Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6853 KB  
Review
Net-Zero Greenhouse Gas Emission Electrified Aircraft Propulsion for Large Commercial Transport
by Hao Huang and Kaushik Rajashekara
World Electr. Veh. J. 2024, 15(9), 411; https://doi.org/10.3390/wevj15090411 - 8 Sep 2024
Cited by 3 | Viewed by 2292
Abstract
Until recently, electrified aircraft propulsion (EAP) technology development has been driven by the dual objectives of reducing greenhouse gas (GHG) emissions and addressing the depletion of fossil fuels. However, the increasing severity of climate change, posing a significant threat to all life forms, [...] Read more.
Until recently, electrified aircraft propulsion (EAP) technology development has been driven by the dual objectives of reducing greenhouse gas (GHG) emissions and addressing the depletion of fossil fuels. However, the increasing severity of climate change, posing a significant threat to all life forms, has resulted in the global consensus of achieving net-zero GHG emissions by 2050. This major shift has alerted the aviation electrification industry to consider the following: What is the clear path forward for EAP technology development to support the net-zero GHG goals for large commercial transport aviation? The purpose of this paper is to answer this question. After identifying four types of GHG emissions that should be used as metrics to measure the effectiveness of each technology for GHG reduction, the paper presents three significant categories of GHG reduction efforts regarding the engine, evaluates the potential of EAP technologies within each category as well as combinations of technologies among the different categories using the identified metrics, and thus determines the path forward to support the net-zero GHG objective. Specifically, the paper underscores the need for the aviation electrification industry to adapt, adjust, and integrate its EAP technology development into the emerging new engine classes. These innovations and collaborations are crucial to accelerate net-zero GHG efforts effectively. Full article
(This article belongs to the Special Issue Electric and Hybrid Electric Aircraft Propulsion Systems)
Show Figures

Figure 1

10 pages, 499 KB  
Article
Barriers to Electrification: Analyzing Critical Delays and Pathways Forward
by Beatriz Amante García and Lluc Canals Casals
World Electr. Veh. J. 2024, 15(9), 409; https://doi.org/10.3390/wevj15090409 - 6 Sep 2024
Cited by 2 | Viewed by 1731
Abstract
This paper extensively explores the intricate nuances surrounding the delayed transition to new business models for electric vehicles. While there is commendable clarity regarding stakeholders, model possibilities, emission-reduction strategies, state aid initiatives, and citywide prohibitions, the central challenge lies in the gradual pace [...] Read more.
This paper extensively explores the intricate nuances surrounding the delayed transition to new business models for electric vehicles. While there is commendable clarity regarding stakeholders, model possibilities, emission-reduction strategies, state aid initiatives, and citywide prohibitions, the central challenge lies in the gradual pace of this transition. Notably, the persistent high costs of electric vehicles, primarily attributed to exorbitant battery prices and the raw materials involved, represent a formidable hurdle to widespread adoption. In this article, a comprehensive examination of the multifaceted aspects contributing to the delays in the shift towards electrified transport is proposed. By meticulously scrutinizing the intricacies of this delay, the aim is to provide valuable insights that can contribute to accelerating the adoption of electric vehicles. The exploration of these challenges is essential for fostering a nuanced understanding of the impediments hindering the transition and, subsequently, for devising effective strategies to overcome them. The analysis presented herein not only identifies the hurdles but also seeks to offer potential solutions and strategies that can drive the transformative change needed in the realm of electric transportation. Understanding and mitigating the barriers impeding the transition is crucial for fostering a rapid and successful shift towards electric mobility in Spain, ensuring a sustainable and efficient transportation landscape for the future. Full article
Show Figures

