Abscisic Acid Metabolizing Rhodococcus sp. Counteracts Phytopathogenic Effects of Abscisic Acid Producing Botrytis sp. on Sunflower Seedlings
Abstract
1. Introduction
2. Results
2.1. Properties of Microorganisms
2.2. Combined Batch Culture
2.3. Selection of Exogenous ABA Concentrations for Sunflower
2.4. Effect of Microorganisms on Sunflower Growth
2.5. Presence of Microorganisms in Hydroponic Culture
2.6. Effect of Microorganisms on ABA Concentrations
2.7. Effect of Microorganisms on Other Hormones in Sunflower
3. Discussion
3.1. Interactions Between Microorganisms
3.2. Effects of Exogenous ABA on Plants
3.3. Effect of Microorganisms on Plants
3.4. Effect of Exogenous ABA and Microorganisms on Hormonal Status of Plants
4. Materials and Methods
4.1. Plants and Microorganisms
4.2. Batch Cultures
4.3. Hydroponic Culture with Sunflower
4.4. Presence of Microorganisms in Hydroponic Culture
4.5. Determination of Phytohormones
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Saadony, M.T.; Saad, A.M.; Soliman, S.M.; Salem, H.M.; Ahmed, A.I.; Mahmood, M.; El-Tahan, A.M.; Ebrahim, A.A.M.; Abd El-Mageed, T.A.; Negm, S.H.; et al. Plant growth-promoting microorganisms as biocontrol agents of plant diseases: Mechanisms, challenges and future perspectives. Front. Plant Sci. 2022, 13, 923880. [Google Scholar] [CrossRef]
- Benaissa, A. Rhizosphere: Role of bacteria to manage plant diseases and sustainable agriculture—A review. J. Basic Microbiol. 2024, 64, e2300361. [Google Scholar] [CrossRef]
- Meena, M.; Swapnil, P.; Divyanshu, K.; Kumar, S.; Harish; Tripathi, Y.N.; Zehra, A.; Marwal, A.; Upadhyay, R.S. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. J. Basic Microbiol. 2020, 60, 828–861. [Google Scholar] [CrossRef]
- Zehra, A.; Raytekar, N.A.; Meena, M.; Swapnil, P. Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review. Curr. Res. Microb. Sci. 2021, 2, 100054. [Google Scholar] [CrossRef]
- Jiao, X.; Takishita, Y.; Zhou, G.; Smith, D.L. Plant associated rhizobacteria for biocontrol and plant growth enhancement. Front. Plant Sci. 2021, 12, 634796. [Google Scholar] [CrossRef]
- Compant, S.; Duffy, B.; Nowak, J.; Clément, C.; Barka, E.A. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 2005, 71, 4951–4959. [Google Scholar] [CrossRef]
- Alattas, H.; Glick, B.R.; Murphy, D.V.; Scott, C. Harnessing Pseudomonas spp. for sustainable plant crop protection. Front. Microbiol. 2024, 15, 1485197. [Google Scholar] [CrossRef]
- Khare, E.; Arora, N.K. Biosurfactant based formulation of Pseudomonas guariconensis LE3 with multifarious plant growth promoting traits controls charcoal rot disease in Helianthus annus. World J. Microbiol. Biotechnol. 2021, 37, 55. [Google Scholar] [CrossRef] [PubMed]
- Tewari, S.; Arora, N.K. Role of salicylic acid from Pseudomonas aeruginosa PF23EPS+ in growth promotion of sunflower in saline soils infested with phytopathogen Macrophomina phaseolina. Environ. Sustain. 2018, 1, 49–59. [Google Scholar] [CrossRef]
- Majeed, A.; Kaleem Abbasi, M.; Hameed, S.; Yasmin, S.; Hanif, M.K.; Naqqash, T.; Imran, A. Pseudomonas sp. AF-54 containing multiple plant beneficial traits acts as growth enhancer of Helianthus annuus L. under reduced fertilizer input. Microbiol. Res. 2018, 216, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Iqbal, A.; Hasnain, S.; White, J.F. Screening of sunflower associated bacteria as biocontrol agents for plant growth promotion. Arch. Microbiol. 2021, 203, 4901–4912. [Google Scholar] [CrossRef]
