Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (19,439)

Search Parameters:
Journal = Plants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4006 KiB  
Article
Biochar and Melatonin Partnership Mitigates Arsenic Toxicity in Rice by Modulating Antioxidant Defense, Phytochelatin Synthesis, and Down-Regulating the Transporters Involved in Arsenic Uptake
by Mehmood Ali Noor, Muhammad Umair Hassan, Tahir Abbas Khan, Baoyuan Zhou and Guoqin Huang
Plants 2025, 14(15), 2453; https://doi.org/10.3390/plants14152453 (registering DOI) - 7 Aug 2025
Abstract
Arsenic (As) contamination has significantly increased in recent decades due to anthropogenic activities. This is a serious challenge for human health, environmental quality, and crop productivity. Biochar (BC) is an important practice used globally to remediate polluted soils. Likewise, melatonin (MT) has also [...] Read more.
Arsenic (As) contamination has significantly increased in recent decades due to anthropogenic activities. This is a serious challenge for human health, environmental quality, and crop productivity. Biochar (BC) is an important practice used globally to remediate polluted soils. Likewise, melatonin (MT) has also shown tremendous results in mitigating metal toxicity and improving crop productivity. Nevertheless, the mechanism of combined BC and MT in alleviating As toxicity in rice (Oryza sativa L.) remains unexplored. In this study, we investigated how As affected rice and how the combined BC and MT facilitated As tolerance. The study comprised a control, As stress (100 mg kg−1), As stress (100 mg kg−1) + BC (2%), As stress (100 mg kg−1) + MT (100 µM) and As stress (100 mg kg−1) + BC (2%) + MT (100 µM). Arsenic significantly decreased rice growth and yield by increasing electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2). Co-applying BC and MT substantially enhanced rice growth and yield by increasing chlorophyll synthesis (48.12–92.42%) leaf water contents (40%), antioxidant activities (ascorbate peroxide: 56.43%, catalase: 55.14%, peroxidase: 57.77% and superoxide dismutase: 57.52%), proline synthesis (41.35%), MT synthesis (91.53%), and phytochelatins synthesis (125%) nutrient accumulation in rice seedlings and soil nutrient availability. The increased rice yield with BC + MT was also linked with reduced H2O2 production, As accumulation, soil As availability, and an increase in OsAPx6, OsCAT, OsPOD, OsSOD OsASMT1, and OsASMT2 and a decrease in expression of OsABCC1. Biochar + MT enhanced residual OM- and Fe, ((Fe2As) and Mn (Mn3(AsO4)2) bound forms of As leading to a substantial increase in rice growth and yield. Thus, the combination of BC and MT is an eco-friendly approach to mitigate As toxicity and improve rice productivity. Full article
Show Figures

