Hydroethanolic Extracts of Raspberry (Rubus idaeus) Pomace as Ingredients of Functional Foods: Characterization and Effect of Gastrointestinal Digestion
Abstract
1. Introduction
2. Results and Discussion
2.1. Phenolic Compounds (Flavonoids, Tannins, and Anthocyanins) from Raspberry Pomace Extract and Their Bioaccessibility
2.2. Antioxidant Potential of Raspberry Pomace Extract and the Effect of Digestion
2.3. Bioaccessibility of Selected Polyphenol Constituents of Raspberry Pomace Extract
2.4. Antimicrobial Activity of the Raspberry Pomace Extract
2.5. Bioactive Properties and Bioaccessibility of Phenolic Compounds from Meringue Cookies Fortified with Raspberry Pomace Extract or with a Commercial Raspberry Colorant
3. Materials and Methods
3.1. Extraction of Phenolic Compounds from Raspberry Pomace
3.2. Determination of Chemical Constituents in Raspberry Pomace Extracts
3.2.1. Total Phenolic Content
3.2.2. Total Flavonoid Content
3.2.3. Total Condensed Tannin Content
3.2.4. Total Monomeric Anthocyanin Content
3.2.5. Chromatographic Analysis of Phenolic Compounds
3.3. Bioactivity of Raspberry Pomace Extracts
3.3.1. Antioxidant Assays
3.3.2. Antimicrobial Activity of Raspberry Pomace Extract
3.4. Preparation of Meringue Cookies
3.5. In Vitro Digestion of Raspberry Pomace Extract and Meringue Cookies
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ispiryan, A.; Bobinaite, R.; Urbonaviciene, D.; Sermuksnyte-Alesiuniene, K.; Viskelis, P.; Miceikiene, A.; Viskelis, J. Physico-Chemical Properties, Fatty Acids Profile, and Economic Properties of Raspberry (Rubus idaeus L.) Seed Oil, Extracted in Various Ways. Plants 2023, 12, 2706. [Google Scholar] [CrossRef]
- Krauze-Baranowska, M.; Głód, D.; Kula, M.; Majdan, M.; Hałasa, R.; Matkowski, A.; Kozłowska, W.; Kawiak, A. Chemical composition and biological activity of Rubus idaeus shoots—A traditional herbal remedy of Eastern Europe. BMC Complement. Altern. Med. 2014, 14, 480. [Google Scholar] [CrossRef]
- Wagner, N. Market Intelligence Report: Raspberries. 2020. Available online: www.elsenburg.com. (accessed on 6 July 2024).
- Krivokapić, S.; Vlaović, M.; Vratnica, B.D.; Perović, A.; Perović, S. Biowaste as a potential source of bioactive compound-a case study of raspberry fruit pomace. Foods 2021, 10, 706. [Google Scholar] [CrossRef] [PubMed]
- Brodowska, A.J. European Journal of Biological Research Raspberry pomace-composition, properties and application. Eur. J. Biol. Res. 2017, 7, 86–96. [Google Scholar] [CrossRef]
- Tadić, V.M.; Dobrić, S.; Marković, G.M.; Ðorđević, S.M.; Arsić, I.A.; Menković, N.R.; Stević, T. Anti-inflammatory, gastroprotective, free-radical-scavenging, and antimicrobial activities of hawthorn berries ethanol extract. J. Agric. Food Chem. 2008, 56, 7700–7709. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Pinela, J.; Pereira, C.; Mandim, F.; Heleno, S.; Oliveira, M.B.P.P.; Barros, L. Recovery of anthocyanins from Eugenia spp. fruit peels: A comparison between heat-and ultrasound-assisted extraction. Sustain. Food Technol. 2024, 2, 189–201. [Google Scholar] [CrossRef]
- Soares, C.; Moreira, M.M.; Ramos, S.; Ramalhosa, M.J.; Correia, M.; Svarc-Gajić, J.; Delerue-Matos, C.; Barroso, M.F. A Critical Assessment of Extraction Methodologies for the Valorization of Agricultural Wastes: Polyphenolic Profile and Bioactivity. Processes 2023, 11, 1767. [Google Scholar] [CrossRef]