Figure 1

21 pages, 8023 KB  
Article
Proposal of a Cost-Effective and Adaptive Customized Driver Inattention Detection Model Using Time Series Analysis and Computer Vision
by Sangwook Sim and Changgyun Kim
World Electr. Veh. J. 2024, 15(9), 400; https://doi.org/10.3390/wevj15090400 - 3 Sep 2024
Cited by 5 | Viewed by 1887
Abstract
Advanced Driver Assistance Systems, such as Forward Collision Warning and Lane Departure Warning, play a crucial role in accident prevention by alerting drivers to potential hazards. With the advent of fully autonomous driving technology that requires no driver input, there is now a [...] Read more.
Advanced Driver Assistance Systems, such as Forward Collision Warning and Lane Departure Warning, play a crucial role in accident prevention by alerting drivers to potential hazards. With the advent of fully autonomous driving technology that requires no driver input, there is now a greater emphasis on monitoring the state of vehicle occupants. This is particularly important because, in emergency situations where control must suddenly be transferred to an unprepared occupant, the risk of accidents increases significantly. To mitigate this risk, new monitoring technologies are being developed to analyze driver behavior and detect states of inattention or drowsiness. In response to the emerging demands of driver monitoring technology, we have developed the Customized Driver Inattention Detection Model (CDIDM). This model employs video analysis and statistical techniques to accurately and rapidly classify information on drivers’ gazes. The CDIDM framework defines the components of inattentive or drowsy driving based on the Driver Monitoring System (DMS) safety standards set by the European New Car Assessment Programme (EuroNCAP). By defining six driving behavior-related scenarios, we have improved the accuracy of driver inattention assessment. The CDIDM estimates the driver’s gaze while simultaneously analyzing data in real-time. To minimize computational resource usage, this model incorporates a series of preprocessing steps that facilitate efficient time series data analysis, utilizing techniques such as DTW Barycenter Averaging (DBA) and K-means clustering. This results in a robust driver attention monitoring model based on time series classification. Full article
Show Figures

Figure 1

16 pages, 2194 KB  
Article
Evaluating Synergies between Electric Vehicles and Photovoltaics: A Comparative Study of Urban Environments
by Renos Rotas, Petros Iliadis, Nikos Nikolopoulos and Ananias Tomboulides
World Electr. Veh. J. 2024, 15(9), 397; https://doi.org/10.3390/wevj15090397 - 2 Sep 2024
Cited by 1 | Viewed by 3150
Abstract
Electric vehicles (EVs) and photovoltaics (PVs) are expected to be broadly adopted in future power systems. However, the temporal variability of EV load and PV production presents challenges for integrating them into the power grid. This study evaluates and assesses the synergies between [...] Read more.
Electric vehicles (EVs) and photovoltaics (PVs) are expected to be broadly adopted in future power systems. However, the temporal variability of EV load and PV production presents challenges for integrating them into the power grid. This study evaluates and assesses the synergies between EVs and PV systems to maximize solar energy utilization for EV load coverage. The configurations studied include EV charging via the national grid as a reference case (Case 1) and two solar energy harvesting options: EVs powered directly by vehicle-mounted PVs (Case 2) and EV chargers connected to residential PV installations (Case 3). These cases are evaluated across different urban environments with large EV fleets and dissimilar weather conditions: Berlin and Los Angeles. A customized operation profile based on the worldwide harmonized light-duty test cycle (WLTC) and a charge-right-away (CRA) strategy is used. Energy performance analysis is conducted through dynamic simulations using the Modelica language, with environmental and economic indices derived. Key findings highlight the superior performance of residential PV systems in both cities compared to current solar EV technologies, with both solutions offering significant benefits over the reference case. Cases 2 and 3 result in a 44% and 59% reduction in annual energy consumption, greenhouse gas emissions, and charging costs in Berlin, while in Los Angeles, the reductions are 67% and 98%. The average daily solar driving range reaches 20.3% in Berlin and 30.4% in Los Angeles. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-mobility)
Show Figures

