A PSO-XGBoost Model for Predicting the Compressive Strength of Cement–Soil Mixing Pile Considering Field Environment Simulation
Abstract
1. Introduction
2. Cement–Soil Mix Proportion Design Experiments
2.1. Experimental Materials and Properties
2.2. Cement–Soil Mix Proportion Design
2.3. Unconfined Compressive Strength Test
2.3.1. Cement–Soil Specimen Preparation and Strength Testing
2.3.2. Experimental Results and Analysis of Trends
3. Cement–Soil Mixing Pile As-Formed Strength Prediction Method
3.1. Data Description and Preprocessing
3.2. Machine Learning Methods
3.3. Construction of the Cement–Soil Mixing Pile Strength Prediction Model
3.3.1. Machine Learning Modeling
3.3.2. Construction of the PSO-XGBoost Model
3.3.3. Model Evaluation
3.3.4. Visualization and Explanation of the Optimal Model
4. Engineering Case Validation
4.1. Cement–Soil Mixing Pile Construction Process
4.2. Prediction of the As-Formed Strength of Cement–Soil Mixing Piles
4.2.1. PSO-XGBoost Model Prediction
4.2.2. Cement–Soil Mixing Pile Strength Detection Based on Core Drilling Method
4.3. Results Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baroni, M.; de Souza, S.; Almeida, M. Compressibility and stress history of very soft organic clays. Proc. Inst. Civ. Eng.-Geotech. Eng. 2017, 170, 148–160. [Google Scholar] [CrossRef]
- Madhira, M.; Sakleshpur, V.A. Geotechnics of Soft Ground. In Geotechnics for Natural and Engineered Sustainable Technologies; Krishna, A., Dey, A., Sreedeep, S., Eds.; Developments in Geotechnical Engineering; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Li, W.; Ma, H.; Wei, M.; Xiang, P.; Tang, F.; Gao, B.; Zhou, Q. Dynamic Responses of Train-Symmetry-Bridge System Considering Concrete Creep and the Creep-Induced Track Irregularity. Symmetry 2023, 15, 1846. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, W. Scale effect on bearing capacity of shallow foundations on strain-softening clays. Comput. Geotech. 2021, 135, 104182. [Google Scholar] [CrossRef]
- Denies, N.; Huybrechts, N. Chapter 11—Deep Mixing Method: Equipment and Field of Applications. In Ground Improvement Case Histories; Elsevier: Amsterdam, The Netherlands, 2015; pp. 311–350. [Google Scholar] [CrossRef]
- Wonglert, A.; Jongpradist, P. Impact of reinforced core on performance and failure behavior of stiffened deep cement mixing piles. Comput. Geotech. 2015, 69, 93–104. [Google Scholar] [CrossRef]
- Lu, X.; Mengen, S.; Wang, P. Numerical simulation of the composite foundation of cement soil mixing piles using FLAC3D. Clust. Comput. 2018, 22 (Suppl. S4), 7965–7974. [Google Scholar] [CrossRef]
- Fan, J.; Wang, D.; Qian, D. Soil-cement mixture properties and design considerations for reinforced excavation. J. Rock Mech. Geotech. Eng. 2018, 10, 791–797. [Google Scholar] [CrossRef]
- Tabarsa, A.; Latifi, N.; Osouli, A.; Bagheri, Y. Unconfined compressive strength prediction of soils stabilized using artificial neural networks and support vector machines. Front. Struct. Civ. Eng. 2021, 15, 520–536. [Google Scholar] [CrossRef]
- Pourebrahim, F.; Zolfegharifar, S.Y. Stabilizers effects comprehensive assessment on the physical and chemical properties of soft clays. Shock. Vib. 2022, 5991132. [Google Scholar] [CrossRef]
