Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (1,602)

Search Parameters:
Authors = Chen Xiong ORCID = 0000-0002-8041-2739

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6201 KiB  
Article
SOAM Block: A Scale–Orientation-Aware Module for Efficient Object Detection in Remote Sensing Imagery
by Yi Chen, Zhidong Wang, Zhipeng Xiong, Yufeng Zhang and Xinqi Xu
Symmetry 2025, 17(8), 1251; https://doi.org/10.3390/sym17081251 - 6 Aug 2025
Abstract
Object detection in remote sensing imagery is critical in environmental monitoring, urban planning, and land resource management. However, the task remains challenging due to significant scale variations, arbitrary object orientations, and complex background clutter. To address these issues, we propose a novel orientation [...] Read more.
Object detection in remote sensing imagery is critical in environmental monitoring, urban planning, and land resource management. However, the task remains challenging due to significant scale variations, arbitrary object orientations, and complex background clutter. To address these issues, we propose a novel orientation module (SOAM Block) that jointly models object scale and directional features while exploiting geometric symmetry inherent in many remote sensing targets. The SOAM Block is constructed upon a lightweight and efficient Adaptive Multi-Scale (AMS) Module, which utilizes a symmetric arrangement of parallel depth-wise convolutional branches with varied kernel sizes to extract fine-grained multi-scale features without dilation, thereby preserving local context and enhancing scale adaptability. In addition, a Strip-based Context Attention (SCA) mechanism is introduced to model long-range spatial dependencies, leveraging horizontal and vertical 1D strip convolutions in a directionally symmetric fashion. This design captures spatial correlations between distant regions and reinforces semantic consistency in cluttered scenes. Importantly, this work is the first to explicitly analyze the coupling between object scale and orientation in remote sensing imagery. The proposed method addresses the limitations of fixed receptive fields in capturing symmetric directional cues of large-scale objects. Extensive experiments are conducted on two widely used benchmarks—DOTA and HRSC2016—both of which exhibit significant scale variations and orientation diversity. Results demonstrate that our approach achieves superior detection accuracy with fewer parameters and lower computational overhead compared to state-of-the-art methods. The proposed SOAM Block thus offers a robust, scalable, and symmetry-aware solution for high-precision object detection in complex aerial scenes. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

20 pages, 4135 KiB  
Article
A PSO-XGBoost Model for Predicting the Compressive Strength of Cement–Soil Mixing Pile Considering Field Environment Simulation
by Jiagui Xiong, Yangqing Gong, Xianghua Liu, Yan Li, Liangjie Chen, Cheng Liao and Chaochao Zhang
Buildings 2025, 15(15), 2740; https://doi.org/10.3390/buildings15152740 - 4 Aug 2025
Viewed by 256
Abstract
Cement–Soil Mixing (CSM) Pile is an important technology for soft ground reinforcement, and its as-formed compressive strength directly affects engineering design and construction quality. To address the significant discrepancy between laboratory-tested strength and field as-formed strength arising from differing environmental conditions, this study [...] Read more.
Cement–Soil Mixing (CSM) Pile is an important technology for soft ground reinforcement, and its as-formed compressive strength directly affects engineering design and construction quality. To address the significant discrepancy between laboratory-tested strength and field as-formed strength arising from differing environmental conditions, this study conducted modified laboratory experiments simulating key field formation characteristics. A cement–soil preparation system considering actual immersion conditions was established, based on controlling the initial water content state of the foundation soil before pile formation and applying submerged conditions post-formation. Utilizing data mining on 84 sets of experimental data with various preparation parameter combinations, a prediction model for the as-formed strength of CSM Pile was developed based on the Particle Swarm Optimization-Extreme Gradient Boosting (PSO-XGBoost) algorithm. Engineering validation demonstrated that the model achieved an RMSE of 0.138, an MAE of 0.112, and an R2 of 0.961. It effectively addresses the issue of large prediction deviations caused by insufficient environmental simulation in traditional mix proportion tests. The research findings establish a quantitative relationship between as-formed strength and preparation parameters, providing an effective experimental improvement and strength prediction method for the engineering design of CSM Pile. Full article
Show Figures