Figure 1

30 pages, 8447 KB  
Review
Aircraft Electrification: Insights from a Cross-Sectional Thematic and Bibliometric Analysis
by Raj Bridgelall
World Electr. Veh. J. 2024, 15(9), 384; https://doi.org/10.3390/wevj15090384 - 24 Aug 2024
Cited by 1 | Viewed by 1881
Abstract
Electrifying aircraft, a crucial advancement in the aviation industry, aims to cut pollutive emissions and boost energy efficiency. Traditional aircraft depend on fossil fuels, which contribute significantly to greenhouse gas emissions and environmental pollution. Despite progress in electric propulsion and energy storage technologies, [...] Read more.
Electrifying aircraft, a crucial advancement in the aviation industry, aims to cut pollutive emissions and boost energy efficiency. Traditional aircraft depend on fossil fuels, which contribute significantly to greenhouse gas emissions and environmental pollution. Despite progress in electric propulsion and energy storage technologies, challenges such as low energy density and integration issues persist. This paper provides a comprehensive thematic and bibliometric analysis to map the research landscape in aircraft electrification, identifying key research themes, influential contributors, and emerging trends. This study applies natural language processing to unstructured bibliographic data and cross-sectional statistical methods to analyze publications, citations, and keyword distributions across various categories related to aircraft electrification. The findings reveal significant growth in research output, particularly in energy management and multidisciplinary design analysis. Collaborative networks highlight key international partnerships, with the United States and China being key research hubs, while citation metrics highlight the impact of leading researchers and institutions in these countries. This study provides valuable insights for researchers, policymakers, and industry stakeholders, guiding future research directions and collaborations. Full article
Show Figures

Figure 1

44 pages, 973 KB  
Review
A Review on State-of-Charge Estimation Methods, Energy Storage Technologies and State-of-the-Art Simulators: Recent Developments and Challenges
by Muhtahir O. Oloyede, Godfrey A. Akpakwu, Herman C. Myburgh, Allan De Freitas and Tawanda Kunatsa
World Electr. Veh. J. 2024, 15(9), 381; https://doi.org/10.3390/wevj15090381 - 23 Aug 2024
Cited by 9 | Viewed by 6206
Abstract
Exact state-of-charge estimation is necessary for every application related to energy storage systems to protect the battery from deep discharging and overcharging. This leads to an improvement in discharge efficiency and extends the battery lifecycle. Batteries are a main source of energy and [...] Read more.
Exact state-of-charge estimation is necessary for every application related to energy storage systems to protect the battery from deep discharging and overcharging. This leads to an improvement in discharge efficiency and extends the battery lifecycle. Batteries are a main source of energy and are usually monitored by management systems to achieve optimal use and protection. Coming up with effective methods for battery management systems that can adequately estimate the state-of-charge of batteries has become a great challenge that has been studied in the literature for some time. Hence, this paper analyses the different energy storage technologies, highlighting their merits and demerits. The various estimation methods for state-of-charge are discussed, and their merits and demerits are compared, while possible applications are pointed out. Furthermore, factors affecting the battery state-of-charge and approaches to managing the same are discussed and analysed. The different modelling tools used to carry out simulations for energy storage experiments are analysed and discussed. Additionally, a quantitative comparison of different technical and economic modelling simulators for energy storage applications is presented. Previous research works have been found to lack accuracy under varying conditions and ageing effects; as such, integrating hybrid approaches for enhanced accuracy in state-of-charge estimations is advised. With regards to energy storage technologies, exploring alternative materials for improved energy density, safety and sustainability exists as a huge research gap. The development of effective battery management systems for optimisation and control is yet to be fully exploited. When it comes to state-of-the-art simulators, integrating multiscale models for comprehensive understanding is of utmost importance. Enhancing adaptability across diverse battery chemistries and rigorous validation with real-world data is essential. To sum up the paper, future research directions and a conclusion are given. Full article
(This article belongs to the Special Issue Sustainable EV Rapid Charging, Challenges, and Development)
Show Figures

Figure 1

14 pages, 1159 KB  
Article
Examining Model-Based Fast-Charging and Preconditioning on a Vehicle Level
by Kareem Abo Gamra, Maximilian Zähringer, Aaron Ladner, Christian Allgäuer and Markus Lienkamp
World Electr. Veh. J. 2024, 15(8), 377; https://doi.org/10.3390/wevj15080377 - 19 Aug 2024
Cited by 1 | Viewed by 2293
Abstract
To establish battery electric vehicles as an attractive alternative to internal combustion vehicles, charging times of 15 min or less are increasingly demanded. This is especially challenging for lower battery temperatures, as this exacerbates the risk of accelerated battery degradation due to lithium [...] Read more.
To establish battery electric vehicles as an attractive alternative to internal combustion vehicles, charging times of 15 min or less are increasingly demanded. This is especially challenging for lower battery temperatures, as this exacerbates the risk of accelerated battery degradation due to lithium plating. Therefore, active battery heating is utilized in state-of-the-art electric vehicles. To evaluate the impact of such heating strategies at vehicle level, we deployed an electrochemical battery model coupled with a longitudinal vehicle dynamics model. Using anode potential control to prevent lithium plating, we assess the time-saving potential versus the energy cost of different preconditioning and fast-charging strategies. The results reveal substantial energy saving and charge speed increase potential through optimal charge-stop planning, preconditioning timing, cost-adjusted thermal management thresholds, and considering driving behavior. This emphasizes the need for advanced operation strategies, taking into account both battery-level electrical and thermal restrictions, as well as vehicle integration and route planning. Full article
Show Figures

