You are currently viewing a new version of our website. To view the old version click .
Plants
  • Review
  • Open Access

7 August 2025

Advances of Peptides for Plant Immunity

,
,
and
Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
*
Author to whom correspondence should be addressed.
This article belongs to the Section Plant Physiology and Metabolism

Abstract

Plant peptides, as key signaling molecules, play pivotal roles in plant growth, development, and stress responses. This review focuses on research progress in plant peptides involved in plant immunity, providing a detailed classification of immunity-related plant polypeptides, including small post-translationally modified peptides, cysteine-rich peptides, and non-cysteine-rich peptides. It discusses the mechanisms by which plant polypeptides confer disease resistance, such as their involvement in pattern-triggered immunity (PTI), effector-triggered immunity (ETI), and regulation of hormone-mediated defense pathways. Furthermore, it explores potential agricultural applications of plant polypeptides, including the development of novel biopesticides and enhancement of crop disease resistance via genetic engineering. By summarizing current research, this review aims to provide a theoretical basis for in-depth studies on peptide-mediated disease resistance and offer innovative insights for plant disease control.

1. Introduction

Plants are persistently challenged by diverse pathogens (e.g., bacteria, fungi, viruses, and nematodes), which threaten global crop productivity []. To counter these threats, plants have evolved sophisticated defense systems involving both constitutive and inducible mechanisms []. Among the components of plant defense, peptides emerge as critical signaling molecules that regulate immune responses and mediate pathogen interactions []. Plant peptides are short amino acid chains with diverse roles in plant physiology, including stress responses, hormone signaling, and pathogen defense [,]. Unlike traditional antimicrobial compounds (e.g., phenolics or terpenoids), peptides offer unique advantages such as high specificity, stability, and suitability for genetic engineering []. Recent advances in molecular biology and bioinformatics have enabled the identification and characterization of novel peptide families, shedding light on their functions in plant immunity.
Since the first plant peptide (systemin) was discovered in 1991, over 1000 small peptides have been detected in Arabidopsis thaliana, and their biological functions are gradually being elucidated [,,]. Plant peptides are among the smallest biomolecules in plant proteomes; due to their high bioactivity, even low concentrations can exert significant effects. Most peptides derive from inactive precursor proteins and require post-translational modifications (e.g., proteolysis, tyrosine sulfation, proline hydroxylation) for activation [,,]. After extracellular secretion, mature active peptides are recognized by specific plasma membrane receptors, thereby regulating physiological processes such as growth, development, disease resistance, and stress responses [,,]. This review synthesizes current knowledge of plant peptides in immunity, covering their classification (post-translationally modified, cysteine-rich, non-cysteine-rich), defense mechanisms (PTI, ETI, hormone crosstalk), and agricultural applications (biopesticides, genetic engineering), aiming to inform future research and innovation in crop protection.

3. Mechanisms of Plant Peptides in Disease Resistance

3.1. Direct Antimicrobial Effects

Antimicrobial peptides (AMPs) play a crucial role in plant defense against pathogens by directly targeting and disrupting microbial structures and processes. Recent studies have shown that AMPs can bind to specific proteins in the cell-wall synthesis pathway of fungal pathogens. For instance, a plant defensin from Arabidopsis thaliana disrupts fungal cell wall assembly by interacting with a key protein in this pathway, leading to cell lysis and death []. Moreover, AMPs can target bacterial cell wall precursors such as Lipid II, inhibiting cell wall biosynthesis and compromising the integrity of bacterial cell walls. Thanatin is a well-known AMP that effectively disrupts bacterial membranes, leading to cell death []. Additionally, the antimicrobial peptide Pse-T2 has demonstrated high-level, broad-spectrum antimicrobial activity and skin biocompatibility against multidrug-resistant Pseudomonas aeruginosa infections []. It exerts its effects by directly disrupting bacterial membranes. In biotechnological applications, plant defensins are highly attractive due to their low effective concentrations against fungi and their safety for mammals and birds. Transgenic plants expressing foreign defensins have shown enhanced resistance to various pathogens. AMPs also offer potential solutions to antibiotic resistance. For example, the antimicrobial peptide CM4 has been shown to combat Pseudomonas aeruginosa by both disrupting bacterial membranes and interfering with intracellular targets [].

3.2. Activation of Plant Immune Responses

Plant peptides are pivotal in activating the immune system upon pathogen recognition. When plants detect pathogen-associated molecular patterns (PAMPs), peptides interact with specific receptors on plant cells, initiating signal transduction pathways. These interactions often activate mitogen-activated protein kinase (MAPK) signaling cascades [,]. The activation of MAPK pathways subsequently triggers the production of ROS, which act as signaling molecules and directly damage pathogens, and leads to the expression of defense genes encoding pathogenesis-related proteins []. For example, tomato SlSolP12 induces defense gene expression (e.g., phytoalexin and cell wall reinforcement genes), enhancing resistance to fungi, bacteria, and viruses [].

3.3. Peptides Interact with Defensive Signaling Pathways

Plant immunity-related peptides participate in complex crosstalk within defensive signaling pathways, which often involve both antagonistic and synergistic interactions. These peptides are integral to PTI and ETI; for instance, PIP1 amplifies PTI by interacting with receptor-like kinase 7 (RLK7) []. They also modulate hormone-mediated defense pathways, including SA, JA, ethylene, and auxin pathways, contributing to both antagonistic and synergistic interactions. For example, in tobacco, a specific peptide can enhance JA-mediated defense while inhibiting SA-mediated defense upon binding to its receptor, depending on peptide and PAMP levels []. Conversely, in interactions with beneficial rhizobacteria, plant peptides may simultaneously trigger both JA and SA pathways, leading to a more comprehensive defense response []. Specific peptide–hormone interactions include systemin activating JA biosynthesis via the SR160 receptor to induce defense genes []; phytosulfokine (PSK) interacting with the SA pathway to enhance resistance to Xanthomonas oryzae in rice [] and with auxin signaling to improve defense against Botrytis cinerea in tomato []; and CLE42 delaying leaf senescence by antagonizing ethylene signaling []. Additionally, IDA/IDL peptides synergize with flg22 to induce immune genes, indicating crosstalk with classic immune pathways [], while RALF peptides interact with the FERONIA receptor to modulate ROS signaling and cell wall integrity, integrating with defense responses []. Collectively, these interactions form a complex network that coordinates plant immune responses against various pathogens.