Figure 1

17 pages, 848 KiB  
Article
Influence of Various Fruit Preservation Methods on the Phenolic Composition and Antioxidant Activity of Prunus spinosa L. Fruit Extract
by Valentina Sallustio, Joana Marto, Lidia Maria Gonçalves, Manuela Mandrone, Ilaria Chiocchio, Michele Protti, Laura Mercolini, Barbara Luppi, Federica Bigucci, Angela Abruzzo and Teresa Cerchiara
Plants 2025, 14(15), 2454; https://doi.org/10.3390/plants14152454 (registering DOI) - 7 Aug 2025
Abstract
Wild edible plants, historically valued for their medicinal properties, can be a sustainable source of food, cosmetics, and pharmaceuticals. The blue berries of Prunus spinosa L., known as blackthorns, have antioxidant, astringent, and antimicrobial benefits. To preserve these properties after harvesting, understanding the [...] Read more.
Wild edible plants, historically valued for their medicinal properties, can be a sustainable source of food, cosmetics, and pharmaceuticals. The blue berries of Prunus spinosa L., known as blackthorns, have antioxidant, astringent, and antimicrobial benefits. To preserve these properties after harvesting, understanding the best storage methods is essential. In this study, blackthorns were preserved using different methods (air-drying, freezing, or freeze-drying) to determine the optimal procedure for preserving their antioxidant activity. The fruits were extracted using a 50:50 (V/V) mixture of ethanol and water. The different extracts were phytochemically characterized for their phenolic content and antioxidant activity. The Folin–Ciocalteu test revealed total phenolic contents of 7.97 ± 0.04, 13.99 ± 0.04, and 7.39 ± 0.08 (mg GAE/g raw material) for the three types of extracts, respectively. The total flavonoid contents were 2.42 ± 0.16, 3.14 ± 0.15, and 2.32 ± 0.03 (mg QE/g raw material), respectively. In line with the polyphenol analysis, the antioxidant activity as determined by DPPH method was higher for the frozen extract, with a value of 91.78 ± 0.80%, which was confirmed by the ROS test on keratinocytes. These results show that both air-drying and freeze-drying processes negatively impact the preservation of antioxidant activity in blackthorns, suggesting that freezing may be the best preservation method before bioactive compound extraction. Full article
(This article belongs to the Special Issue Bioactives from Plants: From Extraction to Functional Food Innovation)
18 pages, 677 KiB  
Review
Advances of Peptides for Plant Immunity
by Minghao Liu, Guangzhong Zhang, Suikang Wang and Quan Wang
Plants 2025, 14(15), 2452; https://doi.org/10.3390/plants14152452 (registering DOI) - 7 Aug 2025
Abstract
Plant peptides, as key signaling molecules, play pivotal roles in plant growth, development, and stress responses. This review focuses on research progress in plant peptides involved in plant immunity, providing a detailed classification of immunity-related plant polypeptides, including small post-translationally modified peptides, cysteine-rich [...] Read more.
Plant peptides, as key signaling molecules, play pivotal roles in plant growth, development, and stress responses. This review focuses on research progress in plant peptides involved in plant immunity, providing a detailed classification of immunity-related plant polypeptides, including small post-translationally modified peptides, cysteine-rich peptides, and non-cysteine-rich peptides. It discusses the mechanisms by which plant polypeptides confer disease resistance, such as their involvement in pattern-triggered immunity (PTI), effector-triggered immunity (ETI), and regulation of hormone-mediated defense pathways. Furthermore, it explores potential agricultural applications of plant polypeptides, including the development of novel biopesticides and enhancement of crop disease resistance via genetic engineering. By summarizing current research, this review aims to provide a theoretical basis for in-depth studies on peptide-mediated disease resistance and offer innovative insights for plant disease control. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

16 pages, 4914 KiB  
Article
Drought–Rewatering Cycles: Impact on Non-Structural Carbohydrates and C:N:P Stoichiometry in Pinus yunnanensis Seedlings
by Weisong Zhu, Yuanxi Liu, Zhiqi Li, Jialan Chen and Junwen Wu
Plants 2025, 14(15), 2448; https://doi.org/10.3390/plants14152448 - 7 Aug 2025
Abstract
The ongoing global climate change has led to an increase in the frequency and complexity of drought events. Pinus yunnanensis, a native tree species in southwest China that possesses significant ecological and economic value, exhibits a high sensitivity to drought stress, particularly [...] Read more.
The ongoing global climate change has led to an increase in the frequency and complexity of drought events. Pinus yunnanensis, a native tree species in southwest China that possesses significant ecological and economic value, exhibits a high sensitivity to drought stress, particularly in its seedlings. This study investigates the response mechanisms of non-structural carbohydrates (NSCs, defined as the sum of soluble sugars and starch) and the stoichiometric characteristics of carbon (C), nitrogen (N), and phosphorus (P) to repeated drought conditions in Pinus yunnanensis seedlings. We established three treatment groups in a potting water control experiment involving 2-year-old Pinus yunnanensis seedlings: normal water supply (CK), a single drought (D1), and three drought–rewatering cycles (D3). The findings indicated that the frequency of drought occurrences, organ responses, and their interactions significantly influenced the non-structural carbohydrate (NSC) content and its fractions, as well as the C/N/P content and its stoichiometric ratios. Under D3 treatment, stem NSC content increased by 24.97% and 29.08% compared to CK and D1 groups (p < 0.05), respectively, while root NSC content increased by 41.35% and 49.46% versus CK and D1 (p < 0.05). The pronounced accumulation of soluble sugars and starch in stems and roots under D3 suggests a potential stress memory effect. Additionally, NSC content in the stems increased significantly by 77.88%, while the roots enhanced their resource acquisition by dynamically regulating the C/P ratio, which increased by 23.26% (p < 0.05). Needle leaf C content decreased (18.77%) but P uptake increased (8%) to maintain basal metabolism (p < 0.05). Seedling growth was N-limited (needle N/P < 14) and the degree of N limitation was exacerbated by repeated droughts. Phenotypic plasticity indices and principal component analysis revealed that needle nitrogen and phosphorus, soluble sugars in needles, stem C/N ratio (0.61), root C/N ratio (0.53), and stem C/P ratio were crucial for drought adaptation. This study elucidates the physiological mechanisms underlying the resilience of Pinus yunnanensis seedlings to recurrent droughts, as evidenced by their organ-specific strategies for allocating carbon, nitrogen, and phosphorus, alongside the dynamic regulation of nitrogen storage compounds (NSCs). These findings provide a robust theoretical foundation for implementing drought-resistant afforestation and ecological restoration initiatives targeting Pinus yunnanensis in southwestern China. Full article
Show Figures