Graphical abstract

15 pages, 4969 KiB  
Article
Duplicated Genes on Homologous Chromosomes Decipher the Dominant Epistasis of the Fiberless Mutant in Cotton
by Yu Le, Xingchen Xiong, Zhiyong Xu, Meilin Chen, Yuanxue Li, Chao Fu, Chunyuan You and Zhongxu Lin
Biology 2025, 14(8), 983; https://doi.org/10.3390/biology14080983 - 2 Aug 2025
Viewed by 122
Abstract
Cotton fiber initiation determines the fiber yield, yet the genetic basis underlying lint and fuzz initiation has still not been fully uncovered. Here, map-based cloning was carried out to identify the fiberless mutant genes derived from a cross between Gossypium hirsutum acc. WT [...] Read more.
Cotton fiber initiation determines the fiber yield, yet the genetic basis underlying lint and fuzz initiation has still not been fully uncovered. Here, map-based cloning was carried out to identify the fiberless mutant genes derived from a cross between Gossypium hirsutum acc. WT and a natural fiberless mutant, fblSHZ. The 12:3:1 segregation ratio in F2 populations (including 1848 and 3100 individuals that were developed in 2016 and 2018, respectively) revealed dominant epistasis, with the fuzz gene exerting dominance over the lint gene. Genetic linkage analysis revealed that GhMYB25like_A12 controls fuzz fiber initiation, while both GhMYB25like_A12 and GhMYB25like_D12 regulate lint fiber development. Sequencing analyses showed that the fblSHZ mutant exhibited a K104M mutation in the R2R3 domain of GhMYB25like_A12 and a transposable element insertion in GhMYB25like_D12, leading to fiberless seeds. Knockout of GhMYB25like_A12 produced fuzzless seeds, knockout of GhMYB25like_D12 led to no obvious change in seeds, and knockout of both (GhMYB25like_A12&D12) resulted in fiberless seeds. The 12:3:1 ratio reappeared in the F2 population developed from the GhMYB25like_A12&D12 mutated plants as female and Jin668 as the male, which further confirmed the genetic interaction observed in fblSHZ. RNA-seq analysis revealed that GhMYB25like regulates cotton fiber initiation through multiple pathways, especially fatty acid metabolism. This study elucidates the key genes and their genetic interaction mechanisms governing cotton fiber initiation, providing a theoretical foundation for genetic improvement of cotton fiber traits. Full article
(This article belongs to the Special Issue Cotton: Genomics, Biotechnology and Molecular Breeding)
Show Figures

Figure 1

25 pages, 6272 KiB  
Article
Research on Energy-Saving Control of Automotive PEMFC Thermal Management System Based on Optimal Operating Temperature Tracking
by Qi Jiang, Shusheng Xiong, Baoquan Sun, Ping Chen, Huipeng Chen and Shaopeng Zhu
Energies 2025, 18(15), 4100; https://doi.org/10.3390/en18154100 - 1 Aug 2025
Viewed by 234
Abstract
To further enhance the economic performance of fuel cell vehicles (FCVs), this study develops a model-adaptive model predictive control (MPC) strategy. This strategy leverages the dynamic relationship between proton exchange membrane fuel cell (PEMFC) output characteristics and temperature to track its optimal operating [...] Read more.
To further enhance the economic performance of fuel cell vehicles (FCVs), this study develops a model-adaptive model predictive control (MPC) strategy. This strategy leverages the dynamic relationship between proton exchange membrane fuel cell (PEMFC) output characteristics and temperature to track its optimal operating temperature (OOT), addressing challenges of temperature control accuracy and high energy consumption in the PEMFC thermal management system (TMS). First, PEMFC and TMS models were developed and experimentally validated. Subsequently, the PEMFC power–temperature coupling curve was experimentally determined under multiple operating conditions to serve as the reference trajectory for TMS multi-objective optimization. For MPC controller design, the TMS model was linearized and discretized, yielding a predictive model adaptable to different load demands for stack temperature across the full operating range. A multi-constrained quadratic cost function was formulated, aiming to minimize the deviation of the PEMFC operating temperature from the OOT while accounting for TMS parasitic power consumption. Finally, simulations under Worldwide Harmonized Light Vehicles Test Cycle (WLTC) conditions evaluated the OOT tracking performance of both PID and MPC control strategies, as well as their impact on stack efficiency and TMS energy consumption at different ambient temperatures. The results indicate that, compared to PID control, MPC reduces temperature tracking error by 33%, decreases fan and pump speed fluctuations by over 24%, and lowers TMS energy consumption by 10%. These improvements enhance PEMFC operational stability and improve FCV energy efficiency. Full article
Show Figures