Figure 1

47 pages, 15653 KB  
Systematic Review
Electric Vehicle Adoption: A Comprehensive Systematic Review of Technological, Environmental, Organizational and Policy Impacts
by Rami Zaino, Vian Ahmed, Ahmed Mohamed Alhammadi and Mohamad Alghoush
World Electr. Veh. J. 2024, 15(8), 375; https://doi.org/10.3390/wevj15080375 - 18 Aug 2024
Cited by 48 | Viewed by 50970
Abstract
This comprehensive systematic review explores the multifaceted impacts of electric vehicle (EV) adoption across technological, environmental, organizational, and policy dimensions. Drawing from 88 peer-reviewed articles, the study addresses a critical gap in the existing literature, which often isolates the impact of EV adoption [...] Read more.
This comprehensive systematic review explores the multifaceted impacts of electric vehicle (EV) adoption across technological, environmental, organizational, and policy dimensions. Drawing from 88 peer-reviewed articles, the study addresses a critical gap in the existing literature, which often isolates the impact of EV adoption without considering holistic effects. Technological advancements include innovations in the battery technology and energy storage systems, enhancing EV performance and mitigating range anxiety. The environmental analysis reveals substantial reductions in greenhouse gas emissions, with lifecycle assessments showing significant reductions for EVs compared to internal combustion engine vehicles, particularly when charged with renewable energy sources. Key comparisons include lifecycle emissions between mid-size battery electric vehicles (BEVs) and internal combustion engine vehicles (ICEVs), and global average lifecycle emissions by powertrain under various policy scenarios. The organizational implications are evident, as businesses adopt new models for fleet management and logistics, leveraging EVs for operational efficiency and sustainability. Policy analysis underscores the crucial role of government incentives, regulatory measures, and infrastructure investments in accelerating EV adoption. The review identifies future research areas such as efficient battery recycling methods, the potential impact of EVs on grid stability, and long-term economic implications. This study offers insights for stakeholders aiming to foster sustainable transportation and achieve global climate goals. Full article
Show Figures

Figure 1

17 pages, 4361 KB  
Review
Simulating Noise, Vibration, and Harshness Advances in Electric Vehicle Powertrains: Strategies and Challenges
by Krisztián Horváth and Ambrus Zelei
World Electr. Veh. J. 2024, 15(8), 367; https://doi.org/10.3390/wevj15080367 - 14 Aug 2024
Cited by 16 | Viewed by 8409
Abstract
This study examines the management of noise, vibration, and harshness (NVH) in electric vehicle (EV) powertrains, considering the challenges of the automotive industry’s transition to electric drivetrains. The growing popularity of electric vehicles brings new NVH challenges as the lack of internal combustion [...] Read more.
This study examines the management of noise, vibration, and harshness (NVH) in electric vehicle (EV) powertrains, considering the challenges of the automotive industry’s transition to electric drivetrains. The growing popularity of electric vehicles brings new NVH challenges as the lack of internal combustion engine noise makes drivetrain noise more prominent. The key to managing NVH in electric vehicle powertrains is understanding the noise from electric motors, inverters, and gear systems. Noise from electric motors, mainly resulting from electromagnetic forces and high-frequency noise generated by inverters, significantly impacts overall NVH performance. This article details sources of mechanical noise and vibration, including gear defects in gear systems and shaft imbalances. The methods presented in the publication include simulation and modeling techniques that help identify and solve NVH difficulties. Tools like multi-body dynamics, the finite element method, and multi-domain simulation are crucial for understanding the dynamic behavior of complex systems. With the support of simulations, engineers can predict noise and vibration challenges and develop effective solutions during the design phase. This study emphasizes the importance of a system-level approach in NVH management, where the entire drivetrain is modeled and analyzed together, not just individual components. Full article
Show Figures