- Hu, J.; Su, Z.; Dong, B.; Wang, D.; Liu, X.; Meng, H.; Guo, Q.; Zhou, H. Characterization of a Bacillus subtilis S-16 thiazole-synthesis-related gene thiS knockout and antimicrobial activity analysis. Curr. Issues Mol. Biol. 2023, 45, 4600–4611. [Google Scholar] [CrossRef]
- Ali, S.; Hameed, S.; Shahid, M.; Iqbal, M.; Lazarovits, G.; Imran, A. Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiol. Res. 2020, 232, 126389. [Google Scholar] [CrossRef] [PubMed]
- Dmitriev, A.; Tena, M.; Jorrin, J. Systemic acquired resistance in sunflower (Helianthus annuus L.). Tsitol. Genet. 2003, 37, 9–15. [Google Scholar] [PubMed]
- Dulermo, T.; Bligny, R.; Gout, E.; Cotton, P. Amino acid changes during sunflower infection by the necrotrophic fungus B. cinerea. Plant Signal. Behav. 2009, 4, 859–861. [Google Scholar] [CrossRef]
- Billon-Grand, G.; Rascle, C.; Droux, M.; Rollins, J.A.; Poussereau, N. pH modulation differs during sunflower cotyledon colonization by the two closely related necrotrophic fungi Botrytis cinerea and Sclerotinia sclerotiorum. Mol. Plant Pathol. 2012, 13, 568–578. [Google Scholar] [CrossRef]
- Haidar, R.; Fermaud, M.; Calvo-Garrido, C.; Roudet, J.; Deschamps, A. Modes of action for biological control of Botrytis cinerea by antagonistic bacteria. Phytopathol. Mediterr. 2016, 55, 301–322. [Google Scholar] [CrossRef]
- Roca-Couso, R.; Flores-Félix, J.D.; Rivas, R. Mechanisms of action of microbial biocontrol agents against Botrytis cinerea. J. Fungi 2021, 7, 1045. [Google Scholar] [CrossRef]
- Orozco-Mosqueda, M.D.C.; Kumar, A.; Fadiji, A.E.; Babalola, O.O.; Puopolo, G.; Santoyo, G. Agroecological management of the grey mould fungus Botrytis cinerea by plant growth-promoting bacteria. Plants 2023, 12, 637. [Google Scholar] [CrossRef]
- Cao, F.Y.; Yoshioka, K.; Desveaux, D. The roles of ABA in plant-pathogen interactions. J. Plant Res. 2011, 124, 489–499. [Google Scholar] [CrossRef]
- Syrova, D.S.; Shaposhnikov, A.I.; Makarova, N.M.; Gagkaeva, T.Y.; Khrapalova, I.A.; Emelyanov, V.V.; Gogolev, Y.V.; Gannibal, P.B.; Belimov, A.A. The ability of some species of phytopathogenic fungi to produce abscisic acid. Mycol. Phytopathol. 2019, 53, 301–310. [Google Scholar] [CrossRef]
- Mbengue, M.; Navaud, O.; Peyraud, R.; Barascud, M.; Badet, T.; Vincent, R.; Barbacci, A.; Raffaele, S. Emerging trends in molecular interactions between plants and the broad host range fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum. Front. Plant Sci. 2016, 7, 422. [Google Scholar] [CrossRef]
- Lievens, L.; Pollier, J.; Goossens, A.; Beyaert, R.; Staal, J. Abscisic acid as pathogen effector and immune regulator. Front. Plant Sci. 2017, 8, 587. [Google Scholar] [CrossRef] [PubMed]
- Audenaert, K.; De Meyer, G.B.; Höfte, M.M. Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol. 2002, 128, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Curvers, K.; Seifi, H.; Mouille, G.; de Rycke, R.; Asselbergh, B.; Van Hecke, A.; Vanderschaeghe, D.; Höfte, H.; Callewaert, N.; Van Breusegem, F.; et al. Abscisic acid deficiency causes changes in cuticle permeability and pectin composition that influence tomato resistance to Botrytis cinerea. Plant Physiol. 2010, 154, 847–860. [Google Scholar] [CrossRef]