Figure 1

18 pages, 2974 KiB  
Article
Histological and Transcriptomic Insights into Rugose Surface Formation in Pepper (Capsicum annuum L.) Fruit
by Yiqi Xie, Haizhou Zhang, Chengshuang Li, Qing Cheng, Liang Sun and Huolin Shen
Plants 2025, 14(15), 2451; https://doi.org/10.3390/plants14152451 - 7 Aug 2025
Abstract
The rugose surface trait in pepper (Capsicum annuum L.), marked by ridges and depressions on the fruit epidermis, is linked to improved fruit texture. To investigate its regulatory basis, histological, textural, and transcriptomic differences, contrasting genotypes were analyzed. Histological analysis revealed that [...] Read more.
The rugose surface trait in pepper (Capsicum annuum L.), marked by ridges and depressions on the fruit epidermis, is linked to improved fruit texture. To investigate its regulatory basis, histological, textural, and transcriptomic differences, contrasting genotypes were analyzed. Histological analysis revealed that disorganized epidermal cell layers contribute to rugosity, with morphological differences emerging around 10 days post-anthesis (DPA). A computer-aided design (CAD)-based rugosity index (RI) was developed and showed strong correlation with sensory rugosity scores (R2 = 0.659, p < 0.001). Texture analysis demonstrated that increasing surface rugosity was associated with reduced rupture force and hardness, as well as elevated pectinase activity. Comparative transcriptome profiling identified 10 differentially expressed genes (DEGs) related to microtubule dynamics (e.g., CA03g18310 and CA09g13510) and phytohormone signaling (e.g., CA03g35180 and CA08g12070), which exhibited distinct spatial and temporal expression patterns. These findings suggest that coordinated cytoskeletal remodeling and hormonal regulation drive epidermal disorganization, leading to surface rugosity and altered fruit texture. The study provides novel insights into the molecular basis of fruit surface morphology and identifies promising targets for breeding high-quality pepper cultivars. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

26 pages, 3951 KiB  
Article
Exploring the Bioactive Potential and Chemical Profile of Schinus molle Essential Oil: An Integrated In Silico and In Vitro Evaluation
by Rómulo Oses, Matías Ferrando, Flavia Bruna, Patricio Retamales, Myriam Navarro, Katia Fernández, Waleska Vera, María José Larrazábal, Iván Neira, Adrián Paredes, Manuel Osorio, Osvaldo Yáñez, Martina Jacobs and Jessica Bravo
Plants 2025, 14(15), 2449; https://doi.org/10.3390/plants14152449 - 7 Aug 2025
Abstract
Chilean Schinus molle has been used in traditional medicine for effects such as antibacterial, antifungal, anti-inflammatory, analgesic, antiviral, antitumoral, antioxidant, antispasmodic, astringent, antipyretic, cicatrizant, cytotoxic, diuretic, among others. In this study, we evaluated the pharmacological potential of Schinus molle seed essential oil extract [...] Read more.
Chilean Schinus molle has been used in traditional medicine for effects such as antibacterial, antifungal, anti-inflammatory, analgesic, antiviral, antitumoral, antioxidant, antispasmodic, astringent, antipyretic, cicatrizant, cytotoxic, diuretic, among others. In this study, we evaluated the pharmacological potential of Schinus molle seed essential oil extract (SM_EO) through in vitro and in silico approaches. In vitro, the antioxidant potential was analyzed, and antitumor activity was evaluated in non-tumor and human epithelial tumor cell lines. Caenorhabditis elegans was used as a model for evaluating toxicity, and the chemical composition of the SM_EO was analyzed using gas chromatography–mass spectrometry. The oil contained four major monoterpenes: α-phellandrene (34%), β-myrcene (23%), limonene (13%), and β-phellandrene (7%). Based on quantum mechanical calculations, the reactivity of the molecules present in the SM_EO was estimated. The results indicated that α- phellandrene, β-phellandrene, and β-myrcene showed the highest nucleophilic activity. In addition, the compounds following these as candidates for antioxidant and antiproliferative activities were α-phellandrene, β-phellandrene, ρ-cymene, sabinene, caryophyllene, l-limonene, and α-pinene, highlighting β-myrcene. Based on ADME-Tox properties, it is feasible to use these compounds as new drug candidates. Moreover, the antibacterial activity MIC value obtained for B. cereus was equivalent to 2 μg/mL, and for Y. enterocolitica, S. enteritidis, and S. typhimurium, the MIC value was 32.5 μg/μL. SM_EO could selectively inhibit the proliferation of human epithelial mammary tumor MCF7 cells treated with SM_EOs at 64 and 16 ug/mL—a significant increase in BCL-2 in a dose-dependent manner—and showed low toxicity against Caenorhabditis elegans (from 10 to 0.078 mg·mL−1). These findings suggest that SM_EO may be a potential source of bioactive compounds, encouraging further investigation for applications in veterinary medicine, cosmetics, and sanitation. Full article
Show Figures