- Mahesh, B. Machine Learning Algorithms—A Review. Int. J. Sci. Res. (IJSR) 2020, 9, 381–386. [Google Scholar] [CrossRef]
- Ghanizadeh, A.R.; Ghanizadeh, A.; Asteris, P.G.; Fakharian, P.; Armaghani, D.J. Developing bearing capacity model for geogrid-reinforced stone columns improved soft clay utilizing MARS-EBS hybrid method. Transp. Geotech. 2023, 38, 100906. [Google Scholar] [CrossRef]
- Karami, H.; Pooni, J.; Robert, D.; Costa, S.; Li, J.; Setunge, S. Use of secondary additives in fly ash based soil stabilization for soft subgrades. Transp. Geotech. 2021, 29, 100585. [Google Scholar] [CrossRef]
- Liu, J. Research on the Application of Cement-Soil Mixing Pile Technology in Soft Soil Foundation Reinforcement. Authorea 2025. [Google Scholar] [CrossRef]
- Shen, K.; Zhang, H.; Liu, J.; Zhao, X.; Zhang, Y. Study of cement-soil mixed piles reinforcement method for offshore wind turbine pile foundation. Ocean. Eng. 2024, 313, 119423. [Google Scholar] [CrossRef]
- Consoli, N.C.; Rosa, D.A.; Cruz, R.C.; Dalla Rosa, A. Water content, porosity and cement content as parameters controlling strength of artificially cemented silty soil. Eng. Geol. 2011, 122, 328–333. [Google Scholar] [CrossRef]
- Sukmak, G.; Sukmak, P.; Horpibulsuk, S.; Arulrajah, A.; Horpibulsuk, J. Generalized strength prediction equation for cement stabilized clayey soils. Appl. Clay Sci. 2023, 231, 106761. [Google Scholar] [CrossRef]
- Horpibulsuk, S.; Miura, N.; Nagaraj, T.S. Clay–Water∕Cement Ratio Identity for Cement Admixed Soft Clays. J. Geotech. Geoenviron. Eng. 2005, 131, 187–192. [Google Scholar] [CrossRef]
- Zhang, Z.; Omine, K.; Flemmy, S.O. Evaluation of the improvement effect of cement-stabilized clays with different solidifying agent addition and water content. J. Mater. Cycles Waste Manag. 2022, 24, 2291–2302. [Google Scholar] [CrossRef]
- Bi, J.; Chian, S.C. Modelling of three-phase strength development of ordinary Portland cement- and Portland blast-furnace cement-stabilised clay. Géotechnique 2020, 70, 80–89. [Google Scholar] [CrossRef]
- Kang, G.; Kim, Y.; Kang, J. Predictive strength model of cement-treated fine-grained soils using key parameters: Consideration of the total water/cement and soil/cement ratios. Case Stud. Constr. Mater. 2023, 18, e02069. [Google Scholar] [CrossRef]
- Consoli, N.C.; Cruz, R.C.; Floss, M.F.; Festugato, L. Parameters Controlling Tensile and Compressive Strength of Artificially Cemented Sand. J. Geotech. Geoenviron. Eng. 2010, 136, 759–763. [Google Scholar] [CrossRef]
- Do, H.-D.; Pham, V.-N.; Nguyen, H.-H.; Huynh, P.-N.; Han, J. Prediction of Unconfined Compressive Strength and Flexural Strength of Cement-Stabilized Sandy Soils: A Case Study in Vietnam. Geotech. Geol. Eng. 2021, 39, 4947–4962. [Google Scholar] [CrossRef]
- Zhang, R.J.; Santoso, A.M.; Tan, T.S.; Phoon, K.K. Strength of High Water-Content Marine Clay Stabilized by Low Amount of Cement. J. Geotech. Geoenviron. Eng. 2013, 139, 2170–2181. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, J.; Liu, X.; Lu, Y.; Lu, R. Combined Correlation Analysis and Multilinear Regression for Strength Model of Cement-Stabilized Clayey Soils. Int. J. Geomech. 2024, 24, 04024190. [Google Scholar] [CrossRef]