- Seifi, H.S.; Curvers, K.; De Vleesschauwer, D.; Delaere, I.; Aziz, A.; Hofte, M. Concurrent overactivation of the cytosolic glutamine synthetase and the GABA shunt in the ABA-deficient sitiens mutant of tomato leads to resistance against Botrytis cinerea. New Phytol. 2013, 199, 490–504. [Google Scholar] [CrossRef]
- Sivakumaran, A.; Akinyemi, A.; Mandon, J.; Cristescu, S.M.; Hall, M.A.; Harren, F.J.M.; Mur, L.A.J. ABA suppresses Botrytis cinerea elicited NO production in tomato to influence H2O2 generation and increase host susceptibility. Front. Plant Sci. 2016, 7, 709. [Google Scholar] [CrossRef]
- Asselbergh, B.; Curvers, K.; Franca, S.C.; Audenaert, K.; Vuylsteke, M.; Van Breusegem, F.; Höfte, M. Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol. 2007, 144, 1863–1877. [Google Scholar] [CrossRef]
- Fan, J.; Hill, L.; Crooks, C.; Doerner, P.; Lamb, C. Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant Physiol. 2009, 150, 1750–1761. [Google Scholar] [CrossRef]
- Sánchez-Vallet, A.; López, G.; Ramos, B.; Delgado-Cerezo, M.; Riviere, M.P.; Llorente, F.; Fernández, P.V.; Miedes, E.; Estevez, J.M.; Grant, M.; et al. Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant Physiol. 2012, 160, 2109–2124. [Google Scholar] [CrossRef]
- Liu, S.; Kracher, B.; Ziegler, J.; Birkenbihl, R.P.; Somssich, I.E. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. eLife 2015, 4, e07295. [Google Scholar] [CrossRef]
- Jiang, C.J.; Shimono, M.; Sugano, S.; Kojima, M.; Yazawa, K.; Yoshida, R.; Inoue, H.; Hayashi, N.; Sakakibara, H.; Takatsuji, H. Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice—Magnaporthe grisea interaction. Mol. Plant Microbe Interact. 2010, 23, 791–798. [Google Scholar] [CrossRef]
- De Vleesschauwer, D.; Yang, Y.; Cruz, C.V.; Höfte, M. Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiol. 2010, 152, 2036–2052. [Google Scholar] [CrossRef]
- Spence, C.A.; Lakshmanan, V.; Donofrio, N.; Bais, H.P. Crucial roles of abscisic acid biogenesis in virulence of rice blast fungus Magnaporthe oryzae. Front. Plant Sci. 2015, 6, 1082. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, H.; Yang, Y.; Zhang, Z.; Zhang, H.; Hu, X.; Chen, J.; Wang, X.C.; Huang, R. Abscisic acid regulates TSRF1-mediated resistance to Ralstonia solanacearum by modifying the expression of GCC box-containing genes in tobacco. J. Exp. Bot. 2008, 59, 645–652. [Google Scholar] [CrossRef]
- Marumo, S.; Katayama, M.; Komori, E.; Ozaki, Y.; Natsume, M.; Kondo, S. Microbial production of abscisic acid by Botrytis cinerea. Agric. Biol. Chem. 1982, 46, 1967–1968. [Google Scholar] [CrossRef]
- Syrova, D.S.; Shaposhnikov, A.I.; Yuzikhin, O.S.; Belimov, A.A. Destruction and transformation of phytohormones by microorganisms. Appl. Biochem. Microbiol. 2022, 58, 1–18. [Google Scholar] [CrossRef]
- Hasegawa, S.; Poling, S.M.; Mayer, V.P.; Bennett, R.D. Metabolism of abscisic acid: Bacterial conversion to dehydrovomifoliol and vomifoliol dehydrogenase activity. Phytochemistry 1984, 23, 2769–2771. [Google Scholar] [CrossRef]
- Belimov, A.A.; Dodd, I.C.; Safronova, V.I.; Dumova, V.A.; Shaposhnikov, A.I.; Ladatko, A.G.; Davies, W.J. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiol. Biochem. 2014, 74, 84–91. [Google Scholar] [CrossRef]