Graphical abstract

14 pages, 2857 KiB  
Article
Identification of the MADS-Box Gene Family and Development of Simple Sequence Repeat Markers in Chimonanthus praecox
by Huafeng Wu, Bin Liu, Yinzhu Cao, Guanpeng Ma, Xiaowen Zheng, Ximeng Yang, Qianli Dai, Hengxing Zhu, Haoxiang Zhu, Xingrong Song and Shunzhao Sui
Plants 2025, 14(15), 2450; https://doi.org/10.3390/plants14152450 - 7 Aug 2025
Abstract
Chimonanthus praecox, a traditional ornamental plant in China, is admired for its ability to bloom during the cold winter season and is recognized as an outstanding woody cut flower. MADS-box genes encode transcription factors essential for plant growth and development, with key [...] Read more.
Chimonanthus praecox, a traditional ornamental plant in China, is admired for its ability to bloom during the cold winter season and is recognized as an outstanding woody cut flower. MADS-box genes encode transcription factors essential for plant growth and development, with key functions in regulating flowering time and the formation of floral organs. In this study, 74 MADS-box genes (CpMADS1–CpMADS74) were identified and mapped across 11 chromosomes, with chromosome 1 harboring the highest number (13 genes) and chromosome 3 the fewest (3 genes). Physicochemical property analysis revealed that all CpMADS proteins are hydrophilic and predominantly nuclear-localized. Phylogenetic analysis classified these genes into Type I and Type II subfamilies, highlighting a clear divergence in domain structure. Eighty simple sequence repeat (SSR) loci were detected, with dinucleotide repeats being the most abundant, and the majority located in Type II MADS genes. From 23 C. praecox samples, 10 polymorphic SSR markers were successfully developed and PCR-validated, enabling a cluster analysis that grouped these cultivars into three distinct clusters. This study offers significant insights into the regulation of flowering, floral organ development, genetic linkage map construction, and the application of marker-assisted selection in C. praecox. Full article
Show Figures