- He, H.; Shuang, E.; Ai, L.; Wang, X.; Yao, J.; He, C.; Cheng, B. Exploiting machine learning for controlled synthesis of carbon dots-based corrosion inhibitors. J. Clean. Prod. 2023, 419, 138210. [Google Scholar] [CrossRef]
- Baghbani, A.; Choudhury, T.; Costa, S.; Reiner, J. Application of artificial intelligence in geotechnical engineering: A state-of-the-art review. Earth-Sci. Rev. 2022, 228, 103991. [Google Scholar] [CrossRef]
- Liu, H.; Su, H.; Sun, L.; Dias-da-Costa, D. State-of-the-art review on the use of AI-enhanced computational mechanics in geotechnical engineering. Artif. Intell. Rev. 2024, 57, 196. [Google Scholar] [CrossRef]
- Ho, L.S.; Tran, V.Q. Machine learning approach for predicting and evaluating California bearing ratio of stabilized soil containing industrial waste. J. Clean. Prod. 2022, 370, 133587. [Google Scholar] [CrossRef]
- Shan, H.; Ai, L.; He, C.; Li, K. Enhancing multi-objective prediction of settlement around foundation pit using explainable machine learning. J. Civ. Struct. Health Monit. 2025, 15, 1–22. [Google Scholar] [CrossRef]
- Tinoco, J.; Alberto, A.; da Venda, P.; Gomes Correia, A.; Lemos, L. A novel approach based on soft computing techniques for unconfined compression strength prediction of soil cement mixtures. Neural Comput. Appl. 2019, 32, 8985–8991. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, Z.; Liu, F.; Yang, Y.; Wan, Y.; Huo, W.; Yang, L. Efficient machine learning method for evaluating compressive strength of cement stabilized soft soil. Constr. Build. Mater. 2023, 392, 131887. [Google Scholar] [CrossRef]
- Yao, Q.; Tu, Y.; Yang, J. Predicting the compressive strength of solid waste-cement stabilized compacted soil using machine learning model. Mater. Today Commun. 2025, 44, 111882. [Google Scholar] [CrossRef]
- Khan, M.H.A.; Abdallah, A.; Cuisinier, O. Insights into the strength development in cement-treated soils: An explainable AI-based approach for optimized mix design. Comput. Geotech. 2025, 180, 107103. [Google Scholar] [CrossRef]
- Wang, S.; Guo, S.; Gao, X.; Zhang, P.; Li, G. Effects of cement content and soil texture on strength, hydraulic, and microstructural characteristics of cement-stabilized composite soils. Bull. Eng. Geol. Environ. 2022, 81, 264. [Google Scholar] [CrossRef]
- Roshan, M.J.; Rashid, A.S.B.A. Geotechnical characteristics of cement stabilized soils from various aspects: A comprehensive review. Arab. J. Geosci. 2023, 17, 1. [Google Scholar] [CrossRef]
- Xi, L.; Jin, L.; Ji, Y.; Liu, P.; Wei, J. Prediction of Ultimate Bearing Capacity of Soil–Cement Mixed Pile Composite Foundation Using SA-IRMO-BPNN Model. Mathematics 2024, 12, 1701. [Google Scholar] [CrossRef]
- Mojtahedi, S.F.F.; Ahmadihosseini, A.; Sadeghi, H. An Artificial Intelligence Based Data-Driven Method for Forecasting Unconfined Compressive Strength of Cement Stabilized Soil by Deep Mixing Technique. Geotech. Geol. Eng. 2023, 41, 491–514. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB/T 50123-2019; Standard for Geotechnical Testing Method. China Planning Press: Beijing, China, 2019.
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. JGJ/T 233-2011; Specification for Mix Proportion Design of Cement Soil. China Architecture & Building Press: Beijing, China, 2011.