- Wu, L.; Liu, Y.; Qin, Y.; Wang, L.; Wu, Z. HPLC-ESI-qTOF-MS/MS characterization, antioxidant activities and inhibitory ability of digestive enzymes with molecular docking analysis of various parts of raspberry (Rubus ideaus L.). Antioxidants 2019, 8, 274. [Google Scholar] [CrossRef] [PubMed]
- Vulić, J.J.; Tumbas, V.T.; Savatović, S.M.; Đilas, S.M.; Ćetković, G.S.; Čanadanović-Brunet, J.M. Polyphenolic content and antioxidant activity of the four berry fruits pomace extracts. Acta Period. Technol. 2011, 42, 271–279. [Google Scholar] [CrossRef]
- Jaouhari, Y.; Bordiga, M.; Travaglia, F.; Coisson, J.D.; Costa-Barbosa, A.; Sampaio, P.; Botelho, C.; Gullon, P.; Ferreira-Santos, P. Microwave-assisted extraction of raspberry pomace phenolic compounds, and their bioaccessibility and bioactivity. Food Chem. 2025, 478, 143641. [Google Scholar] [CrossRef]
- Bermúdez-Soto, M.J.; Tomás-Barberán, F.A.; García-Conesa, M.T. Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chem. 2007, 102, 865–874. [Google Scholar] [CrossRef]
- Correa-Betanzo, J.; Allen-Vercoe, E.; McDonald, J.; Schroeter, K.; Corredig, M.; Paliyath, G. Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion. Food Chem. 2014, 165, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Spínola, V.; Pinto, J.; Llorent-Martínez, E.J.; Castilho, P.C. Changes in the phenolic compositions of Elaeagnus umbellata and Sambucus lanceolata after in vitro gastrointestinal digestion and evaluation of their potential anti-diabetic properties. Food Res. Int. 2019, 122, 283–294. [Google Scholar] [CrossRef]
- Zheng, G.; Deng, J.; Wen, L.; You, L.; Zhao, Z.; Zhou, L. Release of phenolic compounds and antioxidant capacity of Chinese hawthorn “Crataegus pinnatifida” during in vitro digestion. J. Funct. Foods 2018, 40, 76–85. [Google Scholar] [CrossRef]
- Podsȩdek, A.; Redzynia, M.; Klewicka, E.; Koziołkiewicz, M. Matrix effects on the stability and antioxidant activity of red cabbage anthocyanins under simulated gastrointestinal digestion. Biomed. Res. Int 2014, 2014, 365738. [Google Scholar] [CrossRef] [PubMed]
- Tagliazucchi, D.; Verzelloni, E.; Bertolini, D.; Conte, A. In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chem. 2010, 120, 599–606. [Google Scholar] [CrossRef]
- Pinto, D.; Moreira, M.M.; Švarc-Gajić, J.; Vallvedu-Queralt, A.; Brezo_Borjan, T.; Delerue-Matos, C.; Rodrigues, F. In-vitro gastrointestinal digestion of functional cookies enriched with chestnut shells extract: Effects on phenolic composition, bioaccessibility, bioactivity, and α-amylase inhibition. Food Biosci. 2023, 53, 102766. [Google Scholar] [CrossRef]
- Pinto, D.; Almeida, A.; López-Yerena, A.; Pinto, S.; Saramento, B.; Lamuela-Raventos, R.; Vallvedu-Queralt, A.; Delerue-Matos, C.; Rodrigues, F. Appraisal of a new potential antioxidants-rich nutraceutical ingredient from chestnut shells through in-vivo assays—A targeted metabolomic approach in phenolic compounds. Food Chem. 2023, 404, 134546. [Google Scholar] [CrossRef] [PubMed]
- de Paulo Farias, D.; de Araújo, F.F.; Neri-Numa, I.A.; Dias-Audibert, F.L.; Delafiori, J.; Catharino, R.R.; Pastore, G.M. Effect of in vitro digestion on the bioaccessibility and bioactivity of phenolic compounds in fractions of Eugenia pyriformis fruit. Food Res. Int. 2021, 150, 110767. [Google Scholar] [CrossRef]