Figure 1

24 pages, 1967 KiB  
Article
Water Stress Promotes Secondary Sexual Dimorphism in Ecophysiological Traits of Papaya Seedlings
by Ingrid Trancoso, Guilherme A. R. de Souza, João Vitor Paravidini de Souza, Rosana Maria dos Santos Nani de Miranda, Diesily de Andrade Neves, Miroslava Rakocevic and Eliemar Campostrini
Plants 2025, 14(15), 2445; https://doi.org/10.3390/plants14152445 - 7 Aug 2025
Abstract
Plant genders could express different functional strategies to compensate for different reproductive costs, as females have an additional role in fruit and seed production. Secondary sexual dimorphism (SSD) expression is frequently greater under stress than under optimal growth conditions. The early gender identification [...] Read more.
Plant genders could express different functional strategies to compensate for different reproductive costs, as females have an additional role in fruit and seed production. Secondary sexual dimorphism (SSD) expression is frequently greater under stress than under optimal growth conditions. The early gender identification in papaya may help to reduce orchard costs because the most desirable fruit shape is formed by hermaphrodite plants. We hypothesized that (a) gender ecophysiological phenotyping can be an alternative to make gender segregations in papaya seedlings, and (b) such gender segregation will be more efficient after a short drought exposure than under adequate water conditions. To test such hypotheses, seedlings of two papaya varieties (‘Candy’ and ‘THB’) were exposed to two kind of treatments: (1) water shortage (WS) for 45 h, after which they were well watered, and (2) continuously well-watered (WW). Study assessed the ecophysiological responses, such as stomatal conductance (gs), SPAD index, optical reflectance indices, morphological traits, and biomass accumulation in females (F) and hermaphrodites (H). In WS treatment, the SSD was expressed in 14 of 18 traits investigated, while in WW treatment, the SSD was expressed only in 7 of 18 traits. As tools for SSD expression, gs and simple ratio pigment index (SRPI) must be measured on the first or second day after the imposed WS was interrupted, respectively, while the other parameters must be measured after a period of four days. In some traits, the SSD was expressed in only one variety, or the response of H and F plants were of opposite values for two varieties. The choice of the clearest responses of gender segregation in WS treatment will be greenness index, combination of normalized difference vegetation index (CNDVI), photochemical reflectance index (PRI), water band index (WBI), SRPI, leaf number, leaf dry mass, and leaf mass ratio. If the WW conditions are maintained for papaya seedling production, the recommendation in gender segregation will be the analysis of CNDVI, carotenoid reflectance index 2 (CRI2), WBI, and SRPI. The non-destructive optical leaf indices segregated papaya hermaphrodites from females under both water conditions and eventually could be adjusted for wide-scale platform evaluations, with planned space arrangements of seedlings, and sensor’s set. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

16 pages, 4330 KiB  
Article
Scaling Relationships Among the Floral Organs of Rosa chinensis var. minima: Implications for Reproductive Allocation and Floral Proportionalities
by Zhe Wen, Karl J. Niklas, Yunfeng Yang, Wen Gu, Zhongqin Li and Peijian Shi
Plants 2025, 14(15), 2446; https://doi.org/10.3390/plants14152446 - 7 Aug 2025
Abstract
Although the allocation of biomass among floral organs reflects critical trade-offs in plant reproductive strategies, the scaling relationships governing biomass allocations remain poorly resolved, particularly in flowers. Here, we report the fresh mass scaling allocation patterns among four floral organs (i.e., sepals, petals, [...] Read more.
Although the allocation of biomass among floral organs reflects critical trade-offs in plant reproductive strategies, the scaling relationships governing biomass allocations remain poorly resolved, particularly in flowers. Here, we report the fresh mass scaling allocation patterns among four floral organs (i.e., sepals, petals, stamens, and carpels), and the two subtending structural components (i.e., the pedicel and receptacle) of 497 flowers of the hypogynous Rosa chinensis var. minima (miniature rose) using reduced major axis protocols. The two-parameter Weibull probability density function was also applied to characterize the distributions of floral organ mass, and revealed skewed tendencies in all six measured traits. The results show that the numerical values of the scaling exponents (α) for all pairwise power-law relationships significantly exceeded unity (α > 1), indicating disproportionate investments in larger floral structures with increasing overall flower size. Specifically, the scaling exponent of corolla fresh mass vs. calyx fresh mass was α = 1.131 (95% confidence interval [CI]: 1.086, 1.175), indicating that petal investment outpaces sepal investment as flower size increases. Reproductive organs also exhibited significant disproportionate investments (i.e., allometry): the collective carpel (gynoecium) fresh mass scaled allometrically with respect to the collective stamen (androecium) mass (α = 1.062, CI: 1.028, 1.098). Subtending axial structures (pedicel and receptacle) also had hyperallometric patterns, with pedicel mass scaling at α = 1.167 (CI: 1.106, 1.235) with respect to receptacle mass. Likewise, the combined fresh mass of all four foliar homologues (sepals, petals, androecium, and gynoecium) scaled disproportionately with respect to the biomass of the two subtending axial structures (α = 1.169, CI: 1.126, 1.214), indicating a prioritized resource allocation to reproductive and display organs. These findings are in accord with hypotheses positing that floral display traits, such as corolla size, primarily enhance pollen export by attracting pollinators, while maintaining fruit setting success through coordinated investment in gynoecium development. The consistent hyperallometry across all organ pairwise comparisons underscores the role of developmental integration in shaping floral architecture in Rosaceae, as predicted by scaling theory. By integrating morphometric and scaling analyses, this study proposes a tractable methodology for investigating floral resource allocation in monomorphic-flowering species and provides empirical evidence consistent with the adaptive patterns of floral traits within this ecologically and horticulturally significant lineage. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