- Yuzikhin, O.S.; Gogoleva, N.E.; Shaposhnikov, A.I.; Konnova, T.A.; Osipova, E.V.; Syrova, D.S.; Ermakova, E.S.; Shevchenko, V.P.; Nagaev, I.Y.; Shevchenko, K.V.; et al. Rhizosphere bacterium Rhodococcus sp. P1Y metabolizes abscisic acid to form dehydrovomifoliol. Biomolecules 2021, 11, 345. [Google Scholar] [CrossRef]
- Yuzikhin, O.S.; Shaposhnikov, A.I.; Konnova, T.A.; Syrova, D.S.; Hamo, H.; Ermekkaliev, T.S.; Shevchenko, V.P.; Shevchenko, K.V.; Gogoleva, N.E.; Nizhnikov, A.A.; et al. Isolation and characterization of 1-hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohexene-1-acetic acid, a metabolite in bacterial transformation of abscisic acid. Biomolecules 2022, 12, 1508. [Google Scholar] [CrossRef]
- Lu, Q.; Weng, Y.; You, Y.; Xu, Q.; Li, H.; Li, Y.; Liu, H.; Du, S. Inoculation with abscisic acid (ABA)-catabolizing bacteria can improve phytoextraction of heavy metal in contaminated soil. Environ. Pollut. 2020, 257, 113497. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Z.; Wu, J.; Liu, H.; Sun, X.; Liu, L.; Du, S. Abscisic acid-catabolizing bacteria: A useful tool for enhancing phytoremediation. Sci. Total Environ. 2022, 812, 151474. [Google Scholar] [CrossRef] [PubMed]
- Vysotskaya, L.; Martynenko, E.; Ryabova, A.; Kuzmina, L.; Starikov, S.; Chetverikov, S.; Gaffarova, E.; Kudoyarova, G. The growth-inhibitory effect of increased planting density can be reduced by abscisic acid-degrading bacteria. Biomolecules 2023, 13, 1668. [Google Scholar] [CrossRef] [PubMed]
- Ryabova, A.S.; Kuzmina, L.Y.; Galimsyanova, N.F.; Gilvanova, E.A.; Vysotskaya, L.B.; Martynenko, E.V.; Kudoyarova, G.R. ABA-degrading strains of bacteria of the genus Pseudomonas and their influence on wheat growth. Appl. Biochem. Microbiol. 2024, 60, 925–930. [Google Scholar] [CrossRef]
- Garfinkel, A.R. The history of Botrytis taxonomy, the rise of phylogenetics, and implications for species recognition. Phytopathology 2021, 111, 437–454. [Google Scholar] [CrossRef]
- Oritani, T.; Kiyota, H. Biosynthesis and metabolism of abscisic acid and related compounds. Nat. Prod. Rep. 2003, 20, 414–425. [Google Scholar] [CrossRef]
- Humplik, J.F.; Bergougnoux, V.; van Volkenburgh, E. To stimulate or inhibit? That is the question for the function of abscisic acid. Trends Plant Sci. 2017, 22, 830–841. [Google Scholar] [CrossRef]
- Brookbank, B.P.; Patel, J.; Gazzarrini, S.; Nambara, E. Role of basal ABA in plant growth and development. Genes 2021, 12, 1936. [Google Scholar] [CrossRef]
- Milborrow, B.V. The chemistry and physiology of abscisic acid. Ann. Rev. Plant Physiol. 1974, 25, 259–307. [Google Scholar] [CrossRef]
- Walton, D.C. Biochemistry and physiology of abscisic acid. Annu. Rev. Plant Physiol. 1980, 31, 453–489. [Google Scholar] [CrossRef]
- Yoshida, T.; Christmann, A.; Yamaguchi-Shinozak, I.K.; Grill, E.; Fernie, A.R. Revisiting the basal role of ABA—Roles outside of stress. Trends Plant Sci. 2019, 7, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Cong, Y.; Hussain, N.; Wang, Y.; Liu, Z.; Jiang, L.; Liang, Z.; Chen, K. The remodeling of seedling development in response to long-term magnesium toxicity and regulation by ABA-DELLA signaling in Arabidopsis. Plant Cell Physiol. 2014, 55, 1713–1726. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, L.; Forde, B.G.; Davies, W.J. The biphasic root growth response to abscisic acid in Arabidopsis involves interaction with ethylene and auxin signalling pathways. Front. Plant Sci. 2017, 8, 1493. [Google Scholar] [CrossRef] [PubMed]