3.4. Differences Between Plant Immunopeptides and Other Peptides

Plant immunity-related peptides possess distinct structural, functional, and mechanistic traits, which can be compared with immunity-associated peptides from other kingdoms. Structurally, plant peptides involved in immunity often have specific features: cysteine-rich peptides (CRPs) like plant defensins, characterized by the cysteine-stabilized α-helix and β-sheet (CSαβ) motif formed by conserved cysteine residues and disulfide bonds []; post-translationally modified peptides (PTMs) such as phytosulfokine (PSK) with sulfated tyrosine residues and CLE peptides with a conserved 12–13 amino acid C-terminal domain, which require modifications for activation [,]. Functionally, plant peptides like systemin and plant elicitor peptides (Peps) act as damage-associated molecular patterns (DAMPs) or phytocytokines, binding to receptors (e.g., SR160 for systemin, PEPR1/2 for Peps) to trigger downstream signaling [,]; PSK peptides balance defense and growth by suppressing bacterial immunity while enhancing resistance to necrotrophic pathogens []. Mechanistically, plant peptides rely on receptor-mediated signaling (e.g., CLE41/44 with BAM1) and integrate with hormone pathways [,]. Evolutionarily, plant peptides like defensins are conserved across land plants []. In contrast, peptides from other kingdoms differ in structural patterns, functional focuses, and action mechanisms, but all kingdoms utilize peptide-based immunity, highlighting the universal role of peptides in defense.

4. Applications of Plant Peptides in Disease Resistance

In the rapidly evolving field of plant pathology, recent research has highlighted the central role of plant peptides in enhancing disease resistance, with breakthroughs spanning from molecular mechanisms to agricultural translations. These short amino acid chains have emerged as versatile regulators, integrating into both direct pathogen inhibition and systemic immune signaling networks.
AMPs exhibit substantial potential for conferring broad-spectrum pathogen protection. For example, a plant-derived AMP-based biopesticide demonstrated comparable efficacy to chemical pesticides in controlling rice bacterial blight []. In citrus, a synthetic cecropin variant significantly suppressed Candidatus Liberibacter asiaticus—the causal agent of huanglongbing (HLB) []. A recent study employed AI-driven screening to identify anti-proteolysis peptides, such as APP3-14, which stabilizes MYC2 by inhibiting PUB21 activity. This peptide not only controlled HLB pathogen titers but also disrupted disease transmission, achieving up to 80% control efficiency in single-season trials []. These advancements establish plant peptides as modular components for precision disease management. Future research is anticipated to focus on engineering peptide–receptor interactions for crop-specific resistance and developing multi-mechanistic peptide cocktails, offering sustainable solutions for global food security.

5. Conclusions and Perspectives

Plant peptides, as key signaling molecules in the plant defense system, exhibit diverse and efficient regulatory mechanisms against pathogenic microorganism invasion. In terms of structural classification, whether post-translationally modified small peptides such as CLE and CEP, cysteine-rich peptides like RALF and defensins, or unmodified peptides such as systemin and Peps, they all function by directly inhibiting pathogens (disrupting pathogen cell membranes or inhibiting cell wall synthesis) or indirectly activating immune responses (inducing ROS bursts or regulating hormone signaling pathways). For example, CLE peptides inhibit nematode spread by interacting with receptor kinases, PSK peptides balance disease resistance and growth through dual regulatory mechanisms, and AMP-like peptides directly kill pathogens with broad-spectrum antimicrobial activity. Furthermore, the mechanisms of plant peptides show network-like regulation, not only integrating hormone pathways such as SA and JA but also triggering systemic immunity through receptor-mediated signal transduction. These findings provide new perspectives for understanding plant–pathogen interactions and lay a theoretical foundation for crop disease resistance improvement.
Future work should clarify non-classical peptide–receptor signaling and use CRISPR to engineer peptide expression for enhanced resistance. Meanwhile, the development of peptide-based biopesticides, such as synthetic protease-resistant peptide analogs and peptide–nanomaterial complexes, should address production cost issues via microbial fermentation or plant bioreactors. Multidisciplinary approaches integrating bioinformatics, structural biology, and synthetic biology are essential for functional exploration and application. Field studies on ecological impacts should also be conducted to ensure safety. Furthermore, synergistic systems combining plant peptides with RNA interference or microbiome regulation should be established to address global agricultural challenges like pathogen evolution under climate change, providing sustainable solutions for food security.

Author Contributions

S.W. and Q.W. conceptualized and supervised the project. S.W. and Q.W. provided modification suggestions. M.L., S.W., G.Z., and Q.W. drafted the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This study was supported by the National Natural Science Foundation of China (32070202, 31961143015), the Innovation Program of CAAS (CAAS-CSIAF-202303), the Guangdong Basic and Applied Basic Research Foundation (2020B1515120086).

Data Availability Statement

There are no new data associated with this article.

Acknowledgments

We apologize to those whose work was not cited because of space constraints.

Conflicts of Interest

The authors declare no competing interests.