20 pages, 3448 KiB  
Article
Fatty Acid-Rich Fraction of Hibiscus syriacus L. Alleviates Atopic Dermatitis-like Skin Lesions Mouse Model via Inflammatory Pathway Modulation: Integrative Docking and Experimental Validation
by Trang Thi Minh Nguyen, Bom Park, Xiangji Jin, Qiwen Zheng, Gyeong-Seon Yi, Su-Jin Yang and Tae-Hoo Yi
Plants 2025, 14(15), 2447; https://doi.org/10.3390/plants14152447 - 7 Aug 2025
Abstract
Atopic dermatitis (AD) remains a therapeutic challenge due to the limitations of current treatments, creating demand for safer multi-target alternatives to corticosteroids. Our integrated study establishes Hibiscus syriacus L. (H. syriacus) as a mechanistically validated solution through computational and biological validation. [...] Read more.
Atopic dermatitis (AD) remains a therapeutic challenge due to the limitations of current treatments, creating demand for safer multi-target alternatives to corticosteroids. Our integrated study establishes Hibiscus syriacus L. (H. syriacus) as a mechanistically validated solution through computational and biological validation. The fraction’s two main compounds, linoleic acid and palmitic acid, exhibit favorable drug-like properties including high lipophilicity (LogP 5.2) and 87% oral absorption. Molecular docking collectively predicts comprehensive NF-κB pathway blockade. Experimental validation showed that the fraction (100 μg/mL) inhibited LPS-induced nitric oxide (NO) by 78% and TNF-α/IFN-γ-induced reactive oxygen species (ROS) by 40%, while significantly downregulating the chemokines TARC (73%) and MDC (71%). In DNCB-induced AD mice, the treatment (200 mg/kg/day) produced a 62% improvement in clinical severity scores, reduced serum IgE by 27%, decreased transepidermal water loss by 36%, and doubled skin hydration while normalizing pH levels from the alkaline to physiological range. While both treatments reduced DNCB-induced epidermal hyperplasia, H. syriacus (62.9% reduction) restored the normal thickness without pathological thinning, a critical advantage over corticosteroids that cause atrophy. This dual-action therapeutic achieves corticosteroid-level anti-inflammatory effects while restoring skin barrier integrity to normal levels and avoiding corticosteroid-associated atrophy, positioning it as a next-generation AD treatment. Full article
Show Figures

Figure 1

17 pages, 701 KiB  
Article
Hydroethanolic Extracts of Raspberry (Rubus idaeus) Pomace as Ingredients of Functional Foods: Characterization and Effect of Gastrointestinal Digestion
by Ziva Vipotnik, Majda Golob and Alen Albreht
Plants 2025, 14(15), 2444; https://doi.org/10.3390/plants14152444 - 7 Aug 2025
Abstract
The extract of powdered raspberry pomace was characterized in terms of its phenolic profile and antioxidant and antimicrobial activity. Kuromanin, chlorogenic acid, protocatechuic acid, and pelargonidin-3-O-glucoside were found to be the major phenolic compounds, while the antioxidant activity of the extract [...] Read more.
The extract of powdered raspberry pomace was characterized in terms of its phenolic profile and antioxidant and antimicrobial activity. Kuromanin, chlorogenic acid, protocatechuic acid, and pelargonidin-3-O-glucoside were found to be the major phenolic compounds, while the antioxidant activity of the extract correlated positively with the total phenolic content (TPC), which was 472.9 ± 0.1 mg GAE/g dw. The extract also showed good antimicrobial activity against Gram-positive foodborne bacteria. More importantly, in vitro bioaccessibility of phenols from the raspberry pomace extract was 5-fold higher when the extract was incorporated into meringue cookies. Although the concentrations of anthocyanins, flavonoids, and tannins decreased after the oral, gastric, and intestinal phases of digestion, the TPC slightly increased as the compounds were released from the food matrix. The content of available phenolics was 4-fold lower in the case of a commercial raspberry colorant, demonstrating that the waste from raspberry pomace could serve as a valuable health-promoting ingredient for functional food formulations. Full article
Show Figures