Figure 1

25 pages, 10331 KiB  
Article
Forest Fire Detection Method Based on Dual-Branch Multi-Scale Adaptive Feature Fusion Network
by Qinggan Wu, Chen Wei, Ning Sun, Xiong Xiong, Qingfeng Xia, Jianmeng Zhou and Xingyu Feng
Forests 2025, 16(8), 1248; https://doi.org/10.3390/f16081248 - 31 Jul 2025
Viewed by 230
Abstract
There are significant scale and morphological differences between fire and smoke features in forest fire detection. This paper proposes a detection method based on dual-branch multi-scale adaptive feature fusion network (DMAFNet). In this method, convolutional neural network (CNN) and transformer are used to [...] Read more.
There are significant scale and morphological differences between fire and smoke features in forest fire detection. This paper proposes a detection method based on dual-branch multi-scale adaptive feature fusion network (DMAFNet). In this method, convolutional neural network (CNN) and transformer are used to form a dual-branch backbone network to extract local texture and global context information, respectively. In order to overcome the difference in feature distribution and response scale between the two branches, a feature correction module (FCM) is designed. Through space and channel correction mechanisms, the adaptive alignment of two branch features is realized. The Fusion Feature Module (FFM) is further introduced to fully integrate dual-branch features based on the two-way cross-attention mechanism and effectively suppress redundant information. Finally, the Multi-Scale Fusion Attention Unit (MSFAU) is designed to enhance the multi-scale detection capability of fire targets. Experimental results show that the proposed DMAFNet has significantly improved in mAP (mean average precision) indicators compared with existing mainstream detection methods. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

20 pages, 3054 KiB  
Article
Development of COVID-19 Vaccine Candidates Using Attenuated Recombinant Vesicular Stomatitis Virus Vectors with M Protein Mutations
by Mengqi Chang, Hui Huang, Mingxi Yue, Yuetong Jiang, Siping Yan, Yiyi Chen, Wenrong Wu, Yibing Gao, Mujin Fang, Quan Yuan, Hualong Xiong and Tianying Zhang
Viruses 2025, 17(8), 1062; https://doi.org/10.3390/v17081062 - 30 Jul 2025
Viewed by 435
Abstract
Recombinant vesicular stomatitis virus (rVSV) is a promising viral vaccine vector for addressing the COVID-19 pandemic. Inducing mucosal immunity via the intranasal route is an ideal strategy for rVSV-based vaccines, but it requires extremely stringent safety standards. In this study, we constructed two [...] Read more.
Recombinant vesicular stomatitis virus (rVSV) is a promising viral vaccine vector for addressing the COVID-19 pandemic. Inducing mucosal immunity via the intranasal route is an ideal strategy for rVSV-based vaccines, but it requires extremely stringent safety standards. In this study, we constructed two rVSV variants with amino acid mutations in their M protein: rVSV-M2 with M33A/M51R mutations and rVSV-M4 with M33A/M51R/V221F/S226R mutations, and developed COVID-19 vaccines based on these attenuated vectors. By comparing viral replication capacity, intranasal immunization, intracranial injection, and blood cell counts, we demonstrated that the M protein mutation variants exhibit significant attenuation effects both in vitro and in vivo. Moreover, preliminary investigations into the mechanisms of virus attenuation revealed that these attenuated viruses can induce a stronger type I interferon response while reducing inflammation compared to the wild-type rVSV. We developed three candidate vaccines against SARS-CoV-2 using the wildtype VSV backbone with either wild-type M (rVSV-JN.1) and two M mutant variants (rVSV-M2-JN.1 and rVSV-M4-JN.1). Our results confirmed that rVSV-M2-JN.1 and rVSV-M4-JN.1 retain strong immunogenicity while enhancing safety in hamsters. In summary, the rVSV variants with M protein mutations represent promising candidate vectors for mucosal vaccines and warrant further investigation. Full article
(This article belongs to the Special Issue Structure-Based Antiviral Drugs and Vaccine Design)
Show Figures