References

  1. Pieterse, C.M.; Van der Does, D.; Zamioudis, C.; Leon-Reyes, A.; Van Wees, S.C. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 2012, 28, 489–521. [Google Scholar] [CrossRef]
  2. Yuan, M.; Ngou, B.P.M.; Ding, P.; Xin, X.F. PTI-ETI crosstalk: An integrative view of plant immunity. Curr. Opin. Plant Biol. 2021, 62, 102030. [Google Scholar] [CrossRef]
  3. Igarashi, D.; Tsuda, K.; Katagiri, F. The peptide growth factor, phytosulfokine, attenuates pattern-triggered immunity. Plant J. 2012, 71, 194–204. [Google Scholar] [CrossRef]
  4. Zhang, P.; Zhao, J.; Zhang, W.; Guo, Y.; Zhang, K. Sulfated peptides: Key players in plant development, growth, and stress responses. Front. Plant Sci. 2024, 15, 1474111. [Google Scholar] [CrossRef]
  5. Kumar, S.; Behera, L.; Kumari, R.; Bag, D.; Sowmya, V.; Keswani, C.; Minkina, T.; Bouket, A.C.; Dutta, P.; Nehela, Y.; et al. Unraveling the role of antimicrobial peptides in plant resistance against phytopathogens. Discov. Sustain. 2024, 5, 243. [Google Scholar] [CrossRef]
  6. Pearce, G.; Strydom, D.; Johnson, S.; Ryan, C.A. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 1991, 253, 895–897. [Google Scholar] [CrossRef]
  7. Czyzewicz, N.; Yue, K.; Beeckman, T.; De Smet, I. Message in a bottle: Small signalling peptide outputs during growth and development. J. Exp. Bot. 2013, 64, 5281–5296. [Google Scholar] [CrossRef]
  8. Reichardt, S.; Piepho, H.P.; Stintzi, A.; Schaller, A. Peptide signaling for drought-induced tomato flower drop. Science 2020, 367, 1482–1485. [Google Scholar] [CrossRef]
  9. Meng, L.; Buchanan, B.B.; Feldman, L.J.; Luan, S. A putative nuclear CLE-like (De-La-Peña, #447) peptide precursor regulates root growth in Arabidopsis. Mol. Plant 2012, 5, 955–957. [Google Scholar] [CrossRef][Green Version]
  10. Schardon, K.; Hohl, M.; Graff, L.; Pfannstiel, J.; Schulze, W.; Stintzi, A.; Schaller, A. Precursor processing for plant peptide hormone maturation by subtilisin-like serine proteinases. Science 2016, 354, 1594–1597. [Google Scholar] [CrossRef]
  11. Tavormina, P.; De Coninck, B.; Nikonorova, N.; De Smet, I.; Cammue, B.P.A. The Plant Peptidome: An Expanding Repertoire of Structural Features and Biological Functions. Plant Cell 2015, 27, 2095–2118. [Google Scholar] [CrossRef]
  12. Matsubayashi, Y.; Sakagami, Y. Peptide hormones in plants. Annu. Rev. Plant Biol. 2006, 57, 649–674. [Google Scholar] [CrossRef]
  13. Pieterse, C.M.; Leon-Reyes, A.; Van der Ent, S.; Van Wees, S.C. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 2009, 5, 308–316. [Google Scholar] [CrossRef]
  14. Wang, P.; Yao, S.; Kosami, K.i.; Guo, T.; Li, J.; Zhang, Y.; Fukao, Y.; Kaneko-Kawano, T.; Zhang, H.; She, Y.M.; et al. Identification of endogenous small peptides involved in rice immunity through transcriptomics- and proteomics-based screening. Plant Biotechnol. J. 2019, 18, 415–428. [Google Scholar] [CrossRef]
  15. Betsuyaku, S.; Sawa, S.; Yamada, M. The Function of the CLE Peptides in Plant Development and Plant-Microbe Interactions. Arab. Book. 2011, 9, e0149. [Google Scholar] [CrossRef]
  16. Zhang, Z.; Liu, C.; Li, K.; Li, X.; Xu, M.; Guo, Y. CLE14 functions as a “brake signal” to suppress age-dependent and stress-induced leaf senescence by promoting JUB1-mediated ROS scavenging in Arabidopsis. Mol. Plant 2022, 15, 179–188. [Google Scholar] [CrossRef]
  17. Zhang, Y.; Tan, S.; Gao, Y.; Kan, C.; Wang, H.-L.; Yang, Q.; Xia, X.; Ishida, T.; Sawa, S.; Guo, H.; et al. CLE42 delays leaf senescence by antagonizing ethylene pathway in Arabidopsis. New Phytol. 2022, 235, 550–562. [Google Scholar] [CrossRef]
  18. Hou, S.; Liu, D.; Huang, S.; Luo, D.; Liu, Z.; Xiang, Q.; Wang, P.; Mu, R.; Han, Z.; Chen, S.; et al. The Arabidopsis MIK2 receptor elicits immunity by sensing a conserved signature from phytocytokines and microbes. Nat. Commun. 2021, 12, 5494. [Google Scholar] [CrossRef]
  19. Najafi, J.; Brembu, T.; Vie, A.K.; Viste, R.; Winge, P.; Somssich, I.E.; Bones, A.M. PAMP-INDUCED SECRETED PEPTIDE 3 modulates immunity in Arabidopsis. J. Exp. Bot. 2020, 71, 850–864. [Google Scholar] [CrossRef]
  20. Wulf, K.; Sun, J.; Wang, C.; Ho-Plagaro, T.; Kwon, C.-T.; Velandia, K.; Correa-Lozano, A.; Tamayo-Navarrete, M.I.; Reid, J.B.; García Garrido, J.M.; et al. The Role of CLE Peptides in the Suppression of Mycorrhizal Colonization of Tomato. Plant Cell Physiol. 2024, 65, 107–119. [Google Scholar] [CrossRef]
  21. Wang, J.; Lee, C.; Replogle, A.; Joshi, S.; Korkin, D.; Hussey, R.; Baum, T.J.; Davis, E.L.; Wang, X.; Mitchum, M.G. Dual roles for the variable domain in protein trafficking and host-specific recognition of Heterodera glycines CLE effector proteins. New Phytol. 2010, 187, 1003–1017. [Google Scholar] [CrossRef]