Figure 1

26 pages, 2702 KB  
Article
Simultaneous Optimisation of Vehicle Design and Control for Improving Vehicle Performance and Energy Efficiency Using an Open Source Minimum Lap Time Simulation Framework
by Alberto Jiménez Elbal, Adrián Zarzuelo Conde and Efstathios Siampis
World Electr. Veh. J. 2024, 15(8), 366; https://doi.org/10.3390/wevj15080366 - 13 Aug 2024
Cited by 1 | Viewed by 3720
Abstract
This paper presents a comprehensive framework for optimising vehicle performance, integrating advanced simulation techniques with optimisation methodologies. The aim is to find the best racing line, as well as the optimal combination of parameters and control inputs to make a car as fast [...] Read more.
This paper presents a comprehensive framework for optimising vehicle performance, integrating advanced simulation techniques with optimisation methodologies. The aim is to find the best racing line, as well as the optimal combination of parameters and control inputs to make a car as fast as possible around a given track, with a focus on energy deployment and recovery, active torque distribution and active aerodynamics. The problem known as the Minimum Lap Time Problem is solved using optimal control methods and direct collocation. The solution covers the modelling of the track, vehicle dynamics, active aerodynamics, and a comprehensive representation of the powertrain including motor, engine, transmission, and drivetrain components. This integrated simulator allows for the exploration of different vehicle configurations and track layouts, providing insights into optimising vehicle design and vehicle control simultaneously for improved performance and energy efficiency. Test results demonstrate the effect of active torque distribution on performance under various conditions, enhanced energy efficiency and performance through regenerative braking, and the added value of including parameter optimisation within the optimisation framework. Notably, the simulations revealed interesting behaviours similar to lift-and-coast strategies, depending on the importance of energy saving, thereby highlighting the effectiveness of the proposed control strategies. Also, results demonstrate the positive effect of active torque distribution on performance under various conditions, attributed to the higher utilization of available adherence. Furthermore, unlike a simpler single-track model, the optimal solution required fine control of the active aerodynamic systems, reflecting the complex interactions between different subsystems that the simulation can capture. Finally, the inclusion of parameter optimisation while considering all active systems, further improves performance and provides valuable insights into the impact of design choices. Full article
Show Figures

Figure 1

18 pages, 4083 KB  
Article
Sizing a Renewable-Based Microgrid to Supply an Electric Vehicle Charging Station: A Design and Modelling Approach
by Amirhossein Khazali, Yazan Al-Wreikat, Ewan J. Fraser, Mobin Naderi, Matthew J. Smith, Suleiman M. Sharkh, Richard G. Wills, Daniel T. Gladwin, David A. Stone and Andrew J. Cruden
World Electr. Veh. J. 2024, 15(8), 363; https://doi.org/10.3390/wevj15080363 - 12 Aug 2024
Cited by 6 | Viewed by 2067
Abstract
In this paper, an optimisation framework is presented for planning a stand-alone microgrid for supplying EV charging (EVC) stations as a design and modelling approach for the FEVER (future electric vehicle energy networks supporting renewables) project. The main problem of the microgrid capacity [...] Read more.
In this paper, an optimisation framework is presented for planning a stand-alone microgrid for supplying EV charging (EVC) stations as a design and modelling approach for the FEVER (future electric vehicle energy networks supporting renewables) project. The main problem of the microgrid capacity sizing is making a compromise between the planning cost and providing the EV charging load with a renewable generation-based system. Hence, obtaining the optimal capacity for the microgrid components in order to acquire the desired level of reliability at minimum cost can be challenging. The proposed planning scheme specifies the size of the renewable generation and battery energy storage systems not only to maintain the generation–load balance but also to minimise the capital cost (CAPEX) and operational expenditures (OPEX). To study the impact of renewable generation and EV charging uncertainties, the information gap decision theory (IGDT) is used to include risk-averse (RA) and opportunity-seeking (OS) strategies in the planning optimisation framework. The simulations indicate that the planning scheme can acquire the global optimal solution for the capacity of each element and for a certain level of reliability or obtain the global optimal level of reliability in addition to the capacities to maximise the net present value (NPV) of the system. The total planning cost changes in the range of GBP 79,773 to GBP 131,428 when the expected energy not supplied (EENS) changes in the interval of 10 to 1%. The optimiser plans PV generation systems in the interval of 50 to 63 kW and battery energy storage system in the interval of 130 to 280 kWh and with trivial capacities of wind turbine generation. The results also show that by increasing the total cost according to an uncertainty budget, the uncertainties caused by EV charging load and PV generation can be managed according to a robustness radius. Furthermore, by adopting an opportunity-seeking strategy, the total planning cost can be decreased proportional to the variations in these uncertain parameters within an opportuneness radius. Full article
Show Figures