Figure 1

23 pages, 8942 KiB  
Article
Optical and SAR Image Registration in Equatorial Cloudy Regions Guided by Automatically Point-Prompted Cloud Masks
by Yifan Liao, Shuo Li, Mingyang Gao, Shizhong Li, Wei Qin, Qiang Xiong, Cong Lin, Qi Chen and Pengjie Tao
Remote Sens. 2025, 17(15), 2630; https://doi.org/10.3390/rs17152630 - 29 Jul 2025
Viewed by 281
Abstract
The equator’s unique combination of high humidity and temperature renders optical satellite imagery highly susceptible to persistent cloud cover. In contrast, synthetic aperture radar (SAR) offers a robust alternative due to its ability to penetrate clouds with microwave imaging. This study addresses the [...] Read more.
The equator’s unique combination of high humidity and temperature renders optical satellite imagery highly susceptible to persistent cloud cover. In contrast, synthetic aperture radar (SAR) offers a robust alternative due to its ability to penetrate clouds with microwave imaging. This study addresses the challenges of cloud-induced data gaps and cross-sensor geometric biases by proposing an advanced optical and SAR image-matching framework specifically designed for cloud-prone equatorial regions. We use a prompt-driven visual segmentation model with automatic prompt point generation to produce cloud masks that guide cross-modal feature-matching and joint adjustment of optical and SAR data. This process results in a comprehensive digital orthophoto map (DOM) with high geometric consistency, retaining the fine spatial detail of optical data and the all-weather reliability of SAR. We validate our approach across four equatorial regions using five satellite platforms with varying spatial resolutions and revisit intervals. Even in areas with more than 50 percent cloud cover, our method maintains sub-pixel edging accuracy under manual check points and delivers comprehensive DOM products, establishing a reliable foundation for downstream environmental monitoring and ecosystem analysis. Full article
Show Figures

Figure 1

15 pages, 7415 KiB  
Article
Development and Protective Efficacy of a Novel Nanoparticle Vaccine for Gammacoronavirus Avain Infectious Bronchitis Virus
by Ting Xiong, Yanfen Lyu, Hongmei Li, Ting Xu, Shuting Wu, Zekun Yang, Mengyao Jing, Fei Xu, Dingxiang Liu and Ruiai Chen
Vaccines 2025, 13(8), 802; https://doi.org/10.3390/vaccines13080802 - 28 Jul 2025
Viewed by 327
Abstract
Background: Infectious bronchitis virus (IBV) is a gammacoronavirus that causes a highly contagious disease in chickens and seriously endangers the poultry industry. The GI-19 is a predominant lineage. However, no effective commercially available vaccines against this virus are available. Methods: In [...] Read more.
Background: Infectious bronchitis virus (IBV) is a gammacoronavirus that causes a highly contagious disease in chickens and seriously endangers the poultry industry. The GI-19 is a predominant lineage. However, no effective commercially available vaccines against this virus are available. Methods: In this present study, the CHO eukaryotic and the E.coli prokaryotic expression system were used to express S1-SpyTag and AP205-SpyCatcher, respectively. Subsequently, the purified S1-SpyTag and AP205-SpyCatcher were coupled to form the nanoparticles AP205-S1 (nAP205-S1) in PBS buffer at 4 °C for 48 h. S1-SpyTag and nAP205-S1 were formulated into vaccines with white oil adjuvant and employed to immunize 1-day-old SPF chickens for the comparative evaluation of their immune efficacy. Results: The nAP205-S1 vaccine in chickens induced robust IBV-specific humoral and cellular immune responses in vivo. Importantly, the humoral and cellular immune responses elicited by the nAP205-S1 vaccine were more robust than those induced by the IBV S1-SpyTag vaccine at both the same dose and double the dose, with a notably significant difference observed in the cellular immune response. Furthermore, experimental data revealed that chicken flocks vaccinated with nAP205-S1 achieved 100% group protection following a challenge, exhibiting a potent protective immune response and effectively inhibiting viral shedding. Conclusions: These results reveal the potential of developing a novel nanoparticle vaccine with broadly protective immunity against GI-19 IBV. Full article
(This article belongs to the Special Issue Vaccines for Poultry Viruses)
Show Figures