  22. Lu, S.-W.; Chen, S.; Wang, J.; Yu, H.; Chronis, D.; Mitchum, M.G.; Wang, X. Structural and functional diversity of CLAVATA3/ESR (CLE)-like genes from the potato cyst nematode Globodera rostochiensis. Mol. Plant-Microbe Interact. 2009, 22, 1128–1142. [Google Scholar] [CrossRef][Green Version]
  23. Ogilvie, H.A.; Imin, N.; Djordjevic, M.A. Diversification of the C-TERMINALLY ENCODED PEPTIDE (CEP) gene family in angiosperms, and evolution of plant-family specific CEP genes. BMC Genom. 2014, 15, 870. [Google Scholar] [CrossRef]
  24. Taleski, M.; Jin, M.; Chapman, K.; Taylor, K.; Winning, C.; Frank, M.; Imin, N.; Djordjevic, M.A. CEP hormones at the nexus of nutrient acquisition and allocation, root development, and plant–microbe interactions. J. Exp. Bot. 2023, 75, 538–552. [Google Scholar] [CrossRef]
  25. Fitrianti, A.N.; Mai, T.L.; Phuong, L.T.; Monden, H.; Shiiba, N.; Matsui, H.; Noutoshi, Y.; Yamamoto, M.; Ichinose, Y.; Shiraishi, T.; et al. CEP peptide induces susceptibility of Arabidopsis thaliana to non-adapted pathogens. J. Gen. Plant Pathol. 2022, 88, 287–292. [Google Scholar] [CrossRef]
  26. Wang, X.; Yu, W.; Yuan, Q.; Chen, X.; He, Y.; Zhou, J.; Xun, Q.; Wang, G.; Li, J.; Meng, X. The pathogen-induced peptide CEP14 is perceived by the receptor-like kinase CEPR2 to promote systemic disease resistance in Arabidopsis. Plant Physiol. 2024, 197, kiae549. [Google Scholar] [CrossRef]
  27. Rzemieniewski, J.; Leicher, H.; Lee, H.K.; Broyart, C.; Nayem, S.; Wiese, C.; Maroschek, J.; Camgöz, Z.; Olsson Lalun, V.; Djordjevic, M.A.; et al. CEP signaling coordinates plant immunity with nitrogen status. Nat. Commun. 2024, 15, 10686. [Google Scholar] [CrossRef]
  28. Bucataru, C.; Ciobanasu, C. Antimicrobial peptides: Opportunities and challenges in overcoming resistance. Microbiol. Res. 2024, 286, 127822. [Google Scholar] [CrossRef]
  29. Mosher, S.; Seybold, H.; Rodriguez, P.; Stahl, M.; Davies, K.A.; Dayaratne, S.; Morillo, S.A.; Wierzba, M.; Favery, B.; Keller, H.; et al. The tyrosine-sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner. Plant J. 2013, 73, 469–482. [Google Scholar] [CrossRef]
  30. Ding, S.; Lv, J.; Hu, Z.; Wang, J.; Wang, P.; Yu, J.; Foyer, C.H.; Shi, K. Phytosulfokine peptide optimizes plant growth and defense via glutamine synthetase GS2 phosphorylation in tomato. EMBO J. 2023, 42, e111858. [Google Scholar] [CrossRef]
  31. Guo, H.; Nolan, T.M.; Song, G.; Liu, S.; Xie, Z.; Chen, J.; Schnable, P.S.; Walley, J.W.; Yin, Y. FERONIA Receptor Kinase Contributes to Plant Immunity by Suppressing Jasmonic Acid Signaling in Arabidopsis thaliana. Curr. Biol. 2018, 28, 3316–3324.e6. [Google Scholar] [CrossRef]
  32. Yang, W.; Zhang, B.; Qi, G.; Shang, L.; Liu, H.; Ding, X.; Chu, Z. Identification of the phytosulfokine receptor 1 (OsPSKR1) confers resistance to bacterial leaf streak in rice. Planta 2019, 250, 1603–1612. [Google Scholar] [CrossRef]
  33. Lalun, V.O.; Breiden, M.; Galindo-Trigo, S.; Smakowska-Luzan, E.; Simon, R.G.W.; Butenko, M.A. A dual function of the IDA peptide in regulating cell separation and modulating plant immunity at the molecular level. eLife 2024, 12, RP87912. [Google Scholar] [CrossRef]
  34. Butenko, M.A.; Patterson, S.E.; Grini, P.E.; Stenvik, G.-E.; Amundsen, S.S.; Mandal, A.; Aalen, R.B. INFLORESCENCE DEFICIENT IN ABSCISSION Controls Floral Organ Abscission in Arabidopsis and Identifies a Novel Family of Putative Ligands in Plants. Plant Cell 2003, 15, 2296–2307. [Google Scholar] [CrossRef]
  35. Vie, A.K.; Najafi, J.; Liu, B.; Winge, P.; Butenko, M.A.; Hornslien, K.S.; Kumpf, R.; Aalen, R.B.; Bones, A.M.; Brembu, T. The IDA/IDA-LIKE and PIP/PIP-LIKE gene families in Arabidopsis: Phylogenetic relationship, expression patterns, and transcriptional effect of the PIPL3 peptide. J. Exp. Bot. 2015, 66, 5351–5365. [Google Scholar] [CrossRef]
  36. Wang, X.; Hou, S.; Wu, Q.; Lin, M.; Acharya, B.R.; Wu, D.; Zhang, W. IDL6-HAE/HSL2 impacts pectin degradation and resistance to Pseudomonas syringae pv tomato DC3000 in Arabidopsis leaves. Plant J. 2017, 89, 250–263. [Google Scholar] [CrossRef]
  37. Pearce, G.; Moura, D.S.; Stratmann, J.; Ryan, C.A., Jr. RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc. Natl. Acad. Sci. USA 2001, 98, 12843–12847. [Google Scholar] [CrossRef]
  38. Zhang, X.; Peng, H.; Zhu, S.; Xing, J.; Li, X.; Zhu, Z.; Zheng, J.; Wang, L.; Wang, B.; Chen, J.; et al. Nematode-Encoded RALF Peptide Mimics Facilitate Parasitism of Plants through the FERONIA Receptor Kinase. Mol. Plant 2020, 13, 1434–1454. [Google Scholar] [CrossRef]
  39. Zhang, X.; Yang, Z.; Wu, D.; Yu, F. RALF-FERONIA Signaling: Linking Plant Immune Response with Cell Growth. Plant Commun. 2020, 1, 100084. [Google Scholar] [CrossRef]