Figure 1

12 pages, 3489 KB  
Article
Experimental Investigation of a Distributed Architecture for EV Chargers Performing Frequency Control
by Simone Striani, Kristoffer Laust Pedersen, Jan Engelhardt and Mattia Marinelli
World Electr. Veh. J. 2024, 15(8), 361; https://doi.org/10.3390/wevj15080361 - 11 Aug 2024
Cited by 2 | Viewed by 2084
Abstract
The demand for electric vehicle supply equipment (EVSE) is increasing because of the rapid shift toward electric transport. Introducing EVSE on a large scale into the power grid can increase power demand volatility, negatively affecting frequency stability. A viable solution to this challenge [...] Read more.
The demand for electric vehicle supply equipment (EVSE) is increasing because of the rapid shift toward electric transport. Introducing EVSE on a large scale into the power grid can increase power demand volatility, negatively affecting frequency stability. A viable solution to this challenge is the development of smart charging technologies capable of performing frequency regulation. This paper presents an experimental proof of concept for a new frequency regulation method for EVSE utilizing a distributed control architecture. The architecture dynamically adjusts the contribution of electric vehicles (EVs) to frequency regulation response based on the charging urgency assigned by the EV users. The method is demonstrated with two Renault ZOEs responding to frequency fluctuation with a combined power range of 6 kW in the frequency range of 50.1 to 49.9 Hz. The results confirm consistent power sharing and effective frequency regulation, with the system controlling the engagement of the EVs in frequency regulation based on priority. The delay and accuracy analyses reveal a fast and accurate response, with the cross-correlation indicating an 8.48 s delay and an average undershoot of 0.17 kW. In the conclusions, the paper discusses prospective improvements and outlines future research directions for integrating EVs as service providers. Full article
Show Figures

Figure 1

24 pages, 2934 KB  
Article
A Multidisciplinary Approach for the Sustainable Technical Design of a Connected, Automated, Shared and Electric Vehicle Fleet for Inner Cities
by Paul Rieger, Paul Heckelmann, Tobias Peichl, Sarah Schwindt-Drews, Nina Theobald, Arturo Crespo, Andreas Oetting, Stephan Rinderknecht and Bettina Abendroth
World Electr. Veh. J. 2024, 15(8), 360; https://doi.org/10.3390/wevj15080360 - 9 Aug 2024
Cited by 1 | Viewed by 1678
Abstract
The increasing volume of personal motorized vehicles (PMVs) in cities has become a serious issue leading to congestion, noise, air pollution and high land consumption. To ensure the sustainability of urban transportation, it is imperative to transition the current transportation paradigm toward a [...] Read more.
The increasing volume of personal motorized vehicles (PMVs) in cities has become a serious issue leading to congestion, noise, air pollution and high land consumption. To ensure the sustainability of urban transportation, it is imperative to transition the current transportation paradigm toward a more sustainable state. Transitions within socio-technical systems often arise from niche innovation. Therefore, this paper pursues the technical optimization of such a niche innovation by applying a technical sustainability perspective on an innovative mobility and logistics concept within a case study. This case study is based on a centrally managed connected, automated, shared and electric (CASE) vehicle fleet which might replace PMV use in urban city centers of the future. The key technical system components of the envisioned mobility and logistics concept are analyzed and optimized with regard to economic, ecological and social sustainability dimensions to maximize the overall sustainability of the ecosystem. Specifically, this paper identifies key challenges and proposes possible solutions across the vehicle components as well as the orchestration of the vehicles’ operations within the envisioned mobility and logistics concept. Thereby, the case study gives an example of how different engineering disciplines can contribute to different sustainability dimensions, highlighting the interdependences. Finally, the discussion concludes that the early integration of sustainability considerations in the technical optimization efforts of innovative transportation systems can provide an important building block for the transition of the current transportation paradigm to a more sustainable state. Full article
(This article belongs to the Special Issue Design Theory, Method and Control of Intelligent and Safe Vehicles)
Show Figures