- Emenecker, R.J.; Strader, L.C. Auxin-abscisic acid interactions in plant growth and development. Biomolecules 2020, 10, 281. [Google Scholar] [CrossRef]
- Pilet, P.E. The effect of auxin and abscisic acid on the catabolism of RNA. J. Exp. Bot. 1970, 21, 446–451. [Google Scholar] [CrossRef]
- Creelman, R.A.; Mason, H.S.; Bensen, R.J.; Boyer, J.S.; Mullet, J.E. Water deficit and abscisic acid cause differential inhibition of shoot versus root growth in soybean seedlings: Analysis of growth, sugar accumulation, and gene expression. Plant Physiol. 1990, 92, 205–214. [Google Scholar] [CrossRef]
- Yao, S.G.; Taketa, S.; Ichii, M. Isolation and characterization of an abscisic acid-insensitive mutation that affects specifically primary root elongation in rice (Oryza sativa L). Plant Sci. 2003, 164, 971–978. [Google Scholar] [CrossRef]
- Guo, D.; Liang, J.; Qiao, Y.; Yan, Y.; Li, L.; Dai, Y. Involvement of G1-to-S transition and AhAUX-dependent auxin transport in abscisic acid-induced inhibition of lateral root primodia initiation in Arachis hypogaea L. J. Plant Physiol. 2012, 169, 1102–1111. [Google Scholar] [CrossRef]
- McAdam, S.A.; Brodribb, T.J.; Ross, J.J. Shoot-derived abscisic acid promotes root growth. Plant Cell Environ. 2016, 39, 652–659. [Google Scholar] [CrossRef]
- Rymen, B.; Kawamura, A.; Schäfer, S.; Breuer, C.; Iwase, A.; Shibata, M.; Ikeda, M.; Mitsuda, N.; Koncz, C.; Ohme-Takagi, M.; et al. ABA suppresses root hair growth via the OBP4 transcriptional regulator. Plant Physiol. 2017, 173, 1750–1762. [Google Scholar] [CrossRef]
- Lombardo, M.C.; Lamattina, L. Abscisic acid and nitric oxide modulate cytoskeleton organization, root hair growth and ectopic hair formation in Arabidopsis. Nitric Oxide 2018, 80, 89–97. [Google Scholar] [CrossRef]
- Li, H.; Gao, Z.; Chen, Q.; Li, Q.; Luo, M.; Wang, J.; Hu, L.; Zahid, M.S.; Wang, L.; Zhao, L.; et al. Grapevine ABA receptor VvPYL1 regulates root hair development in transgenic Arabidopsis. Plant Physiol. Biochem. 2020, 149, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Choquer, M.; Fournier, E.; Kunz, C.; Levis, C.; Pradier, J.M.; Simon, A.; Viaud, M. Botrytis cinerea virulence factors: New insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol. Lett. 2007, 277, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pontes, J.G.M.; Fernandes, L.S.; Dos Santos, R.V.; Tasic, L.; Fill, T.P. Virulence factors in the phytopathogen-host interactions: An overview. J. Agric. Food Chem. 2020, 68, 7555–7570. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Song, L.; Gong, X.; Xu, J.; Li, M. Functions of jasmonic acid in plant regulation and response to abiotic stress. Int. J. Mol. Sci. 2020, 21, 1446. [Google Scholar] [CrossRef]
- Aerts, N.; Pereira Mendes, M.; Van Wees, S.C.M. Multiple levels of crosstalk in hormone networks regulating plant defense. Plant J. 2021, 105, 489–504. [Google Scholar] [CrossRef]
- Singh, A.; Roychoudhury, A. Abscisic acid in plants under abiotic stress: Crosstalk with major phytohormones. Plant Cell Rep. 2023, 42, 961–974. [Google Scholar] [CrossRef]