  40. Liu, R.; Xu, K.; Li, Y.; Zhao, W.; Ji, H.; Lei, X.; Ma, T.; Ye, J.; Zhang, J.; Du, H.; et al. Investigation on the Potential Functions of ZmEPF/EPFL Family Members in Response to Abiotic Stress in Maize. Int. J. Mol. Sci. 2024, 25, 7196. [Google Scholar] [CrossRef]
  41. Xia, H.; Wang, Q.; Chen, Z.; Sun, X.; Zhao, F.; Zhang, D.; Fei, J.; Zhao, R.; Yin, Y. Identification and Functional Analysis of the EPF/EPFL Gene Family in Maize (Zea mays L.): Implications for Drought Stress Response. Agronomy 2024, 14, 1734. [Google Scholar]
  42. Almasia, N.I.; Nahirñak, V.; Hopp, H.E.; Vazquez-Rovere, C. Potato Snakin-1: An antimicrobial player of the trade-off between host defense and development. Plant Cell Rep. 2020, 39, 839–849. [Google Scholar] [CrossRef]
  43. Das, K.; Datta, K.; Sarkar, S.N.; Datta, S.K. Expression of antimicrobial peptide snakin-1 confers effective protection in rice against sheath blight pathogen, Rhizoctonia solani. Plant Biotechnol. Rep. 2021, 15, 39–54. [Google Scholar] [CrossRef]
  44. Hsiao, P.-Y.; Cheng, C.-P.; Koh, K.W.; Chan, M.-T. The Arabidopsis defensin gene, AtPDF1.1, mediates defence against Pectobacterium carotovorum subsp. carotovorum via an iron-withholding defence system. Sci. Rep. 2017, 7, 9175. [Google Scholar] [CrossRef]
  45. Ryan, C.A. The systemin signaling pathway: Differential activation of plant defensive genes. Biochim. Biophys. Acta 2000, 1477, 112–121. [Google Scholar] [CrossRef]
  46. Bhattacharya, R.; Koramutla, M.K.; Negi, M.; Pearce, G.; Ryan, C.A. Hydroxyproline-rich glycopeptide signals in potato elicit signalling associated with defense against insects and pathogens. Plant Sci. 2013, 207, 88–97. [Google Scholar] [CrossRef]
  47. Pearce, G. Systemin, hydroxyproline-rich systemin and the induction of protease inhibitors. Curr. Protein Pept. Sci. 2011, 12, 399–408. [Google Scholar] [CrossRef]
  48. Huffaker, A.; Pearce, G.; Ryan, C.A. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc. Natl. Acad. Sci. USA 2006, 103, 10098–10103. [Google Scholar] [CrossRef]
  49. Shen, W.; Zhang, X.; Liu, J.; Tao, K.; Li, C.; Xiao, S.; Zhang, W.; Li, J.-F. Plant elicitor peptide signalling confers rice resistance to piercing-sucking insect herbivores and pathogens. Plant Biotechnol. J. 2022, 20, 991–1005. [Google Scholar] [CrossRef]
  50. Ziemann, S.; van der Linde, K.; Lahrmann, U.; Acar, B.; Kaschani, F.; Colby, T.; Kaiser, M.; Ding, Y.; Schmelz, E.; Huffaker, A.; et al. An apoplastic peptide activates salicylic acid signalling in maize. Nat. Plants 2018, 4, 172–180. [Google Scholar] [CrossRef]
  51. Liu, Z.; Hou, S.; Rodrigues, O.; Wang, P.; Luo, D.; Munemasa, S.; Lei, J.; Liu, J.; Ortiz-Morea, F.A.; Wang, X.; et al. Phytocytokine signalling reopens stomata in plant immunity and water loss. Nature 2022, 605, 332–339. [Google Scholar] [CrossRef]
  52. Ogawa-Ohnishi, M.; Yamashita, T.; Kakita, M.; Nakayama, T.; Ohkubo, Y.; Hayashi, Y.; Yamashita, Y.; Nomura, T.; Noda, S.; Shinohara, H.; et al. Peptide ligand-mediated trade-off between plant growth and stress response. Science 2022, 378, 175–180. [Google Scholar] [CrossRef]
  53. Hou, S.; Wang, X.; Chen, D.; Yang, X.; Wang, M.; Turrà, D.; Di Pietro, A.; Zhang, W. The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7. PLoS Pathog. 2014, 10, e1004331. [Google Scholar] [CrossRef]
  54. Gully, K.; Pelletier, S.; Guillou, M.-C.; Ferrand, M.; Aligon, S.; Pokotylo, I.; Perrin, A.; Vergne, E.; Fagard, M.; Ruelland, E.; et al. The SCOOP12 peptide regulates defense response and root elongation in Arabidopsis thaliana. J. Exp. Bot. 2019, 70, 1349–1365. [Google Scholar] [CrossRef]
  55. Liu, W.; Zhang, G.; Liu, C.; Tian, S.; Qiao, G.; Sun, H.; Luo, X.; Wang, S.; Cai, L.; Sun, X. NbTLP1 stabilizes NbPR1 to enhance resistance against Phytophthora capsici via salicylic acid signalling pathway in Nicotiana benthamiana. Plant Biotechnol. J. 2025. [Google Scholar] [CrossRef]
  56. Wang, J.; Xiang, S.; Wang, X.; Shen, Y.; Liu, C.; Zhu, X.; Liu, W.; Wang, S.; Ma, X.; Huang, J.; et al. High-permeability cellulose nanocrystals mediate systemic zinc redistribution through nsLTP2-dependent immune potentiation in plants. Plant Biotechnol. J. 2025. [Google Scholar] [CrossRef]
  57. Panda, S.; Singh, N.C.; Sonawane, P.D.; Meir, S.; Kamble, A.C. Jasmonate Responsive SlnsLTP Confers Resistance Against Botrytis cinerea and Verticillium dahliae in Tomato. J. Plant Growth Regul. 2025. [Google Scholar] [CrossRef]
  58. Matsubayashi, Y.; Hanai, H.; Hara, O.; Sakagami, Y. Active fragments and analogs of the plant growth factor, phytosulfokine: Structure-activity relationships. Biochem. Biophys. Res. Commun. 1996, 225, 209–214. [Google Scholar] [CrossRef]
  59. Lorbiecke, R.; Sauter, M. Comparative analysis of PSK peptide growth factor precursor homologs. Plant Sci. 2002, 163, 321–332. [Google Scholar] [CrossRef]