Figure 1

12 pages, 396 KiB  
Article
Characterization of Some Claw-Free Graphs in Co-Secure Domination Number
by Yuexin Zhang, Jiayuan Zhang, Siwen Jing, Xiaodong Chen and Liming Xiong
Mathematics 2025, 13(15), 2426; https://doi.org/10.3390/math13152426 - 28 Jul 2025
Viewed by 111
Abstract
For a vertex subset S of a graph G, if each vertex of G is either in S or adjacent to some vertex in S, then S is a dominating set of G. Let S be a dominating set of [...] Read more.
For a vertex subset S of a graph G, if each vertex of G is either in S or adjacent to some vertex in S, then S is a dominating set of G. Let S be a dominating set of a graph G. If each vertex v not in S has a neighbor u in S such that (S\{u}){v} is also a dominating set of G, then S is a secure dominating set of G. If each vertex u in S has a neighbor v not in S such that (S\{u}){v} is also a dominating set of G, then S is a co-secure dominating set of G. The minimum cardinality of a secure (resp. co-secure) dominating set of G is the secure (resp. co-secure) domination number of G. Arumugam et al. proposed the questions to characterize a graph G such that the co-secure domination number of G equals the independence number and the secure domination number of G, respectively. Inspired by those questions, in this paper, we obtain two classes of claw-free graphs such that the co-secure domination number equal the independence number and the secure domination number. Our results provide some theoretical basis of claw-free graphs for networks. Full article
Show Figures

Figure 1

14 pages, 4462 KiB  
Article
Precise Cruise Control for Fixed-Wing Aircraft Based on Proximal Policy Optimization with Nonlinear Attitude Constraints
by Haotian Wu, Yan Guo, Juliang Cao, Zhiming Xiong and Junda Chen
Aerospace 2025, 12(8), 670; https://doi.org/10.3390/aerospace12080670 - 27 Jul 2025
Viewed by 220
Abstract
In response to the issues of severe pitch oscillation and unstable roll attitude present in existing reinforcement learning-based aircraft cruise control methods during dynamic maneuvers, this paper proposes a precise control method for aircraft cruising based on proximal policy optimization (PPO) with nonlinear [...] Read more.
In response to the issues of severe pitch oscillation and unstable roll attitude present in existing reinforcement learning-based aircraft cruise control methods during dynamic maneuvers, this paper proposes a precise control method for aircraft cruising based on proximal policy optimization (PPO) with nonlinear attitude constraints. This method first introduces a combination of long short-term memory (LSTM) and a fully connected layer (FC) to form the policy network of the PPO method, improving the algorithm’s learning efficiency for sequential data while avoiding feature compression. Secondly, it transforms cruise control into tracking target heading, altitude, and speed, achieving a mapping from motion states to optimal control actions within the policy network, and designs nonlinear constraints as the maximum reward intervals for pitch and roll to mitigate abnormal attitudes during maneuvers. Finally, a JSBSim simulation platform is established to train the network parameters, obtaining the optimal strategy for cruise control and achieving precise end-to-end control of the aircraft. Experimental results show that, compared to the cruise control method without dynamic constraints, the improved method reduces heading deviation by approximately 1.6° during ascent and 4.4° during descent, provides smoother pitch control, decreases steady-state altitude error by more than 1.5 m, and achieves higher accuracy in overlapping with the target trajectory during hexagonal trajectory tracking. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

