Scaling Relationships Among the Floral Organs of Rosa chinensis var. minima: Implications for Reproductive Allocation and Floral Proportionalities
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Measurements
2.2. Statistical Analysis of Distribution Models
2.3. Scaling Analysis
3. Results
4. Discussion
4.1. Application of the Weibull Distribution and Ecological Implications of Biomass Allocation Patterns
4.2. Biological Implications of Observed Scaling Relationships
4.3. Environmental Modulation of Floral Resource Allocation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Darwin, C. On the Origin of Species; John Murray: London, UK, 1859. [Google Scholar]
- Harder, L.D.; Johnson, S.D. Darwin’s beautiful contrivances: Evolutionary and functional evidence for floral adaptation. New Phytol. 2009, 183, 530–545. [Google Scholar] [CrossRef]
- Niklas, K.J. Allocation of organ biomass in perfect and imperfect flowers. Ann. Bot. 1993, 72, 475–483. [Google Scholar] [CrossRef]
- Johnson, S.D. Pollination ecotypes and the origin of plant species. Proc. R. Soc. B Biol. Sci. 2025, 292, 20242787. [Google Scholar] [CrossRef]
- Lloyd, D.G.; Barrett, S.C.H. Floral Biology: Studies on Floral Evolution in Animal-Pollinated Plants; Springer: New York, NY, USA, 1996. [Google Scholar]
- Barrett, S.C.H. The evolution of plant sexual diversity. Nat. Rev. Genet. 2002, 3, 274–284. [Google Scholar] [CrossRef]
- Goodwillie, C.; Sargent, R.D.; Eckert, C.G.; Elle, E.; Geber, M.A.; Johnston, M.O.; Kalisz, S.; Moeller, D.A.; Ree, R.H.; Vallejo-Marin, M.; et al. Correlated evolution of mating system and floral display traits in flowering plants and its implications for the distribution of mating system variation. New Phytol. 2010, 185, 311–321. [Google Scholar] [CrossRef]
- Pauly, G.; Larue, C.; Petit, R.J. Adaptive function of duodichogamy: Why do chestnut trees have two pollen emission phases? Am. J. Bot. 2023, 110, e16204. [Google Scholar] [CrossRef]
- Li, X.; Zou, Y.; Xiao, C.; Gituru, R.W.; Guo, Y.; Yang, C. The differential contributions of herkogamy and dichogamy as mechanisms of avoiding self-interference in four self-incompatible Epimedium species. J. Evol. Biol. 2013, 26, 1949–1958. [Google Scholar] [CrossRef] [PubMed]
- Campbell, D.R.; Waser, N.M.; Price, M.V.; Lynch, E.A.; Mitchell, R.J. Components of phenotypic selection: Pollen export and flower corolla width in Ipomopsis aggregata. Evolution 1991, 45, 1458–1467. [Google Scholar] [CrossRef] [PubMed]
- Møller, A.P.; Eriksson, M. Pollinator preference for symmetrical flowers and sexual selection in Plants. Oikos 1995, 73, 15–22. [Google Scholar] [CrossRef]
- Frey, F.M.; Bukoski, M. Floral symmetry is associated with flower size and pollen production but not insect visitation rates in Geranium robertianum (Geraniaceae). Plant Species Biol. 2014, 29, 272–280. [Google Scholar] [CrossRef]
