.; Xie, R.K.; Cheng, C.; Yan, T.; Chen, C.; Sun, D.; Chan, T.S.; Wu, J.; Zhang, L. Achieving Reversible Mn2+/Mn4+ Double Redox Couple through Anionic Substitution in a P2-Type Layered Oxide Cathode. Nano Energy 2022, 99, 107390. [Google Scholar] [CrossRef]
- Wang, D.; Deng, Y.P.; Liu, Y.; Jiang, Y.; Zhong, B.; Wu, Z.; Guo, X.; Chen, Z. Sodium-Ion Batteries Towards Practical Application through Gradient Mn-based Layer-Tunnel Cathode. Nano Energy 2023, 110, 108347. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, Y.F.; Li, H.W.; Li, J.Y.; Wang, J.Q.; Hu, H.Y.; Su, Y.; Jian, Z.C.; Yao, H.R.; Chen, S.Q.; et al. Insights into Layered–Tunnel Dynamic Structural Evolution Based on Local Coordination Chemistry Regulation for High-Energy-Density and Long-Cycle-Life Sodium-Ion Oxide Cathodes. InfoMat 2023, 5, e12475. [Google Scholar] [CrossRef]
- Liu, R.; Huang, W.; Liu, J.; Li, Y.; Wang, J.; Liu, Q.; Ma, L.; Kwon, G.; Ehrlich, S.N.; Wu, Y.; et al. Revealing the Nature of Binary-Phase on Structural Stability of Sodium Layered Oxide Cathodes. Adv. Mater. 2024, 36, e2401048. [Google Scholar] [CrossRef]
- Saxena, S.; Badole, M.; Vasavan, H.N.; Srihari, V.; Das, A.K.; Gami, P.; Deswal, S.; Kumar, P.; Kumar, S. Deciphering the Role of Optimal P2/O3 Phase Fraction in Enhanced Cyclability and Specific Capacity of Layered Oxide Cathodes. Chem. Eng. J. 2024, 485, 49921. [Google Scholar] [CrossRef]
- Li, J.Y.; Hu, H.Y.; Zhou, L.F.; Li, H.W.; Lei, Y.J.; Lai, W.H.; Fan, Y.M.; Zhu, Y.F.; Peleckis, G.; Chen, S.Q.; et al. Surface Lattice-Matched Engineering Based on In Situ Spinel Interfacial Reconstruction for Stable Heterostructured Sodium Layered Oxide Cathodes. Adv. Funct. Mater. 2023, 33, 2213215. [Google Scholar] [CrossRef]
- Thottungal, A.; Sriramajeyam, A.; Surendran, A.; Enale, H.; Sarapulova, A.; Dolotko, O.; Fu, Q.; Knapp, M.; Dixon, D.; Bhaskar, A. Understanding the Correlation between Electrochemical Performance and Operating Mechanism of a Co-Free Layered-Spinel Composite Cathode for Na-Ion Batteries. ACS Appl. Mater. Interfaces 2024, 16, 27254–27267. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, H.; Huang, Y.; Kan, S.; Wu, Y.; Bu, M.; Liu, Y.; He, P.; Liu, H. Engineering Sodium-Rich Manganese Oxide with Robust Tunnel Structure for High-Performance Sodium-Ion Battery Cathode Application. Chem. Eng. J. 2021, 417, 128097. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhu, Y.F.; Xiang, W.; Wu, Z.G.; Li, Y.C.; Lai, J.; Li, S.; Wang, E.; Yang, Z.G.; Xu, C.L.; et al. Deciphering an Abnormal Layered-Tunnel Heterostructure Induced by Chemical Substitution for the Sodium Oxide Cathode. Angew. Chem. 2019, 132, 1507–1511. [Google Scholar] [CrossRef]
- Gu, X.; Gao, X.W.; Yang, D.; Gu, Q.; Song, Y.; Chen, H.; Ren, T.; Luo, W.B. Two Positive Effects with One Arrow: Modulating Crystal and Interfacial Decoration Towards High-Potential Cathode Material. J. Energy Chem. 2024, 92, 216–223. [Google Scholar] [CrossRef]