- Ayoub, M.; De Camargo, A.C.; Shahidi, F. Antioxidants and bioactivities of free, esterified and insoluble-bound phenolics from berry seed meals. Food Chem. 2016, 197, 221–232. [Google Scholar] [CrossRef]
- Farah, A.; Lima, J.P. Consumption of chlorogenic acids through coffee and health implications. Beverages 2019, 5, 11. [Google Scholar] [CrossRef]
- He, H.F. Recognition of Gallotannins and the Physiological Activities: From Chemical View. Front. Nutr. 2022, 9, 888892. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Yang, J.; Cui, J.; Fan, Y.; Li, N.; Wang, C.; Liu, Y.; Dong, Y. Stability and mechanism of phenolic compounds from raspberry extract under in vitro gastrointestinal digestion. LWT 2021, 139, 110552. [Google Scholar] [CrossRef]
- Tarko, T.; Duda-Chodak, A.; Zając, N. Digestion and absorption of phenolic compounds assessed by in vitro simulation methods. A review. Rocz. Panstw. Zakl. Hig. 2013, 64, 79–84. [Google Scholar]
- Mandalari, G.; Tomaino, A.; Rich, G.T.; Lo Curto, R.; Arcoraci, T.; Martorana, M.; Bisignano, C.; Saija, A.; Parker, M.L.; Waldron, K.W.; et al. Polyphenol and nutrient release from skin of almonds during simulated human digestion. Food Chem. 2010, 122, 1083–1088. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzynski, M.; Nowakowska, D.; Matwijczuk, A. Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols—A non-systematic review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef]
- Ispiryan, A.; Atkociuniene, V.; Makstutiene, N.; Sarkinas, A.; Salaseviciene, A.; Urbonaviciene, D.; Viskelis, J.; Pakeltiene, R.; Raudone, L. Correlation between Antimicrobial Activity Values and Total Phenolic Content/Antioxidant Activity in Rubus idaeus L. Plants 2020, 13, 504. [Google Scholar] [CrossRef] [PubMed]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Barreira, J.C.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Incorporation of natural colorants obtained from edible flowers in yogurts. LWT 2018, 97, 668–675. [Google Scholar] [CrossRef]
- Otálora, M.C.; de Jesús Barbosa, H.; Perilla, J.E.; Osorio, C.; Nazareno, M.A. Encapsulated betalains (Opuntia ficus-indica) as natural colorants. Case study: Gummy candies. LWT 2019, 103, 222–227. [Google Scholar] [CrossRef]
- Roriz, C.L.; Carocho, M.; Alves, M.J.; Rodrigues, P.; Morales, P.; Ferreira, I.C.F.R.; Heleno, S.A.; Barros, L. Betacyanins obtained from alternative novel sources as natural food colorant additives: Incorporated in savory and sweet food products. Food Funct. 2023, 14, 8775–8784. [Google Scholar] [CrossRef] [PubMed]
- Lomakina, K.; Mikova, K. A Study of the Factors Affecting the Foaming Properties of Egg White—A Review. Czech J. Food Sci. 2006, 24, 110–118. [Google Scholar] [CrossRef]
- McDougall, G.J.; Fyffe, S.; Dobson, P.; Stewart, D. Anthocyanins from red cabbage—Stability to simulated gastrointestinal digestion. Phytochemistry 2007, 68, 1285–1294. [Google Scholar] [CrossRef]
- Dupont, D.; Le Feunteun, S.; Marze, S.; Souchon, I. Structuring food to control its disintegration in the gastrointestinal tract and optimize nutrient bioavailability. Innov. Food Sci. Emerg. Technol. 2018, 46, 83–90. [Google Scholar] [CrossRef]
- Udomwasinakun, N.; Saha, S.; Mulet-Cabero, A.I.; Wilde, P.J.; Pirak, T. Interactions of White Mugwort (Artemisia lactiflora Wall.) Extract with Food Ingredients during In Vitro Gastrointestinal Digestion and Their Impact on Bioaccessibility of Polyphenols in Various Model Systems. Foods 2024, 13, 2942. [Google Scholar] [CrossRef]
