Applications of Plant Growth Promoting Bacteria (PGPB): Second-Generation Biofertilizers, Bioremediation, Abiotic and Biotic Stress

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Response to Abiotic Stress and Climate Change".

Deadline for manuscript submissions: closed (30 July 2025) | Viewed by 2210

Special Issue Editor


E-Mail Website
Guest Editor
Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexio
Interests: plant growth promoting bacteria; bioremediation; soil; microbial ecology

Special Issue Information

Dear Colleagues,

Plant Growth Promoting Bacteria (PGPB) application has gained significant attention in recent years due to their potential biofertilizers or inoculants, their role in bioremediation, and their ability to mitigate abiotic stress in plants. They are an environmentally friendly alternative to synthetic fertilizers, promoting sustainable agricultural practices. In addition to their role in promoting plant growth, their recognized potential in bioremediation soils and their ability to help plants against abiotic stresses such as drought, salinity, heavy metal toxicity, and extreme temperatures open different applications.

So, PGPB as second-generation biofertilizers, bioremediation agents, and stress mitigators represent a promising avenue for enhancing agricultural sustainability. Their ability to enhance nutrient availability, degrade pollutants, and improve plant resilience under stress conditions positions them as essential to addressing food security and environmental health in a changing climate.

This Special Issue, ‘Applications of Plant Growth Promoting Bacteria (PGPB): Second-Generation Biofertilizers, Bioremediation, Abiotic and Biotic Stress’, focuses on new highlights in the research surrounding this microorganism, with new knowledge horizons of PGPB applications as a source of innovative solutions that offer new perspectives to tackle agricultural challenges responsibly and sustainably.

Dr. Silvia Maribel Contreras-Ramos
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant growth-promoting bacteria applications
  • second-generation biofertilizers
  • bioremediation with plant growth-promoting bacteria
  • abiotic stress alleviation using plant growth-promoting bacteria

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 4258 KiB  
Article
Abscisic Acid Metabolizing Rhodococcus sp. Counteracts Phytopathogenic Effects of Abscisic Acid Producing Botrytis sp. on Sunflower Seedlings
by Alexander I. Shaposhnikov, Oleg S. Yuzikhin, Tatiana S. Azarova, Edgar A. Sekste, Anna L. Sazanova, Nadezhda A. Vishnevskaya, Vlada Y. Shahnazarova, Polina V. Guro, Miroslav I. Lebedinskii, Vera I. Safronova, Yuri V. Gogolev and Andrey A. Belimov
Plants 2025, 14(15), 2442; https://doi.org/10.3390/plants14152442 - 7 Aug 2025
Viewed by 285
Abstract
One of the important traits of many plant growth-promoting rhizobacteria (PGPR) is the biocontrol of phytopathogens. Some PGPR metabolize phytohormone abscisic acid (ABA); however, the role of this trait in plant–microbe interactions is scarcely understood. Phytopathogenic fungi produce ABA and use this property [...] Read more.
One of the important traits of many plant growth-promoting rhizobacteria (PGPR) is the biocontrol of phytopathogens. Some PGPR metabolize phytohormone abscisic acid (ABA); however, the role of this trait in plant–microbe interactions is scarcely understood. Phytopathogenic fungi produce ABA and use this property as a negative regulator of plant resistance. Therefore, interactions between ABA-producing necrotrophic phytopathogen Botrytis sp. BA3 with ABA-metabolizing rhizobacterium Rhodococcus sp. P1Y were studied in a batch culture and in gnotobiotic hydroponics with sunflower seedlings. Rhizobacterium P1Y possessed no antifungal activity against BA3 and metabolized ABA, which was synthesized by BA3 in vitro and in associations with sunflower plants infected with this fungus. Inoculation with BA3 and the application of exogenous ABA increased the root ABA concentration and inhibited root and shoot growth, suggesting the involvement of this phytohormone in the pathogenesis process. Strain P1Y eliminated negative effects of BA3 and exogenous ABA on root ABA concentration and plant growth. Both microorganisms significantly modulated the hormonal status of plants, affecting indole-3-acetic, salicylic, jasmonic and gibberellic acids, as well as cytokinins concentrations in sunflower roots and/or shoots. The hormonal effects were complex and could be due to the production of phytohormones by microorganisms, changes in ABA concentrations and multiple levels of crosstalk in hormone networks regulating plant defense. The results suggest the counteraction of rhizobacteria to ABA-producing phytopathogenic fungi through the metabolism of fungal ABA. This expands our understanding of the mechanisms related to the biocontrol of phytopathogens by PGPR. Full article
Show Figures

Figure 1

20 pages, 2349 KiB  
Article
Native Plant Growth-Promoting Rhizobacteria Containing ACC Deaminase Promote Plant Growth and Alleviate Salinity and Heat Stress in Maize (Zea mays L.) Plants in Saudi Arabia
by Madeha A. Alonazi, Hend A. Alwathnani, Fahad N. I. AL-Barakah and Fahad Alotaibi
Plants 2025, 14(7), 1107; https://doi.org/10.3390/plants14071107 - 2 Apr 2025
Cited by 2 | Viewed by 1637
Abstract
Halotolerant, plant growth-promoting rhizobacteria (PGPR) are known to alleviate plant growth under abiotic stresses, especially those isolated from saline arid soils. In this study, 66 bacterial isolates, obtained from various habitats in Saudi Arabia, were characterized for their plant growth-promoting (PGP) traits, and [...] Read more.
Halotolerant, plant growth-promoting rhizobacteria (PGPR) are known to alleviate plant growth under abiotic stresses, especially those isolated from saline arid soils. In this study, 66 bacterial isolates, obtained from various habitats in Saudi Arabia, were characterized for their plant growth-promoting (PGP) traits, and screened for heat and salt stress resilience. Finally, selected halotolerant PGPR strains were assessed for their potential to improve maize (Zea mays L.) growth under salinity stress using in vitro assays. Our results indicated that many isolates possessed key PGP traits such ACC deaminase, N-fixation, and phytohormone production. Additionally, several isolates were able to tolerate high temperatures, and 20 bacterial isolates were classified as halotolerant. Furthermore, among the isolates, Pseudomonas soyae (R600), Bacillus haynesii (SFO145), Salinicola halophilus (SFO075), and Staphylococcus petrasii (SFO132) significantly enhanced various maize growth parameters under salt stress conditions when compared to uninoculated plants. These halotolerant PGPR are good candidates to be explored as bioinoculants for sustainable agriculture under saline arid soil conditions. Full article
Show Figures

Figure 1

Back to TopTop