Figure 1

17 pages, 5600 KiB  
Article
From Marshes to Mines: Germination and Establishment of Crinum bulbispermum on Gold Mine Tailings
by Vincent C. Clarke, Sarina Claassens, Dirk P. Cilliers and Stefan J. Siebert
Plants 2025, 14(15), 2443; https://doi.org/10.3390/plants14152443 - 7 Aug 2025
Abstract
The growth potential of Crinum bulbispermum was evaluated on gold mine tailings. The primary objectives were to model the species’ climatic niche in relation to gold mining regions, assess its germination success on tailings, and compare seedling survival and growth on tailings versus [...] Read more.
The growth potential of Crinum bulbispermum was evaluated on gold mine tailings. The primary objectives were to model the species’ climatic niche in relation to gold mining regions, assess its germination success on tailings, and compare seedling survival and growth on tailings versus other soil types. Species distribution modelling identified the South African Grassland Biome on the Highveld (1000+ m above sea level), where the majority of gold mines are located, as highly suitable for the species. Pot trials demonstrated above 85% germination success across all soil treatments, including gold mine tailings, indicating its potential for restoration through direct seeding. An initial seedling establishment rate of 100% further demonstrated the species’ resilience to mine tailings, which are often seasonally dry, nutrient-poor, and may contain potentially toxic metals. However, while C. bulbispermum was able to germinate and establish in mine tailings, long-term growth potential (over 12 months) was constrained by low organic carbon content (0.11%) and high salinity (194.50 mS/m). These findings underscore the critical role of soil chemistry and organic matter in supporting long-term plant establishment and growth on gold tailings. Building on previous research, this study confirms the ability of this thick-rooted geophyte to tolerate chemically extreme soil conditions. Crinum bulbispermum shows promise for phytostabilization and as a potential medicinal plant crop on tailings. However, future research on microbial community interactions and soil amendment strategies is essential to ensure its long-term sustainability. Full article
Show Figures

Figure 1

21 pages, 4258 KiB  
Article
Abscisic Acid Metabolizing Rhodococcus sp. Counteracts Phytopathogenic Effects of Abscisic Acid Producing Botrytis sp. on Sunflower Seedlings
by Alexander I. Shaposhnikov, Oleg S. Yuzikhin, Tatiana S. Azarova, Edgar A. Sekste, Anna L. Sazanova, Nadezhda A. Vishnevskaya, Vlada Y. Shahnazarova, Polina V. Guro, Miroslav I. Lebedinskii, Vera I. Safronova, Yuri V. Gogolev and Andrey A. Belimov
Plants 2025, 14(15), 2442; https://doi.org/10.3390/plants14152442 - 7 Aug 2025
Abstract
One of the important traits of many plant growth-promoting rhizobacteria (PGPR) is the biocontrol of phytopathogens. Some PGPR metabolize phytohormone abscisic acid (ABA); however, the role of this trait in plant–microbe interactions is scarcely understood. Phytopathogenic fungi produce ABA and use this property [...] Read more.
One of the important traits of many plant growth-promoting rhizobacteria (PGPR) is the biocontrol of phytopathogens. Some PGPR metabolize phytohormone abscisic acid (ABA); however, the role of this trait in plant–microbe interactions is scarcely understood. Phytopathogenic fungi produce ABA and use this property as a negative regulator of plant resistance. Therefore, interactions between ABA-producing necrotrophic phytopathogen Botrytis sp. BA3 with ABA-metabolizing rhizobacterium Rhodococcus sp. P1Y were studied in a batch culture and in gnotobiotic hydroponics with sunflower seedlings. Rhizobacterium P1Y possessed no antifungal activity against BA3 and metabolized ABA, which was synthesized by BA3 in vitro and in associations with sunflower plants infected with this fungus. Inoculation with BA3 and the application of exogenous ABA increased the root ABA concentration and inhibited root and shoot growth, suggesting the involvement of this phytohormone in the pathogenesis process. Strain P1Y eliminated negative effects of BA3 and exogenous ABA on root ABA concentration and plant growth. Both microorganisms significantly modulated the hormonal status of plants, affecting indole-3-acetic, salicylic, jasmonic and gibberellic acids, as well as cytokinins concentrations in sunflower roots and/or shoots. The hormonal effects were complex and could be due to the production of phytohormones by microorganisms, changes in ABA concentrations and multiple levels of crosstalk in hormone networks regulating plant defense. The results suggest the counteraction of rhizobacteria to ABA-producing phytopathogenic fungi through the metabolism of fungal ABA. This expands our understanding of the mechanisms related to the biocontrol of phytopathogens by PGPR. Full article
Show Figures