31 pages, 10339 KiB  
Review
Performance of Asphalt Materials Based on Molecular Dynamics Simulation: A Review
by Chengwei Xing, Zhihang Xiong, Tong Lu, Haozongyang Li, Weichao Zhou and Chen Li
Polymers 2025, 17(15), 2051; https://doi.org/10.3390/polym17152051 - 27 Jul 2025
Viewed by 460
Abstract
With the rising performance demands in road engineering, traditional experiments often fail to reveal the microscopic mechanisms behind asphalt behavior. Molecular dynamics (MD) simulation has emerged as a valuable complement, enabling molecular-level insights into asphalt’s composition, structure, and aging mechanisms. This review summarizes [...] Read more.
With the rising performance demands in road engineering, traditional experiments often fail to reveal the microscopic mechanisms behind asphalt behavior. Molecular dynamics (MD) simulation has emerged as a valuable complement, enabling molecular-level insights into asphalt’s composition, structure, and aging mechanisms. This review summarizes the recent advances in applying MD to asphalt research. It first outlines molecular model construction approaches, including average models, three- and four-component systems, and modified models incorporating SBS, SBR, PU, PE, and asphalt–aggregate interfaces. It then analyzes how MD reveals the key performance aspects—such as high-temperature stability, low-temperature flexibility, self-healing behavior, aging processes, and interfacial adhesion—by capturing the molecular interactions. While MD offers significant advantages, challenges remain: idealized modeling, high computational demands, limited chemical reaction simulation, and difficulties in multi-scale coupling. This paper aims to provide theoretical insights and methodological support for future studies on asphalt performance and highlights MD simulation as a promising tool in pavement material science. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 8859 KiB  
Article
Effect of Systematic Errors on Building Component Sound Insulation Measurements Using Near-Field Acoustic Holography
by Wei Xiong, Wuying Chen, Zhixin Li, Heyu Zhu and Xueqiang Wang
Buildings 2025, 15(15), 2619; https://doi.org/10.3390/buildings15152619 - 24 Jul 2025
Viewed by 237
Abstract
Near-field acoustic holography (NAH) provides an effective way to achieve wide-band, high-resolution visualization measurement of the sound insulation performance of building components. However, based on Green’s function, the microphone array’s inherent amplitude and phase mismatch errors will exponentially amplify the sound field inversion [...] Read more.
Near-field acoustic holography (NAH) provides an effective way to achieve wide-band, high-resolution visualization measurement of the sound insulation performance of building components. However, based on Green’s function, the microphone array’s inherent amplitude and phase mismatch errors will exponentially amplify the sound field inversion process, significantly reducing the measurement accuracy. To systematically evaluate this problem, this study combines numerical simulation with actual measurements in a soundproof room that complies with the ISO 10140 standard, quantitatively analyzes the influence of array system errors on NAH reconstructed sound insulation and acoustic images, and proposes an error correction strategy based on channel transfer function normalization. The research results show that when the array amplitude and phase mismatch mean values are controlled within 5% and 5°, respectively, the deviation of the weighted sound insulation measured by NAH can be controlled within 1 dB, and the error in the key frequency band of building sound insulation (200–1.6k Hz) does not exceed 1.5 dB; when the mismatch mean value increases to 10% and 10°, the deviation of the weighted sound insulation can reach 2 dB, and the error in the high-frequency band (≥1.6k Hz) significantly increases to more than 2.0 dB. The sound image shows noticeable spatial distortion in the frequency band above 250 Hz. After applying the proposed correction method, the NAH measurement results of the domestic microphone array are highly consistent with the weighted sound insulation measured by the standard method, and the measurement difference in the key frequency band is less than 1.0 dB, which significantly improves the reliability and applicability of low-cost equipment in engineering applications. In addition, the study reveals the inherent mechanism of differential amplification of system errors in the propagating wave and evanescent wave channels. It provides quantitative thresholds and operational guidance for instrument selection, array calibration, and error compensation of NAH technology in building sound insulation detection. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 5499 KiB  
Article
Overexpression of OsCSP41b Enhances Rice Tolerance to Sheath Blight Caused by Rhizoctonia solani
by Jianhua Zhao, Yan Zhang, Taixuan Liu, Guangda Wang, Ran Ju, Quanyi Sun, Qi Chen, Yixuan Xiong, Penfei Zhai, Wenya Xie, Zhiming Feng, Zongxiang Chen, Kemin Hu and Shimin Zuo
J. Fungi 2025, 11(8), 548; https://doi.org/10.3390/jof11080548 - 23 Jul 2025
Viewed by 442
Abstract
Sheath blight (ShB), caused by the necrotrophic fungus Rhizoctonia solani (R. solani), poses severe threats to global rice production. Developing a resistant variety with an ShB-resistance gene is one of most efficient and economical approaches to control the disease. Here, we [...] Read more.
Sheath blight (ShB), caused by the necrotrophic fungus Rhizoctonia solani (R. solani), poses severe threats to global rice production. Developing a resistant variety with an ShB-resistance gene is one of most efficient and economical approaches to control the disease. Here, we identified a highly conserved chloroplast-localized stem-loop-binding protein encoding gene (OsCSP41b), which shows great potential in developing an ShB-resistant variety. OsCSP41b-knockout mutants exhibit chlorotic leaves and increased ShB susceptibility, whereas OsCSP41b-overexpressing lines (CSP41b-OE) display significantly enhanced resistance to R. solani, as well as to drought, and salinity stresses. Notably, CSP41b-OE lines present a completely comparable grain yield to the wild type (WT). Transcriptomic analyses reveal that chloroplast transcripts and photosynthesis-associated genes maintain observably elevated stability in CSP41b-OE plants versus WT plants following R. solani infection, which probably accounts for the enhanced ShB resistance of CSP41b-OE. Our findings nominate the OsCSP41b gene as a promising molecular target for developing a rice variety with stronger resistance to both R. solani and multi-abiotic stresses. Full article
Show Figures