Figure 1

23 pages, 3158 KB  
Article
Comparative Analysis of Energy Consumption between Electric Vehicles and Combustion Engine Vehicles in High-Altitude Urban Traffic
by David Sebastian Puma-Benavides, Alex Santiago Cevallos-Carvajal, Angel Guillermo Masaquiza-Yanzapanta, Milton Israel Quinga-Morales, Rodrigo Rigoberto Moreno-Pallares, Henrry Gabriel Usca-Gomez and Fernando Alejandro Murillo
World Electr. Veh. J. 2024, 15(8), 355; https://doi.org/10.3390/wevj15080355 - 7 Aug 2024
Cited by 8 | Viewed by 8144
Abstract
This analysis compares the energy efficiency and operational costs of combustion vehicles (Hyundai Accent 1.6 L and Chevrolet Sail 1.5 L) with the Nissan Leaf, an electric vehicle, under current fuel and electricity pricing in Ecuador. Combustion vehicles, converting gasoline into mechanical energy, [...] Read more.
This analysis compares the energy efficiency and operational costs of combustion vehicles (Hyundai Accent 1.6 L and Chevrolet Sail 1.5 L) with the Nissan Leaf, an electric vehicle, under current fuel and electricity pricing in Ecuador. Combustion vehicles, converting gasoline into mechanical energy, demonstrate substantial energy losses, leading to higher operational costs, especially with recent gasoline price hikes to USD 2.722 per gallon. In stark contrast, the Nissan Leaf exhibits significantly greater energy efficiency, consuming only 15–20 kWh per 100 km, which translates to lower running costs (USD 11.20 to fully charge a 40 kWh battery). Despite the clear economic and environmental benefits of electric vehicles, their adoption in Ecuador is hampered by geographical challenges such as diverse terrain that can affect vehicle range and battery longevity. Moreover, the limited and uneven distribution of EV charging stations, mostly concentrated in urban areas, poses significant barriers. For broader implementation, a strategic expansion of the EV infrastructure and careful consideration of the national energy grid’s capacity to support increased electric vehicle uptake are essential. Addressing these challenges is crucial for realizing the full potential of electric vehicles in enhancing Ecuador’s sustainability and energy independence. Full article
Show Figures

Figure 1

18 pages, 2903 KB  
Article
A Universal Electric Vehicle Outlet and Portable Cable for North America
by Willett Kempton, Rodney T. McGee and Garrett A. Ejzak
World Electr. Veh. J. 2024, 15(8), 353; https://doi.org/10.3390/wevj15080353 - 6 Aug 2024
Cited by 4 | Viewed by 3486
Abstract
For electric vehicle (EV) charging in North America, three AC connectors are standardized, resulting in a proliferation of charging stations which can only charge one of the three types of EV. We propose a “Universal EV Outlet” that works with an EV “carry [...] Read more.
For electric vehicle (EV) charging in North America, three AC connectors are standardized, resulting in a proliferation of charging stations which can only charge one of the three types of EV. We propose a “Universal EV Outlet” that works with an EV “carry along” charging cable—one end of the cable has a connector specific to that user’s EV, the other a plug for the Universal EV Outlet. This proposal does not interfere with, nor require change to, any existing charging stations. It does not require any new types of inlets on EVs. The components are already standardized. Eight use cases are examined to illustrate the advantages, and some limitations, of the Universal EV Outlet. The use cases illustrate how this solution: resolves the problem of multiple AC charging connectors, makes today’s “EV Ready” building codes more adaptable, lowers capital and maintenance costs, creates a solution to curbside and urban charging, increases energy efficiency, enables higher power three-phase AC charging for heavy vehicles, and facilitates use of EVs for building backup power and for vehicle-to-grid. Finally, we propose a standards-based active cable used with the Universal EV Outlet, which would allow fast and secure EV identification for curbside or other shared charging locations, usable today without modifications to current EVs. Full article
Show Figures