Figure 1

20 pages, 23943 KiB  
Article
A Novel Cysteine Protease from Phytolacca americana Cleaves Pokeweed Antiviral Protein Generating Bioactive Fragments
by Annabelle Audet, Jennifer A. Chivers and Katalin A. Hudak
Plants 2025, 14(15), 2441; https://doi.org/10.3390/plants14152441 - 7 Aug 2025
Abstract
The apoplast is often the first point of contact between plant cells and invading pathogens, serving as an important site for defense signaling. Pokeweed antiviral protein (PAP), a ribosome-inactivating protein from Phytolacca americana (pokeweed), is localized to the apoplast and is hypothesized to [...] Read more.
The apoplast is often the first point of contact between plant cells and invading pathogens, serving as an important site for defense signaling. Pokeweed antiviral protein (PAP), a ribosome-inactivating protein from Phytolacca americana (pokeweed), is localized to the apoplast and is hypothesized to accompany a pathogen to the cytosol, where it would inactivate host ribosomes to prevent pathogen spread. However, it is not known whether PAP interacts with other proteins in the apoplast. In this study, we identified Phytolacca americana cysteine protease 1 (PaCP1), an extracellular cysteine protease, as a novel PAP interactor. Sequence and structural analyses classified PaCP1 as a member of the C1A subfamily of papain-like cysteine proteases. Immunoprecipitation, mass spectrometry, and yeast two-hybrid analysis showed that PAP specifically binds the mature, active form of PaCP1. Curiously, PaCP1 cleaves PAP at its N- and C-termini, generating peptides that enhance MAPK phosphorylation in pokeweed leaves, indicating their potential role in stress signaling. PaCP1 processing of PAP to generate bioactive peptides diversifies the function of a ribosome-inactivating protein beyond its canonical inhibition of translation. Our findings present a novel extracellular role for PAP and advance our understanding of how protein interactions in the apoplast contribute to plant immune responses. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

30 pages, 2190 KiB  
Review
Systematic Review of the State of Knowledge About Açaí-Do-Amazonas (Euterpe precatoria Mart., Arecaceae)
by Sabrina Yasmin Nunes da Rocha, Maria Julia Ferreira, Charles R. Clement and Ricardo Lopes
Plants 2025, 14(15), 2439; https://doi.org/10.3390/plants14152439 - 6 Aug 2025
Abstract
Euterpe precatoria Mart. is an increasingly important palm for subsistence and income generation in central and western Amazonia with growing demand for its fruit pulp, which is an alternative source of açaí juice for domestic and international markets. This study synthesizes current knowledge [...] Read more.
Euterpe precatoria Mart. is an increasingly important palm for subsistence and income generation in central and western Amazonia with growing demand for its fruit pulp, which is an alternative source of açaí juice for domestic and international markets. This study synthesizes current knowledge on its systematics, ecology, fruit production in natural populations, fruit quality, uses, population management, and related areas, identifying critical research gaps. A systematic literature survey was conducted across databases including Web of Science, Scopus, Scielo, CAPES, and Embrapa. Of 1568 studies referencing Euterpe, 273 focused on E. precatoria, with 90 addressing priority themes. Genetic diversity studies suggest the E. precatoria may represent a complex of species. Its population abundance varies across habitats: the highest variability occurs in terra firme, followed by baixios and várzeas. Várzeas exhibit greater productivity potential, with more bunches per plant and higher fruit weight than baixios; no production data exist for terra firme. Additionally, E. precatoria has higher anthocyanin content than E. oleracea, the primary commercial açaí species. Management of natural populations and cultivation practices are essential for sustainable production; however, studies in these fields are still limited. The information is crucial to inform strategies aiming to promote the sustainable production of the species. Full article
(This article belongs to the Section Plant Systematics, Taxonomy, Nomenclature and Classification)
Show Figures

Figure 1

Back to TopTop