- Sánchez-Velázquez, O.A.; Mulero, M.; Cuevas-Rodríguez, E.O.; Mondor, M.; Arcand, Y.; Hernández-Álvarez, A.J. In vitro gastrointestinal digestion impact on stability, bioaccessibility and antioxidant activity of polyphenols from wild and commercial blackberries (Rubus spp.). Food Funct. 2021, 12, 7358–7378. [Google Scholar] [CrossRef] [PubMed]
- Gawlik-Dziki, U.; Jezyna, M.; Świeca, M.; Dziki, D.; Baraniak, B.; Czyz, J. Effect of bioaccessibility of phenolic compounds on in vitro anticancer activity of broccoli sprouts. Food Res. Int. 2012, 49, 469–476. [Google Scholar] [CrossRef]
- Ozdal, T.; Capanoglu, E.; Altay, F. A review on protein-phenolic interactions and associated changes. Food Res. 2013, 2, 945–970. [Google Scholar] [CrossRef]
- Tomas, M.; Toydemir, G.; Boyacioglu, D.; Hall, R.D.; Beekwilder, J.; Capanoglu, E. Processing black mulberry into jam: Effects on antioxidant potential and in vitro bioaccessibility. J. Sci. Food Agric. 2017, 97, 3106–3113. [Google Scholar] [CrossRef]
- Aherne, S.A.; Daly, T.; Jiwan, M.A.; O’Sullivan, L.; O’Brien, N.M. Bioavailability of β-carotene isomers from raw and cooked carrots using an in vitro digestion model coupled with a human intestinal Caco-2 cell model. Food Res. Int. 2010, 43, 1449–1454. [Google Scholar] [CrossRef]
- Lekjing, S.; Keawpeng, I.; Venkatachalam, K.; Karrila, S. Impact of Different Sugar Types and Their Concentrations on Salted Duck Egg White Based Meringues. Foods 2022, 11, 1248. [Google Scholar] [CrossRef]
- Awatsuhara, R.; Harada, K.; Maeda, T.; Nomura, T.; Nagao, K. Antioxidative activity of the buckwheat polyphenol rutin in combination with ovalbumin. Mol. Med. Rep. 2010, 3, 121–125. [Google Scholar] [CrossRef]
- Benedé, S.; Molina, E. Chicken egg proteins and derived peptides with antioxidant properties. Foods 2020, 9, 735. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Santos, P.; Genisheva, Z.; Pereira, R.N.; Teixeira, J.A.; Rocha, C.M.R. Moderate Electric Fields as a Potential Tool for Sustainable Recovery of Phenolic Compounds from Pinus pinaster Bark. ACS Sustain. Chem. Eng. 2019, 7, 8816–8826. [Google Scholar] [CrossRef]
- Chandra, S.; Khan, S.; Avula, B.; Lata, H.; Yang, M.H.; ElSohly, M.A.; Khan, I.A. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evid. Based Complement. Altern. Med. 2014, 2014, 253875. [Google Scholar] [CrossRef] [PubMed]
- Broadhurst, R.B.; Jones, W.T. Analysis of condensed tannins using acidified vanillin. J. Sci. Food Agric. 1978, 29, 788–794. [Google Scholar] [CrossRef]
- Rebaya, A.; Belghith, S.I.; Baghdikian, B.; Leddet, V.M.; Mabrouki, F.; Oliver, E.; Cherif, J.K.; Ayadi, M.T. Total Phenolic, Total Flavonoid, Tannin Content, and Antioxidant Capacity of Halimium halimifolium (Cistaceae). J. Appl. Pharm. Sci. 2015, 5, 52–57. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Meneses, N.G.T.; Martins, S.; Teixeira, J.A.; Mussatto, S.I. Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Sep. Purif. Technol. 2013, 108, 152–158. [Google Scholar] [CrossRef]
Sample | TPC (mg GAE/g dw) | TFC (mg CE/g dw) | TAC (mg CGE/g dw) | TTC (mg CE/g dw) |
---|---|---|---|---|
Raspberry pomace extract | 472.9 ± 0.1 | 15.5 ± 0.1 | 2.6 ± 0.2 | 0.73 ± 0.01 |
Compound | Concentration (mg/g) | Bioaccessibility (%) | |
---|---|---|---|
Non-Digested | Digested | ||
Anthocyanins | |||
Kuromanin | 72.9 ± 0.1 | 15.1 ± 0.04 | 20.71 |