Figure 1

19 pages, 1705 KiB  
Article
A Comparative Analysis of the Efficacy of Three Plant Growth Regulators and Dose Optimization for Improving Agronomic Traits and Seed Yield of Purple-Flowered Alfalfa (Medicago sativa L.)
by Xianwei Peng, Qunce Sun, Shuzhen Zhang, Youping An, Fengjun Peng, Jie Xiong, Ayixiwake Molidaxing, Shuming Chen, Yuxiang Wang and Bo Zhang
Plants 2025, 14(15), 2258; https://doi.org/10.3390/plants14152258 - 22 Jul 2025
Viewed by 263
Abstract
This study evaluated the effects of different plant growth regulators and their concentration gradients on the agronomic traits, seed yield, and yield components of Medicago sativa L. cv. “Xinmu No. 5” alfalfa. This experiment comprised 10 treatments, including 98% mepiquat chloride (200, 250, [...] Read more.
This study evaluated the effects of different plant growth regulators and their concentration gradients on the agronomic traits, seed yield, and yield components of Medicago sativa L. cv. “Xinmu No. 5” alfalfa. This experiment comprised 10 treatments, including 98% mepiquat chloride (200, 250, and 300 mg/L), 5% prohexadione-calcium (150, 250, and 350 mg/L), and 5% uniconazole (50, 100, and 150 mg/L), each at three concentration levels, along with a distilled water control (CK). The results show that the 98% mepiquat chloride treatment (MCT3) significantly reduced plant height (by 22%) and internode length (by 28.3%), while increasing stem diameter, branch number, and seed yield. Plant height and internode length exhibited a significant positive correlation, and both were highly significantly negatively correlated (p < 0.01) with seed yield components, indicating that controlling vegetative growth can enhance seed yield. Principal component analysis (extracting four principal components with a cumulative contribution rate of 80.8%) further confirmed that the 98% mepiquat chloride treatment MCT3 (300 mg/L) was the most effective treatment for improving seed yield of alfalfa in arid regions. Full article
(This article belongs to the Topic Biostimulants in Agriculture—2nd Edition)
Show Figures

Figure 1

23 pages, 7457 KiB  
Article
An Efficient Ship Target Integrated Imaging and Detection Framework (ST-IIDF) for Space-Borne SAR Echo Data
by Can Su, Wei Yang, Yongchen Pan, Hongcheng Zeng, Yamin Wang, Jie Chen, Zhixiang Huang, Wei Xiong, Jie Chen and Chunsheng Li
Remote Sens. 2025, 17(15), 2545; https://doi.org/10.3390/rs17152545 - 22 Jul 2025
Viewed by 328
Abstract
Due to the sparse distribution of ship targets in wide-area offshore scenarios, the typical cascade mode of imaging and detection for space-borne Synthetic Aperture Radar (SAR) echo data would consume substantial computational time and resources, severely affecting the timeliness of ship target information [...] Read more.
Due to the sparse distribution of ship targets in wide-area offshore scenarios, the typical cascade mode of imaging and detection for space-borne Synthetic Aperture Radar (SAR) echo data would consume substantial computational time and resources, severely affecting the timeliness of ship target information acquisition tasks. Therefore, we propose a ship target integrated imaging and detection framework (ST-IIDF) for SAR oceanic region data. A two-step filtering structure is added in the SAR imaging process to extract the potential areas of ship targets, which can accelerate the whole process. First, an improved peak-valley detection method based on one-dimensional scattering characteristics is used to locate the range gate units for ship targets. Second, a dynamic quantization method is applied to the imaged range gate units to further determine the azimuth region. Finally, a lightweight YOLO neural network is used to eliminate false alarm areas and obtain accurate positions of the ship targets. Through experiments on Hisea-1 and Pujiang-2 data, within sparse target scenes, the framework maintains over 90% accuracy in ship target detection, with an average processing speed increase of 35.95 times. The framework can be applied to ship target detection tasks with high timeliness requirements and provides an effective solution for real-time onboard processing. Full article
(This article belongs to the Special Issue Efficient Object Detection Based on Remote Sensing Images)
Show Figures

Figure 1

Back to TopTop