  60. Zhang, H.; Hu, Z.; Lei, C.; Zheng, C.; Wang, J.; Shao, S.; Li, X.; Xia, X.; Cai, X.; Zhou, J.; et al. A Plant Phytosulfokine Peptide Initiates Auxin-Dependent Immunity through Cytosolic Ca(2+) Signaling in Tomato. Plant Cell 2018, 30, 652–667. [Google Scholar] [CrossRef]
  61. Hu, Z.; Fang, H.; Zhu, C.; Gu, S.; Ding, S.; Yu, J.; Shi, K. Ubiquitylation of PHYTOSULFOKINE RECEPTOR 1 modulates the defense response in tomato. Plant Physiol. 2023, 192, 2507–2522. [Google Scholar] [CrossRef]
  62. Zhang, L.; Liu, J.; Cheng, J.; Sun, Q.; Zhang, Y.; Liu, J.; Li, H.; Zhang, Z.; Wang, P.; Cai, C.; et al. lncRNA7 and lncRNA2 modulate cell wall defense genes to regulate cotton resistance to Verticillium wilt. Plant Physiol. 2022, 189, 264–284. [Google Scholar] [CrossRef]
  63. Stenvik, G.-E.; Tandstad, N.M.; Guo, Y.; Shi, C.-L.; Kristiansen, W.; Holmgren, A.; Clark, S.E.; Aalen, R.B.; Butenko, M.A. The EPIP Peptide of INFLORESCENCE DEFICIENT IN ABSCISSION Is Sufficient to Induce Abscission in Arabidopsis through the Receptor-Like Kinases HAESA and HAESA-LIKE2. Plant Cell 2008, 20, 1805–1817. [Google Scholar] [CrossRef]
  64. Wang, P.; Wu, T.; Jiang, C.; Huang, B.; Li, Z. Brt9SIDA/IDALs as peptide signals mediate diverse biological pathways in plants. Plant Sci. 2023, 330, 111642. [Google Scholar] [CrossRef]
  65. Santiago, J.; Brandt, B.; Wildhagen, M.; Hohmann, U.; Hothorn, L.A.; Butenko, M.A.; Hothorn, M. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission. eLife 2016, 5, e15075. [Google Scholar] [CrossRef]
  66. Roman, A.-O.; Jimenez-Sandoval, P.; Augustin, S.; Broyart, C.; Hothorn, L.A.; Santiago, J. HSL1 and BAM1/2 impact epidermal cell development by sensing distinct signaling peptides. Nat. Commun. 2022, 13, 876. [Google Scholar] [CrossRef]
  67. Vie, A.K.; Najafi, J.; Winge, P.; Cattan, E.; Wrzaczek, M.; Kangasjärvi, J.; Miller, G.; Brembu, T.; Bones, A.M. The IDA-LIKE peptides IDL6 and IDL7 are negative modulators of stress responses in Arabidopsis thaliana. J. Exp. Bot. 2017, 68, 3557–3571. [Google Scholar] [CrossRef]
  68. de Bang, T.C.; Lundquist, P.K.; Dai, X.; Boschiero, C.; Zhuang, Z.; Pant, P.; Torres-Jerez, I.; Roy, S.; Nogales, J.; Veerappan, V.; et al. Genome-Wide Identification of Medicago Peptides Involved in Macronutrient Responses and Nodulation. Plant Physiol. 2017, 175, 1669–1689. [Google Scholar] [CrossRef]
  69. Chen, J.; Yu, F.; Liu, Y.; Du, C.; Li, X.; Zhu, S.; Wang, X.; Lan, W.; Rodriguez, P.L.; Liu, X.; et al. FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis. Proc. Natl. Acad. Sci. USA 2016, 113, E5519–E5527. [Google Scholar] [CrossRef]
  70. He, Y.-H.; Chen, S.-Y.; Chen, X.-Y.; Xu, Y.-P.; Liang, Y.; Cai, X.-Z. RALF22 promotes plant immunity and amplifies the Pep3 immune signal. J. Integr. Plant Biol. 2023, 65, 2519–2534. [Google Scholar] [CrossRef]
  71. Shen, W.; Yuan, M.; Chen, L.; Zhang, X. Comparative analysis of rapid alkalinization factor peptide-triggered plant immunity in citrus and closely related species. Plant Physiol. Biochem. 2025, 224, 109941. [Google Scholar] [CrossRef]
  72. Yang, Z.; Xing, J.; Wang, L.; Liu, Y.; Qu, J.; Tan, Y.; Fu, X.; Lin, Q.; Deng, H.; Yu, F. Mutations of two FERONIA-like receptor genes enhance rice blast resistance without growth penalty. J. Exp. Bot. 2020, 71, 2112–2126. [Google Scholar] [CrossRef]
  73. Thynne, E.; Saur, I.M.L.; Simbaqueba, J.; Ogilvie, H.A.; Gonzalez-Cendales, Y.; Mead, O.; Taranto, A.; Catanzariti, A.M.; McDonald, M.C.; Schwessinger, B.; et al. Fungal phytopathogens encode functional homologues of plant rapid alkalinization factor (RALF) peptides. Mol. Plant Pathol. 2017, 18, 811–824. [Google Scholar] [CrossRef]
  74. Zhang, X.; Long, H.; Zhang, J.; Shen, B.; Hou, Y. Damage Assessment and Progressive Collapse Resistance of a Long-Span Prestressed Double-Layer Composite Torsional Reticulated Shell. Symmetry 2020, 12, 1434. [Google Scholar]
  75. Masachis, S.; Segorbe, D.; Turrà, D.; Leon-Ruiz, M.; Fürst, U.; El Ghalid, M.; Leonard, G.; López-Berges, M.S.; Richards, T.A.; Felix, G.; et al. A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nat. Microbiol. 2016, 1, 16043. [Google Scholar] [CrossRef]
  76. Zhao, C.; Zayed, O.; Yu, Z.; Jiang, W.; Zhu, P.; Hsu, C.-C.; Zhang, L.; Tao, W.A.; Lozano-Durán, R.; Zhu, J.-K. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA 2018, 115, 13123–13128. [Google Scholar] [CrossRef]
  77. Zhao, C.; Jiang, W.; Zayed, O.; Liu, X.; Tang, K.; Nie, W.; Li, Y.; Xie, S.; Li, Y.; Long, T.; et al. The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones. Natl. Sci. Rev. 2021, 8, nwaa149. [Google Scholar] [CrossRef]
  78. Mamaeva, A.; Makeeva, A.; Ganaeva, D. The Small Key to the Treasure Chest: Endogenous Plant Peptides Involved in Symbiotic Interactions. Plants 2025, 14, 378. [Google Scholar] [CrossRef]