- Spaepen, S.; Vanderleyden, J. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. 2011, 3, a001438. [Google Scholar] [CrossRef]
- Kudoyarova, G.; Arkhipova, T.; Korshunova, T.; Bakaeva, M.; Loginov, O.; Dodd, I.C. Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses. Front. Plant Sci. 2019, 10, 1368. [Google Scholar] [CrossRef]
- Dong, L.; Wu, Y.; Zhang, J.; Deng, X.; Wang, T. Transcriptome analysis revealed hormone pathways and bZIP genes responsive to decapitation in sunflower. Genes 2022, 13, 1737. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Shi, Q.; Liu, X.; Yang, Z.; Han, P.; Li, J.; Wei, Z.; Hu, T.; Liu, F. The interactive effects of deficit irrigation and Bacillus pumilus inoculation on growth and physiology of tomato plant. Plants 2023, 12, 670. [Google Scholar] [CrossRef] [PubMed]
- Mekureyaw, M.F.; Pandey, C.; Hennessy, R.C.; Nicolaisen, M.H.; Liu, F.; Nybroe, O.; Roitsch, T. The cytokinin-producing plant beneficial bacterium Pseudomonas fluorescens G20-18 primes tomato (Solanum lycopersicum) for enhanced drought stress responses. J. Plant Physiol. 2022, 270, 153629. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Wang, Y.; Di, Y.; Qiu, Y.; Ji, Z.; Zhou, T.; Shen, S.; Du, N.; Zhang, T.; Dong, X.; et al. Plant growth-promoting rhizobacteria Pseudomonas aeruginosa HG28-5 improves salt tolerance by regulating Na+/K+ homeostasis and ABA signaling pathway in tomato. Microbiol. Res. 2024, 283, 127707. [Google Scholar] [CrossRef]
- Kang, S.M.; Shahzad, R.; Bilal, S.; Khan, A.L.; Park, Y.G.; Lee, K.E.; Asaf, S.; Khan, M.A.; Lee, I.J. Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiol. 2019, 19, 80. [Google Scholar] [CrossRef]
- Macioszek, V.K.; Jęcz, T.; Ciereszko, I.; Kononowicz, A.K. Jasmonic acid as a mediator in plant response to necrotrophic fungi. Cells 2023, 12, 1027. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, X.; Cai, Z.; Guo, L.; Chen, X.; Chen, X.; Liu, J.; Feng, M.; Qiu, Y.; Zhang, Y.; et al. A biocontrol strain of Pseudomonas aeruginosa CQ-40 promote growth and control Botrytis cinerea in tomato. Pathogens 2021, 10, 22. [Google Scholar] [CrossRef]
- Brazhnikova, Y.V.; Shaposhnikov, A.I.; Sazanova, A.L.; Belimov, A.A.; Mukasheva, T.D.; Ignatova, L.V. Phosphate mobilization by culturable fungi and their capacity to increase soil P availability and promote barley growth. Curr. Microbiol. 2022, 79, 240. [Google Scholar] [CrossRef]
- Belimov, A.A.; Shaposhnikov, A.I.; Azarova, T.S.; Syrova, D.S.; Kitaeva, A.B.; Ulyanich, P.S.; Yuzikhin, O.S.; Sekste, E.A.; Safronova, V.I.; Vishnyakova, M.A.; et al. Rhizobacteria mitigate the negative effect of aluminum on pea growth by immobilizing the toxicant and modulating root exudation. Plants 2022, 11, 2416. [Google Scholar] [CrossRef]
- Shakhnazarova, V.Y.; Syrova, D.S.; Lebedinsky, M.I.; Vishnevskaya, N.A.; Shaposhnikov, A.I.; Borodina, E.V.; Strunnikova, O.K. Mechanisms of control by Pseudomonas fluorescens of barley root rot caused by Fusarium culmorum. Appl. Biochem. Microbiol. 2023, 59, 679–685. [Google Scholar] [CrossRef]
- Wickham, H.; Sievert, C. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf (accessed on 3 July 2025).
- Pedersen, T. Patchwork: The Composer of Plots. R Package Version 1.3.0.9000. 2025. Available online: https://github.com/thomasp85/patchwork (accessed on 3 July 2025).