- Neustupa, J.; Woodard, K. Male sterility significantly elevates shape variation and fluctuating asymmetry of zygomorphic corolla in gynodioecious Glechoma hederacea (Lamiaceae). AoB Plants 2021, 13, plab013. [Google Scholar] [CrossRef]
- Herrera, J. Phenotypic correlations among plant parts in Iberian Papilionoideae (Fabaceae). Ann. Bot. 2005, 95, 345–350. [Google Scholar] [CrossRef]
- Galen, C. Measuring pollinator-mediated selection on morphometric floral traits: Bumblebees and the alpine sky pilot, Polemonium viscosum. Evolution 1989, 43, 882–890. [Google Scholar] [CrossRef]
- Moyroud, E.; Glover, B.J. The evolution of diverse floral morphologies. Curr. Biol. 2017, 27, R941–R951. [Google Scholar] [CrossRef]
- Niklas, K.J. Plant Allometry: The Scaling of Form and Process; University of Chicago Press: Chicago, IL, USA, 1994. [Google Scholar]
- Niklas, K.J.; Cobb, E.D.; Niinemets, Ü.; Reich, P.B.; Sellin, A.; Shipley, B.; Wright, I.J. “Diminishing returns” in the scaling of functional leaf traits across and within species groups. Proc. Natl. Acad. Sci. USA 2007, 104, 8891–8896. [Google Scholar] [CrossRef]
- Bell, G. On the function of flowers. Proc. R. Soc. Lond. B 1985, 224, 223–265. [Google Scholar] [CrossRef]
- Rehder, A. Manual of Cultivated Trees and Shrubs; Macmillan: New York, NY, USA, 1940. [Google Scholar]
- Raymond, O. Domestication et Sélection Dirigée Chez le Rosier: Analyse Historique via les Phénotypes Morphologique, Chimique et Biochimique. Ph.D. Thesis, Université Claude Bernard-Lyon1, Lyon, France, 1999. [Google Scholar]
- Martin, M.; Piola, F.; Chessel, D.; Jay, M.; Heizmann, P. The domestication process of the Modern Rose: Genetic structure and allelic composition of the rose complex. Theor. Appl. Genet. 2001, 102, 398–404. [Google Scholar] [CrossRef]
- Bendahmane, M.; Dubois, A.; Raymond, O.; Le Bris, M. Genetics and genomics of flower initiation and development in roses. J. Exp. Bot. 2013, 64, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Wang, J.; Luo, L.; Yu, C.; Xu, T.; Wu, Y.; Cheng, T.; Wang, J.; Pan, H.; Zhang, Q. Genetic relationships and evolution of old Chinese garden roses based on SSRs and chromosome diversity. Sci. Rep. 2017, 7, 15437. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Ratkowsky, D.A.; Hui, C.; Wang, P.; Su, J.; Shi, P. Leaf fresh weight versus dry weight: Which is better for describing the scaling relationship between leaf biomass and leaf area for broad-leaved plants? Forests 2019, 10, 256. [Google Scholar] [CrossRef]
- Li, Y.; Shi, P.; Niinemets, Ü.; Song, Y.; Yu, K.; Schrader, J.; Niklas, K.J. Diminishing returns among lamina fresh and dry mass, surface area, and petiole fresh mass among nine Lauraceae species. Am. J. Bot. 2022, 109, 377–392. [Google Scholar] [CrossRef]
- Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.r-project.org/ (accessed on 26 July 2023).