  79. Takata, N.; Yokota, K.; Ohki, S.; Mori, M.; Taniguchi, T.; Kurita, M. Evolutionary relationship and structural characterization of the EPF/EPFL gene family. PLoS ONE 2013, 8, e65183. [Google Scholar] [CrossRef]
  80. Liu, S.; Chen, T.; Li, X.; Cui, J.; Tian, Y. Genome-wide identification and expression analysis of EPF/EPFL gene family in Populus trichocarpa. Front. Genet. 2024, 15, 1432376. [Google Scholar] [CrossRef]
  81. Hancock, R.E.W.; Chapple, D.S. Peptide Antibiotics. Antimicrob. Agents Chemother. 1999, 43, 1317–1323. [Google Scholar] [CrossRef]
  82. Seyfi, R.; Kahaki, F.A.; Ebrahimi, T.; Montazersaheb, S.; Eyvazi, S.; Babaeipour, V.; Tarhriz, V. Antimicrobial Peptides (AMPs): Roles, Functions and Mechanism of Action. Int. J. Pept. Res. Ther. 2020, 26, 1451–1463. [Google Scholar] [CrossRef]
  83. Zhang, L.-j.; Gallo, R.L. Antimicrobial peptides. Curr. Biol. 2016, 26, R14–R19. [Google Scholar] [CrossRef]
  84. Van de Velde, W.; Zehirov, G.; Szatmari, A.; Debreczeny, M.; Ishihara, H.; Kevei, Z.; Farkas, A.; Mikulass, K.; Nagy, A.; Tiricz, H.; et al. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 2010, 327, 1122–1126. [Google Scholar] [CrossRef]
  85. Morais, T.P.; Zaini, P.A.; Chakraborty, S.; Gouran, H.; Carvalho, C.P.; Almeida-Souza, H.O.; Souza, J.B.; Santos, P.S.; Goulart, L.R.; Luz, J.M.Q.; et al. The plant-based chimeric antimicrobial protein SlP14a-PPC20 protects tomato against bacterial wilt disease caused by Ralstonia solanacearum. Plant Sci. 2019, 280, 197–205. [Google Scholar] [CrossRef]
  86. Broekaert, W.F.; Terras, F.R.; Cammue, B.P.; Osborn, R.W. Plant defensins: Novel antimicrobial peptides as components of the host defense system. Plant Physiol. 1995, 108, 1353–1358. [Google Scholar] [CrossRef]
  87. Bruix, M.; Jiménez, M.A.; Santoro, J.; González, C.; Colilla, F.J.; Méndez, E.; Rico, M. Solution structure of gamma 1-H and gamma 1-P thionins from barley and wheat endosperm determined by 1H-NMR: A structural motif common to toxic arthropod proteins. Biochemistry 1993, 32, 715–724. [Google Scholar] [CrossRef]
  88. Zhu, S.; Gao, B.; Tytgat, J. Phylogenetic distribution, functional epitopes and evolution of the CSalphabeta superfamily. Cell. Mol. Life Sci. 2005, 62, 2257–2269. [Google Scholar] [CrossRef]
  89. Vriens, K.; Cammue, B.P.A.; Thevissen, K. Antifungal plant defensins: Mechanisms of action and production. Molecules 2014, 19, 12280–12303. [Google Scholar] [CrossRef]
  90. Su, Z.; Yu, H.; Lv, T.; Chen, Q.; Luo, H.; Zhang, H. Progress in the classification, optimization, activity, and application of antimicrobial peptides. Front. Microbiol. 2025, 16, 1582863. [Google Scholar] [CrossRef]
  91. Iwai, T.; Kaku, H.; Honkura, R.; Nakamura, S.; Ochiai, H.; Sasaki, T.; Ohashi, Y. Enhanced Resistance to Seed-Transmitted Bacterial Diseases in Transgenic Rice Plants Overproducing an Oat Cell-Wall-Bound Thionin. Mol. Plant-Microbe Interact. 2002, 15, 515–521. [Google Scholar] [CrossRef]
  92. Ji, H.; Gheysen, G.; Ullah, C.; Verbeek, R.; Shang, C.; De Vleesschauwer, D.; Höfte, M.; Kyndt, T. The role of thionins in rice defence against root pathogens. Mol. Plant Pathol. 2015, 16, 870–881. [Google Scholar] [CrossRef]
  93. Loeza-Ángeles, H.; Sagrero-Cisneros, E.; Lara-Zárate, L.; Villagómez-Gómez, E.; López-Meza, J.E.; Ochoa-Zarzosa, A. Thionin Thi2.1 from Arabidopsis thaliana expressed in endothelial cells shows antibacterial, antifungal and cytotoxic activity. Biotechnol. Lett. 2008, 30, 1713–1719. [Google Scholar] [CrossRef]
  94. Yang, M.; Jiao, J.; Liu, Y.; Li, M.; Xia, Y.; Hou, F.; Huang, C.; Zhang, H.; Wang, M.; Shi, J.; et al. Genome-wide investigation of defensin genes in apple (Malus × domestica Borkh.) and in vivo analyses show that MdDEF25 confers resistance to Fusarium solani. J. Integr. Agric. (JIA) 2025, 24, 161–175. [Google Scholar] [CrossRef]
  95. Castaldi, V.; Langella, E.; Buonanno, M.; Di Lelio, I.; Aprile, A.M.; Molisso, D.; Criscuolo, M.C.; D’Andrea, L.D.; Romanelli, A.; Amoresano, A.; et al. Intrinsically disordered Prosystemin discloses biologically active repeat motifs. Plant Sci. 2024, 340, 111969. [Google Scholar] [CrossRef]
  96. Ryan, C.A.; Pearce, G. Systemin: A polypeptide signal for plant defensive genes. Annu. Rev. Cell Dev. Biol. 1998, 14, 1–17. [Google Scholar] [CrossRef]
  97. Doares, S.H.; Narvaez-Vasquez, J.; Conconi, A.; Ryan, C.A. Salicylic Acid Inhibits Synthesis of Proteinase Inhibitors in Tomato Leaves Induced by Systemin and Jasmonic Acid. Plant Physiol. 1995, 108, 1741–1746. [Google Scholar] [CrossRef]
  98. Zhang, H.; Zhang, H.; Lin, J. Systemin-mediated long-distance systemic defense responses. New Phytol. 2020, 226, 1573–1582. [Google Scholar] [CrossRef]
  99. Coppola, M.; Corrado, G.; Coppola, V.; Cascone, P.; Martinelli, R.; Digilio, M.C.; Pennacchio, F.; Rao, R. Prosystemin Overexpression in Tomato Enhances Resistance to Different Biotic Stresses by Activating Genes of Multiple Signaling Pathways. Plant Mol. Biol. Rep. 2015, 33, 1270–1285. [Google Scholar] [CrossRef]