- Wang, D.; Shi, C.; Deng, Y.-P.; Wu, Z.; Yang, Z.; Zhong, Y.; Jiang, Y.; Zhong, B.; Huang, L.; Guo, X.; et al. A Fundamental Understanding of the Fe/Ti Doping Induced Structure Formation Process to Realize Controlled Synthesis of Layer-Tunnel Na0.6MnO2 Cathode. Nano Energy 2020, 70, 104539. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Y.; Wu, Z.; Liu, X.; Qu, J.; Liu, H.; Ming, Y.; Zhong, Y.; Zhong, B.; Guo, X. A Novel Mn-based P2/Tunnel/O3′ Tri-Phase Composite Cathode with Enhanced Sodium Storage Properties. Chem. Commun. 2020, 56, 2921–2924. [Google Scholar] [CrossRef]
- Wei, T.T.; Liu, X.; Yang, S.J.; Wang, P.F.; Yi, T.F. Regulating the Electrochemical Activity of Fe-Mn-Cu-Based Layer Oxides as Cathode Materials for High-Performance Na-ion Battery. J. Energy Chem. 2023, 80, 603–613. [Google Scholar] [CrossRef]
- Wang, S.; Shi, L.; Chen, G.; Ba, C.; Wang, Z.; Zhu, J.; Zhao, Y.; Zhang, M.; Yuan, S. In Situ Synthesis of Tungsten-Doped SnO2 and Graphene Nanocomposites for High-Performance Anode Materials of Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 17163–17171. [Google Scholar] [CrossRef]
- Ding, F.; Zhao, C.; Xiao, D.; Rong, X.; Wang, H.; Li, Y.; Yang, Y.; Lu, Y.; Hu, Y.S. Using High-Entropy Configuration Strategy to Design Na-Ion Layered Oxide Cathodes with Superior Electrochemical Performance and Thermal Stability. J. Am. Chem. Soc. 2022, 144, 8286–8295. [Google Scholar] [CrossRef]
- Nuti, M.; Spada, D.; Quinzeni, I.; Capelli, S.; Albini, B.; Galinetto, P.; Bini, M. From Tunnel NMO to Layered Polymorphs Oxides for Sodium Ion Batteries. SN Appl. Sci. 2020, 2, 1893. [Google Scholar] [CrossRef]
- Jian, Z.C.; Liu, Y.F.; Zhu, Y.F.; Li, J.Y.; Hu, H.Y.; Wang, J.; Kong, L.Y.; Jia, X.B.; Liu, H.X.; Guo, J.X.; et al. Solid-State Synthesis of Low-Cost and High-Energy-Density Sodium Layered-Tunnel Oxide Cathodes: Dynamic Structural Evolution, Na+/Vacancy Disordering, and Prominent Moisture Stability. Nano Energy 2024, 125, 109528. [Google Scholar] [CrossRef]
- Cui, T.; Li, X.; Si, Y.; Fu, Y. Synergetic Anion-Cation Co-Doping in Na0.44MnO2 Boosting a High-Stability and Improved-Kinetics Cathode for Sodium Ion Battery. Energy Storage Mater. 2024, 65, 103161. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, T.; Liu, J.; Zhang, T.; Zhang, Y.; Gao, Y.; Sun, Z.; Jia, S.; Yang, L.; Chen, Z. Air-Stable Manganese-Based Layered Oxide Cathode Enabled by Surface Modification and Doping Strategy for Advanced Sodium-Ion Batteries. Nano Energy 2024, 131, 110260. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmiiller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comp. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Blochl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B 1992, 46, 6671–6687. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, N.N.; Li, J.Y.; Liu, Y.; Hu, H.Y.; Wang, J.; Li, H.; Kong, L.Y.; Jia, X.B.; Zhu, Y.F.; et al. Sodium Layered/Tunnel Intergrowth Oxide Cathodes: Formation Process, Interlocking Chemistry, and Electrochemical Performance. ACS Appl. Mater. Interfaces 2023, 15, 44839–44847. [Google Scholar] [CrossRef]