Treatments | ABA | IAA | ICA | ILA | GA3 |
Rhodococcus sp. P1Y | Nd | 40 ± 12 | Nd | 1660 ± 247 | 156 ± 72 |
Botrytis sp. BA3 | 225 ± 23 * | 31 ± 12 | 99 ± 17 * | 16,040 ± 3917 | 1325 ± 165 * |
SA | JA | DHZ | tZ | tZR | |
Rhodococcus sp. P1Y | Nd | Nd | 0.7 ± 0.2 | 0.8 ± 0.2 | Nd |
Botrytis sp. BA3 | 8.4 ± 1.2 * | Nd | 1.1 ± 0.2 | 0.9 ± 0.2 | Nd |
Treatments | Rhodococcus sp. P1Y, 106 CFU mL−1 | Botrytis sp. BA3, µg DNA mg−1 root DW |
---|---|---|
Un-inoculated control | Nd | Nd |
Rhodococcus sp. P1Y | 5.4 ± 0.9 ab | Nd |
Botrytis sp. BA3 | Nd | 197 ± 59 a |
Rhodococcus sp. P1Y + Botrytis sp. BA3 | 5.9 ± 1.1 ab | 264 ± 70 a |
ABA | Nd | Nd |
ABA + Rhodococcus sp. P1Y | 6.6 ± 0.7 b | Nd |
ABA + Botrytis sp. BA3 | Nd | 135 ± 38 a |
ABA + Rhodococcus sp. P1Y + Botrytis sp. BA3 | 3.9 ± 0.8 a | 313 ± 72 a |
Treatments | IAA | SA | JA | GA3 | DHZ | tZ | tZR |
---|---|---|---|---|---|---|---|
Roots | |||||||
Un-inoculated control | 302 ± 29 b | 71 ± 8 cd | 4 ± 2 a | 2.2 ± 0.3 ab | 0.44 ± 0.08 ab | 27.9 ± 2.9 cd | 2.1 ± 0.2 a |
Rhodococcus sp. P1Y | 467 ± 89 c | 95 ± 14 de | 9 ± 2 ab | 1.7 ± 0.2 a | 0.58 ± 0.07 ab | 22.3 ± 1.9 bc | 1.5 ± 0.3 a |
Botrytis sp. BA3 | 294 ± 41 b | 24 ± 6 ab | 14 ± 1 bc | 4.0 ± 0.7 c | 1.45 ± 0.21 c | 18.6 ± 1.8 ab | 12.5 ± 1.8 b |
Rhodococcus sp. P1Y + Botrytis sp. BA3 | 581 ± 64 c | 53 ± 12 bc | 18 ± 2 c | 4.5 ± 1.3 c | 1.23 ± 0.13 c | 17.3 ± 1.8 ab | 9.7 ± 2.1 b |
ABA | 323 ± 44 b | 19 ± 4 a | 10 ± 2 ab | 3.5 ± 0.4 bc | 0.71 ± 0.08 b | 16.3 ± 1.8 ab | 2.0 ± 0.3 a |
ABA + Rhodococcus sp. P1Y | 230 ± 26 ab | 62 ± 9 c | 14 ± 3 bc | 2.0 ± 0.2 ab | 0.59 ± 0.11 ab | 33.6 ± 4.1 d | 3.7 ± 0.9 a |
ABA + Botrytis sp. BA3 | 206 ± 46 ab | 125 ± 21 e | 25 ± 4 c | 2.2 ± 0.5 ab | 0.68 ± 0.12 ab | 18.0 ± 3.1 ab | 13.2 ± 2.8 b |
ABA + Rhodococcus sp. P1Y + Botrytis sp. BA3 | 112 ± 16 a | 107 ± 14 e | 15 ± 2 bc | 2.3 ± 0.4 ab | 0.35 ± 0.06 a | 11.7 ± 0.8 a | 5.2 ± 0.6 a |
Shoots | |||||||
Un-inoculated control | 257 ± 41 a | 38 ± 4 ab | 43 ± 2 a | 0.48 ± 0.09 b | 0.21 ± 0.04 d | 0.91 ± 0.10 ab | 0.66 ± 0.10 abc |
Rhodococcus sp. P1Y | 276 ± 21 a | 53 ± 4 bc | 43 ± 3 a | 0.27 ± 0.07 a | 0.02 ± 0.01 a | 0.80 ± 0.22 ab | 0.37 ± 0.06 a |
Botrytis sp. BA3 | 404 ± 58 a | 26 ± 7 a | 57 ± 4 b | 0.63 ± 0.13 b | 0.09 ± 0.02 abc | 0.50 ± 0.19 a | 0.75 ± 0.09 abc |