- Galton, F. Regression towards mediocrity in hereditary stature. J. Anthropol. Inst. Great Br. Irel. 1886, 15, 246–263. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar] [CrossRef]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
Soil Type | Plastic Limit (%) | Liquid Limit (%) | Plasticity Index | Fine Grain Content (%) | Sand Content (%) | Silt Content (%) | Optimum Moisture Content (%) | Maximum Dry Density (g/cm3) |
---|---|---|---|---|---|---|---|---|
Silty clay | 31.2 | 45.8 | 14.6 | 96.6 | 3.4 | 0 | 22.6 | 1.59 |
Silty soil | 16 | 25 | 9 | 56.3 | 43.8 | 2.6 | 18.7 | 1.71 |
Sandy soil | / | / | / | 0 | 80.6 | 19.4 | / | / |
Soil Type | Test Moisture Content (%) | Sand and Gravel Content (%) | Water–Cement Ratio | Cement Content (%) | Curing Conditions |
---|---|---|---|---|---|
Silty clay | 22.6 | 3.4 | 1.0, 0.5 | 6, 9, 12, 15, 18, 21, 23, 25, 27, 29, 32, 35, 38, 41 | Water |
Silty soil | 18.7 | 43.7 | |||
Sandy soil | 2.2 | 100 |
Model | Library | Class | Function |
---|---|---|---|
ML | Scikit-learn | LinearRegression | train_test_split |
RF | Scikit-learn | RandomForestRegressor | train_test_split |
KNN | Scikit-learn | KNeighborsRegressor | train_test_split |
BP | Scikit-learn, keras | StandardScaler, sequential | train_test_split |
XGBoost | Scikit-learn, xgboost | XGBRegressor | train_test_split |
PSO | Pyswarms | / | pso |
Hyperpara-Meter | Max_Depth | Learning_Rate | Min_Child_Weight | Subsample | Gamma | Colsampl-e_Bytree | Reg_ Alpha | Reg_Lambda |
---|---|---|---|---|---|---|---|---|
Empirical range | 3–10 | 0–0.5 | 1–10 | 0.3–1.0 | 0–10 | 0–1 | 0–4 | 0–10 |
Optimal value | 9.98 | 0.03 | 4.51 | 1.00 | 0.00 | 1.00 | 0.00 | 3.78 |
Evaluation Metric | Test Set (T) | All Datasets (A) | ||||
---|---|---|---|---|---|---|
RMSE | MAE | R2 | RMSE | MAE | R2 | |
ML | 2.9747 | 2.5688 | 0.7721 | 2.6971 | 2.2436 | 0.8137 |
RF | 1.1209 | 0.8554 | 0.9676 | 0.8207 | 0.5686 | 0.9827 |
KNN | 1.9848 | 1.5998 | 0.8985 | 1.9698 | 1.4843 | 0.9006 |
BP | 2.1766 | 1.6151 | 0.878 | 1.6907 | 1.221 | 0.9268 |
XGBoost | 0.631 | 0.4251 | 0.9897 | 0.3771 | 0.1537 | 0.9964 |
PSO-XGBoost | 0.5404 | 0.3709 | 0.9925 | 0.341 | 0.1982 | 0.997 |
No. | Engineering Location | Preparation Parameter Combination | Predicted Value | ||
---|---|---|---|---|---|
Sand and Gravel Content | Cement Content | Water–Cement Ratio | |||
① | Right-bank relocation embankment | 3.4% | 12% | 0.5 | 1.4159 |
② | Embankments of the upstream and downstream approach channels of the ship lock | 43.7% | 12% | 0.5 | 2.6851 |
③ | Energy dissipater pool of the spillway gate in Area Three | 100.0% | 12% | 1.5 | 3.6632 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, J.; Gong, Y.; Liu, X.; Li, Y.; Chen, L.; Liao, C.; Zhang, C. A PSO-XGBoost Model for Predicting the Compressive Strength of Cement–Soil Mixing Pile Considering Field Environment Simulation. Buildings 2025, 15, 2740. https://doi.org/10.3390/buildings15152740
Xiong J, Gong Y, Liu X, Li Y, Chen L, Liao C, Zhang C. A PSO-XGBoost Model for Predicting the Compressive Strength of Cement–Soil Mixing Pile Considering Field Environment Simulation. Buildings. 2025; 15(15):2740. https://doi.org/10.3390/buildings15152740
Chicago/Turabian StyleXiong, Jiagui, Yangqing Gong, Xianghua Liu, Yan Li, Liangjie Chen, Cheng Liao, and Chaochao Zhang. 2025. "A PSO-XGBoost Model for Predicting the Compressive Strength of Cement–Soil Mixing Pile Considering Field Environment Simulation" Buildings 15, no. 15: 2740. https://doi.org/10.3390/buildings15152740
APA StyleXiong, J., Gong, Y., Liu, X., Li, Y., Chen, L., Liao, C., & Zhang, C. (2025). A PSO-XGBoost Model for Predicting the Compressive Strength of Cement–Soil Mixing Pile Considering Field Environment Simulation. Buildings, 15(15), 2740. https://doi.org/10.3390/buildings15152740