Pelargonidin-3-O-glucoside | 21.8 ± 0.2 | 1.1 ± 0.01 | 5.05 |
Phenolic acids | |||
Gallic acid | 12.7 ± 0.1 | 35.3 ± 0.02 | 177.0 |
Protocatechuic acid | 29.1 ± 0.1 | 14.6 ± 0.1 | 50.17 |
Coumaric acid | 13.6 ± 0.1 | 6.0 ± 0.04 | 44.12 |
Synapic acid | 9.1 ± 0.1 | 2.9 ± 0.01 | 31.89 |
Chlorogenic acid | 43.9 ± 0.2 | 16.9 ± 0.1 | 38.50 |
Caffeic acid | n.d. | 2.3 ± 0.2 | / |
Ferulic acid | 11.0 ± 0.1 | 4.7 ± 0.04 | 42.73 |
Syringic acid | 11.1 ± 0.1 | 2.9 ± 0.02 | 26.13 |
Ellagic acid | 16.3 ± 0.1 | 11.0 ± 0.1 | 67.48 |
Flavonoids | |||
Catechin | 12.8 ± 0.2 | 8.6 ± 0.1 | 67.19 |
Myricetin | 16.5 ± 0.3 | 3.8 ± 0.03 | 23.03 |
Total | 270.8 ± 1.7 | 127.5 ± 1.01 | 47.08 |
Sample | Inhibition Zone (mm) | |
---|---|---|
Gram-positive bacteria | Bacillus cereus | 7.78 ± 0.25 |
Staphylococcus aureus | 9.25 ± 0.29 | |
Listeria monocytogenes | 7.59 ± 0.69 | |
Gram-negative bacteria | Escherichia coli | 8.66 ± 0.01 |
Yersinia enterocolitica | 7.13 ± 0.27 | |
Klebsiella pneumoniae | 6.91 ± 0.01 | |
Pseudomonas aeruginosa | 7.50 ± 0.44 | |
Salmonella Enteritidis | n.e. |
Meringue Cookie with Raspberry Pomace Extract | Meringue Cookie with Commercial Colorant | ||
---|---|---|---|
Non-digested | TPC (mg GAE/g dw) | 8.49 ± 0.74 c | 0.74 ± 0.13 de |
TFC (mg CE/g dw) | 1.22 ± 0.06 a | 0.21 ± 0.02 d | |
TTC (mg CE/g dw) | 0.71 ± 0.21 a | n.d. | |
TAC (mg CGE/100 g dw) | 2.67 ± 0.12 c | 0.09 ± 0.01 f | |
DPPH (% RSA) | 30.31 ± 6.6 c | 7.46 ± 1.6 ef | |
Oral phase | TPC (mg GAE/g dw) | 7.58 ± 0.53 c | 1.38 ± 0.11 de |
TFC (mg CE/g dw) | 0.53 ± 0.07 c | 0.06 ± 0.01 f | |
TTC (mg CE/g dw) | 0.51 ± 0.02 b | n.d. | |
TAC (mg CGE/100 g dw) | 2.77 ± 0.61 c | n.d. | |
DPPH (% RSA) | 29.83 ± 1.60 c | 6.31 ± 0.32 f | |
Gastric phase | TPC (mg GAE/g dw) | 9.09 ± 1.22 b | 0.95 ± 0.40 d |
TFC (mg CE/g dw) | 0.52 ± 0.05 c | 0.04 ± 0.01 f | |
TTC (mg CE/g dw) | 0.27 ± 0.006 c | n.d. | |
TAC (mg CGE/100 g dw) | 3.62 ± 0.22 b | 0.46 ± 0.02 d | |
DPPH (% RSA) | 47.99 ± 2.9 a | 12.62 ± 0.20 d | |
Intestinal phase | TPC (mg GAE/g dw) | 10.74 ± 1.60 a | 2.9 ± 0.43 b |
TFC (mg CE/g dw) | 0.72 ± 0.02 b | 0.17 ± 0.01 e | |
TTC (mg CE/g dw) | 0.21 ± 0.007 c | n.d. | |
TAC (mg CGE/100 g dw) | 8.27 ± 0.41 a | 1.05 ± 0.21 d | |
DPPH (% RSA) | 37.66 ± 3.50 b | 9.46 ± 0.90 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vipotnik, Z.; Golob, M.; Albreht, A. Hydroethanolic Extracts of Raspberry (Rubus idaeus) Pomace as Ingredients of Functional Foods: Characterization and Effect of Gastrointestinal Digestion. Plants 2025, 14, 2444. https://doi.org/10.3390/plants14152444
Vipotnik Z, Golob M, Albreht A. Hydroethanolic Extracts of Raspberry (Rubus idaeus) Pomace as Ingredients of Functional Foods: Characterization and Effect of Gastrointestinal Digestion. Plants. 2025; 14(15):2444. https://doi.org/10.3390/plants14152444
Chicago/Turabian StyleVipotnik, Ziva, Majda Golob, and Alen Albreht. 2025. "Hydroethanolic Extracts of Raspberry (Rubus idaeus) Pomace as Ingredients of Functional Foods: Characterization and Effect of Gastrointestinal Digestion" Plants 14, no. 15: 2444. https://doi.org/10.3390/plants14152444
APA StyleVipotnik, Z., Golob, M., & Albreht, A. (2025). Hydroethanolic Extracts of Raspberry (Rubus idaeus) Pomace as Ingredients of Functional Foods: Characterization and Effect of Gastrointestinal Digestion. Plants, 14(15), 2444. https://doi.org/10.3390/plants14152444