Rhodococcus sp. P1Y + Botrytis sp. BA3 | 308 ± 38 a | 35 ± 3 ab | 57 ± 2 b | 0.26 ± 0.03 a | 0.06 ± 0.02 ab | 0.57 ± 0.06 ab | 0.48 ± 0.11 ab |
ABA | 256 ± 33 a | 45 ± 7 abc | 43 ± 1 a | 0.22 ± 0.02 a | 0.09 ± 0.02 abc | 0.92 ± 0.05 ab | 0.67 ± 0.10 abc |
ABA + Rhodococcus sp. P1Y | 306 ± 14 a | 47 ± 9 bc | 55 ± 1 b | 0.16 ± 0.03 a | 0.15 ± 0.03 cd | 1.00 ± 0.14 b | 1.00 ± 0.06 c |
ABA + Botrytis sp. BA3 | 298 ± 58 a | 59 ± 1 cd | 38 ± 1 a | 0.40 ± 0.04 b | 0.16 ± 0.03 cd | 0.68 ± 0.18 ab | 0.84 ± 0.09 bc |
ABA + Rhodococcus sp. P1Y + Botrytis sp. BA3 | 686 ± 97 b | 79 ± 9 d | 87 ± 8 c | 0.49 ± 0.13 b | 0.12 ± 0.04 bc | 1.60 ± 0.25 c | 1.71 ± 0.30 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaposhnikov, A.I.; Yuzikhin, O.S.; Azarova, T.S.; Sekste, E.A.; Sazanova, A.L.; Vishnevskaya, N.A.; Shahnazarova, V.Y.; Guro, P.V.; Lebedinskii, M.I.; Safronova, V.I.; et al. Abscisic Acid Metabolizing Rhodococcus sp. Counteracts Phytopathogenic Effects of Abscisic Acid Producing Botrytis sp. on Sunflower Seedlings. Plants 2025, 14, 2442. https://doi.org/10.3390/plants14152442
Shaposhnikov AI, Yuzikhin OS, Azarova TS, Sekste EA, Sazanova AL, Vishnevskaya NA, Shahnazarova VY, Guro PV, Lebedinskii MI, Safronova VI, et al. Abscisic Acid Metabolizing Rhodococcus sp. Counteracts Phytopathogenic Effects of Abscisic Acid Producing Botrytis sp. on Sunflower Seedlings. Plants. 2025; 14(15):2442. https://doi.org/10.3390/plants14152442
Chicago/Turabian StyleShaposhnikov, Alexander I., Oleg S. Yuzikhin, Tatiana S. Azarova, Edgar A. Sekste, Anna L. Sazanova, Nadezhda A. Vishnevskaya, Vlada Y. Shahnazarova, Polina V. Guro, Miroslav I. Lebedinskii, Vera I. Safronova, and et al. 2025. "Abscisic Acid Metabolizing Rhodococcus sp. Counteracts Phytopathogenic Effects of Abscisic Acid Producing Botrytis sp. on Sunflower Seedlings" Plants 14, no. 15: 2442. https://doi.org/10.3390/plants14152442
APA StyleShaposhnikov, A. I., Yuzikhin, O. S., Azarova, T. S., Sekste, E. A., Sazanova, A. L., Vishnevskaya, N. A., Shahnazarova, V. Y., Guro, P. V., Lebedinskii, M. I., Safronova, V. I., Gogolev, Y. V., & Belimov, A. A. (2025). Abscisic Acid Metabolizing Rhodococcus sp. Counteracts Phytopathogenic Effects of Abscisic Acid Producing Botrytis sp. on Sunflower Seedlings. Plants, 14(15), 2442. https://doi.org/10.3390/plants14152442