  100. McGurl, B.; Pearce, G.; Orozco-Cardenas, M.; Ryan, C.A. Structure, expression, and antisense inhibition of the systemin precursor gene. Science 1992, 255, 1570–1573. [Google Scholar] [CrossRef]
  101. Ryan, C.A.; Pearce, G. Systemins: A functionally defined family of peptide signals that regulate defensive genes in Solanaceae species. Proc. Natl. Acad. Sci. USA 2003, 100 (Suppl. 2), 14577–14580. [Google Scholar] [CrossRef]
  102. Cho, H.; Seo, D.; Kim, M.; Nam, B.E.; Ahn, S.; Kang, M.; Bang, G.; Kwon, C.-T.; Joo, Y.; Oh, E. SERKs serve as co-receptors for SYR1 to trigger systemin-mediated defense responses in tomato. J. Integr. Plant Biol. 2024, 66, 2273–2287. [Google Scholar] [CrossRef]
  103. Yamaguchi, Y.; Pearce, G.; Ryan, C.A. The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc. Natl. Acad. Sci. USA 2006, 103, 10104–10109. [Google Scholar] [CrossRef]
  104. Yamaguchi, Y.; Huffaker, A.; Bryan, A.C.; Tax, F.E.; Ryan, C.A. PEPR2 Is a Second Receptor for the Pep1 and Pep2 Peptides and Contributes to Defense Responses in Arabidopsis Plant Cell 2010, 22, 508–522. 22. [CrossRef]
  105. Lee, M.W.; Huffaker, A.; Crippen, D.; Robbins, R.T.; Goggin, F.L. Plant elicitor peptides promote plant defences against nematodes in soybean. Mol. Plant Pathol. 2018, 19, 858–869. [Google Scholar] [CrossRef]
  106. Huang, Y.; Nordeen, R.O.; Di, M.; Owens, L.D.; McBeath, J.H. Expression of an Engineered Cecropin Gene Cassette in Transgenic Tobacco Plants Confers Disease Resistance to Pseudomonas syringae pv. tabaci. Phytopathology® 1997, 87, 494–499. [Google Scholar] [CrossRef]
  107. Che, Y.-Z.; Li, Y.-R.; Zou, H.-S.; Zou, L.-F.; Zhang, B.; Chen, G.-Y. A novel antimicrobial protein for plant protection consisting of a Xanthomonas oryzae harpin and active domains of cecropin A and melittin. Microb. Biotechnol. 2011, 4, 777–793. [Google Scholar] [CrossRef]
  108. Shi, W.; Li, C.; Li, M.; Zong, X.; Han, D.; Chen, Y. Antimicrobial peptide melittin against Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice. Appl. Microbiol. Biotechnol. 2016, 100, 5059–5067. [Google Scholar] [CrossRef]
  109. Luo, Y.; Zhang, D.-D.; Dong, X.-W.; Zhao, P.-B.; Chen, L.-L.; Song, X.-Y.; Wang, X.-J.; Chen, X.-L.; Shi, M.; Zhang, Y.-Z. Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Microbiol. Lett. 2010, 313, 120–126. [Google Scholar] [CrossRef][Green Version]
  110. Ma, B.; Fang, C.; Lu, L.; Wang, M.; Xue, X.; Zhou, Y.; Li, M.; Hu, Y.; Luo, X.; Hou, Z. The antimicrobial peptide thanatin disrupts the bacterial outer membrane and inactivates the NDM-1 metallo-β-lactamase. Nat. Commun. 2019, 10, 3517. [Google Scholar] [CrossRef]
  111. Kang Hee, K.; Seo Chang, H.; Luchian, T.; Park, Y. Pse-T2, an Antimicrobial Peptide with High-Level, Broad-Spectrum Antimicrobial Potency and Skin Biocompatibility against Multidrug-Resistant Pseudomonas aeruginosa Infection. Antimicrob. Agents Chemother. 2018, 62, e01493-18. [Google Scholar] [CrossRef]
  112. Li, J.-F.; Zhang, J.-X.; Li, G.; Xu, Y.-Y.; Lu, K.; Wang, Z.-G.; Liu, J.-P. Antimicrobial activity and mechanism of peptide CM4 against Pseudomonas aeruginosa. Food Funct. 2020, 11, 7245–7254. [Google Scholar] [CrossRef]
  113. Yang, R.; Su, C.; Xue, Z.; Wei, H.; Wang, Z.; Zhu, J.; Meng, J.; Luan, Y. Combination of PAMP-induced peptide signaling and its regulator SpWRKY65 boosts tomato resistance to Phytophthora infestans. Plant J. 2025, 121, e70098. [Google Scholar] [CrossRef]
  114. Torres Ascurra, Y.C.; Müller, L.M. Signaling peptides control beneficial and pathogenic plant-microbe interactions. J. Exp. Bot. 2025. [Google Scholar] [CrossRef]
  115. Yamaguchi, K.; Kawasaki, T. Pathogen- and plant-derived peptides trigger plant immunity. Peptides 2021, 144, 170611. [Google Scholar] [CrossRef]
  116. Yang, R.; Wang, Z.; Zhao, L.; Liu, J.; Meng, J.; Luan, Y. Secreted Peptide SpPIP1 Modulates Disease Resistance and Salt Tolerance in Tomato. J. Agric. Food Chem. 2023, 71, 12264–12279. [Google Scholar] [CrossRef]
  117. Tang, R.; Tan, H.; Dai, Y.; Li, L.a.; Huang, Y.; Yao, H.; Cai, Y.; Yu, G. Application of antimicrobial peptides in plant protection: Making use of the overlooked merits. Front. Plant Sci. 2023, 14, 1139539. [Google Scholar] [CrossRef]
  118. Herrera Diaz, A.; Kovacs, I.; Lindermayr, C. Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria. PLoS ONE 2016, 11, e0164097. [Google Scholar] [CrossRef]
  119. Zhao, P.; Yang, H.; Sun, Y.; Zhang, J.; Gao, K.; Wu, J.; Zhu, C.; Yin, C.; Chen, X.; Liu, Q.; et al. Targeted MYC2 stabilization confers citrus Huanglongbing resistance. Science 2025, 388, 191–198. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.