- Deng, J.; Luo, W.-B.; Lu, X.; Yao, Q.; Wang, Z.; Liu, H.-K.; Zhou, H.; Dou, S.-X. High Energy Density Sodium-Ion Battery with Industrially Feasible and Air-Stable O3-Type Layered Oxide Cathode. Adv. Energy Mater. 2018, 8, 1701610. [Google Scholar] [CrossRef]
- Sun, Z.; Peng, B.; Zhao, L.; Li, J.; Shi, L.; Zhang, G. Constructing Layer/Tunnel Biphasic Na0.6Fe0.04Mn0.96O2 Enables Simultaneous Kinetics Enhancement and Phase Transition Suppression for High Power/Energy Density Sodium-Ion Full Cell. Energy Storage Mater. 2021, 29, 320–328. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, Q.; Zhao, X.; Zhang, J.; Liu, X.; Wang, T.; Zhang, N.; Jiao, L.; Chen, J.; Fan, L.Z. Hierarchical Engineering of Porous P2-Na2/3Ni1/3Mn2/3O2 Nanofibers Assembled by Nanoparticles Enables Superior Sodium-Ion Storage Cathodes. Adv. Funct. Mater. 2020, 30, 1907837. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Liu, Z.; Li, H.; Huang, Y.; Liu, W.; Ruan, D.; Cai, X.; Yu, X. Dual-Strategy of Cu-Doping and O3 Biphasic Structure Enables Fe/Mn-Based Layered Oxide for High-Performance Sodium-Ion Batteries Cathode. J. Power Sources 2023, 567, 232930. [Google Scholar] [CrossRef]
- Fan, Y.; Ye, X.; Yang, X.; Guan, L.; Chen, C.; Wang, H.; Ding, X. Zn/Ti/F Synergetic-Doped Na0.67Ni0.33Mn0.67O2 for Sodium-Ion Batteries with High Energy Density. J. Mater. Chem. A 2023, 11, 3608–3615. [Google Scholar] [CrossRef]
- Li, X.L.; Bao, J.; Li, Y.F.; Chen, D.; Ma, C.; Qiu, Q.Q.; Yue, X.Y.; Wang, Q.C.; Zhou, Y.N. Boosting Reversibility of Mn-Based Tunnel-Structured Cathode Materials for Sodium-Ion Batteries by Magnesium Substitution. Adv. Sci. 2021, 8, 2004448. [Google Scholar] [CrossRef]
- Peng, B.; Chen, Y.; Zhao, L.; Zeng, S.; Wan, G.; Wang, F.; Zhang, X.; Wang, W.; Zhang, G. Regulating the Local Chemical Environment in Layered O3-NaNi0.5Mn0.5O2 Achieves Practicable Cathode for Sodium-Ion Batteries. Energy Storage Mater. 2023, 56, 631–641. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, W.; Li, H.; Wang, Z.; Liu, L.; Feng, Y.; Qiao, R.; Zhang, D.; Li, H.; Wang, Z.; Zhang, P. Constructing Layered/Tunnel Biphasic Structure via Trace W-Substitution in Tunnel-Type Cathode for Elevating Sodium Ion Storage. Molecules 2025, 30, 2175. https://doi.org/10.3390/molecules30102175
Shi W, Li H, Wang Z, Liu L, Feng Y, Qiao R, Zhang D, Li H, Wang Z, Zhang P. Constructing Layered/Tunnel Biphasic Structure via Trace W-Substitution in Tunnel-Type Cathode for Elevating Sodium Ion Storage. Molecules. 2025; 30(10):2175. https://doi.org/10.3390/molecules30102175
Chicago/Turabian StyleShi, Wenjing, Hengxiang Li, Zihan Wang, Lingyang Liu, Yixin Feng, Rui Qiao, Ding Zhang, Haibo Li, Zhaoyang Wang, and Pengfang Zhang. 2025. "Constructing Layered/Tunnel Biphasic Structure via Trace W-Substitution in Tunnel-Type Cathode for Elevating Sodium Ion Storage" Molecules 30, no. 10: 2175. https://doi.org/10.3390/molecules30102175
APA StyleShi, W., Li, H., Wang, Z., Liu, L., Feng, Y., Qiao, R., Zhang, D., Li, H., Wang, Z., & Zhang, P. (2025). Constructing Layered/Tunnel Biphasic Structure via Trace W-Substitution in Tunnel-Type Cathode for Elevating Sodium Ion Storage. Molecules, 30(10), 2175. https://doi.org/10.3390/molecules30102175