- Murthy, D.N.P.; Xie, M.; Jiang, R. Weibull Models; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Chen, L.; Niklas, K.J.; Ding, Z.; Gielis, J.; Miao, Q.; Lian, M.; Shi, P. Scaling relationships among the mass of eggshell, albumen, and yolk in six precocial birds. Integr. Comp. Biol. 2024, 64, 133–143. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman and Hall/CRC: New York, NY, USA, 1993. [Google Scholar]
- Sandhu, H.S.; Shi, P.; Kuang, X.; Xue, F.; Ge, F. Applications of the bootstrap to insect physiology. Fla. Entomol. 2011, 94, 1036–1041. [Google Scholar] [CrossRef]
- Niklas, K.J. Determinate growth of Allium sativum peduncles: Evidence of determinate growth as a design factor for biomechanical safety. Am. J. Bot. 1990, 77, 762–771. [Google Scholar] [CrossRef]
- Niklas, K.J.; Varna, J.; Berglund, L.A. Non-parametric statistical formulas for factors of safety of plant stems. J. Theor. Biol. 1999, 197, 135–147. [Google Scholar] [CrossRef]
- Darwin, C. The Different Forms of Flowers on Plants of the Same Species; John Murray: London, UK, 1877. [Google Scholar]
- Delph, L.F. Flower size dimorphism in plants with unisexual flowers. In Floral Biology: Studies on Floral Evolution in Animal-Pollinated Plants; Lloyd, D.G., Barrett, S.C.H., Eds.; Chapman & Hall: New York, NY, USA, 1996; pp. 217–237. [Google Scholar]
- Neustupa, J. Gynodioecy in the common spindle tree (Euonymus europaeus L.) involves differences in the asymmetry of corolla shapes between sexually differentiated flowers. PeerJ 2020, 8, e8571. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Ronse De Craene, L. What is the nature of petals in Caryophyllaceae? Developmental evidence clarifies their evolutionary origin. Ann. Bot. 2019, 124, 281–295. [Google Scholar] [CrossRef]
- Dubois, A.; Raymond, O.; Maene, M.; Baudino, S.; Langlade, N.B.; Boltz, V.; Vergne, P.; Bendahmane, M. Tinkering with the C-function: A molecular frame for the selection of double flowers in cultivated roses. PLoS ONE 2010, 5, e9288. [Google Scholar] [CrossRef]
- Zhang, F.; Brodribb, T.J. Are flowers vulnerable to xylem cavitation during drought? Proc. R. Soc. B Biol. Sci. 2017, 284, 20162642. [Google Scholar] [CrossRef]
- Bourbia, I.; Carins-Murphy, M.R.; Gracie, A.; Brodribb, T.J. Xylem cavitation isolates leaky flowers during water stress in pyrethrum. New Phytol. 2020, 227, 146–155. [Google Scholar] [CrossRef]
- Arroyo, M.T.K.; Armesto, J.J.; Primack, R.B. Community studies in pollination ecology in the high temperate Andes of central Chile II. Effect of temperature on visitation rates and pollination possibilities. Plant Syst. Evol. 1985, 149, 187–203. [Google Scholar] [CrossRef]
- Bingham, R.A.; Orthner, A.R. Efficient pollination of alpine plants. Nature 1998, 391, 238–239. [Google Scholar] [CrossRef]
- Totland, Ö. Intraseasonal variation in pollination intensity and seed set in an alpine population of Ranunculus acris in southwestern Norway. Ecography 1994, 17, 159–165. [Google Scholar] [CrossRef]
- Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems, 3rd ed.; Springer: Cham, Switzerland, 2021. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Z.; Niklas, K.J.; Yang, Y.; Gu, W.; Li, Z.; Shi, P. Scaling Relationships Among the Floral Organs of Rosa chinensis var. minima: Implications for Reproductive Allocation and Floral Proportionalities. Plants 2025, 14, 2446. https://doi.org/10.3390/plants14152446
Wen Z, Niklas KJ, Yang Y, Gu W, Li Z, Shi P. Scaling Relationships Among the Floral Organs of Rosa chinensis var. minima: Implications for Reproductive Allocation and Floral Proportionalities. Plants. 2025; 14(15):2446. https://doi.org/10.3390/plants14152446
Chicago/Turabian StyleWen, Zhe, Karl J. Niklas, Yunfeng Yang, Wen Gu, Zhongqin Li, and Peijian Shi. 2025. "Scaling Relationships Among the Floral Organs of Rosa chinensis var. minima: Implications for Reproductive Allocation and Floral Proportionalities" Plants 14, no. 15: 2446. https://doi.org/10.3390/plants14152446
APA StyleWen, Z., Niklas, K. J., Yang, Y., Gu, W., Li, Z., & Shi, P. (2025). Scaling Relationships Among the Floral Organs of Rosa chinensis var. minima: Implications for Reproductive Allocation and Floral Proportionalities. Plants, 14(15), 2446. https://doi.org/10.3390/plants14152446