Figure 1

22 pages, 4387 KB  
Review
Advancing Sustainable Transportation Education: A Comprehensive Analysis of Electric Vehicle Prototype Design and Fabrication
by Rajesh Ravi, Merouan Belkasmi, Oumaima Douadi, Mustapha Faqir, Elhachmi Essadiqi, Fatima Zohra Gargab, Manoranjitham Ezhilchandran and Padmanathan Kasinathan
World Electr. Veh. J. 2024, 15(8), 354; https://doi.org/10.3390/wevj15080354 - 6 Aug 2024
Cited by 2 | Viewed by 3617
Abstract
The global shift towards electric vehicles (EVs) has necessitated a paradigm shift in engineering education, emphasizing hands-on experiences and innovative learning approaches. This review article presents a comprehensive analysis of the design and fabrication process of an educational EV prototype, highlighting its significance [...] Read more.
The global shift towards electric vehicles (EVs) has necessitated a paradigm shift in engineering education, emphasizing hands-on experiences and innovative learning approaches. This review article presents a comprehensive analysis of the design and fabrication process of an educational EV prototype, highlighting its significance in preparing future engineers for the rapidly evolving EV industry. The article delves into the historical development and recent trends in EVs, providing context for the growing importance of practical skills in this field. A detailed examination of the key components and systems in modern EVs, such as battery packs, electric motors, transmission systems, and chassis design, lays the foundation for understanding the complexities involved in EV prototype development. The methodology section explores the research approach, conceptual design, simulations, material selection, and construction techniques employed in the creation of an educational EV prototype. The evaluation and testing phase assesses the prototype’s performance, safety, and reliability, offering valuable insights into the lessons learned and areas for improvement. The impact of such projects on engineering education is discussed, emphasizing the importance of hands-on learning experiences and interdisciplinary collaboration in preparing students for future careers in the EV industry. The article concludes by addressing common challenges faced during EV prototype projects and providing recommendations for future educational initiatives in this field. Full article
(This article belongs to the Special Issue Electric Vehicle Crash Safety Design)
Show Figures

Figure 1

15 pages, 4744 KB  
Article
Parameter Identification for Fault Analysis of Permanent Magnet Synchronous Motors Based on Transient Processes
by Chaoqiang Wu and Alexander Verl
World Electr. Veh. J. 2024, 15(8), 347; https://doi.org/10.3390/wevj15080347 - 1 Aug 2024
Viewed by 1393
Abstract
As the market for hybrid and electric vehicles expands, electric motor production and testing technology must be continuously improved to meet the cost and quality requirements of mass production. In order to detect faults in motors during the production process, a condition monitoring [...] Read more.
As the market for hybrid and electric vehicles expands, electric motor production and testing technology must be continuously improved to meet the cost and quality requirements of mass production. In order to detect faults in motors during the production process, a condition monitoring tool is used for the motor end line. During most condition monitoring, the motor operates in a static state where the speed of the motor remains constant and the voltage/current is recorded for a certain period. This process usually takes a long time and requires a loader to drag the motor to a standstill at a constant speed. In this paper, various transient process testing methods are introduced. For these processes, only transient operation of the motor, such as acceleration, loss, or a short circuit, is required. By analyzing the measurement results and simulation results of motor models, unhealthy motors can be detected more effectively. Full article
Show Figures

Figure 1

14 pages, 6485 KB  
Article
A Novel LQI Control Technique for Interleaved-Boost Converters
by Eiichi Sakasegawa, So Watanabe, Takayuki Shiraishi, Hitoshi Haga and Ralph M. Kennel
World Electr. Veh. J. 2024, 15(8), 343; https://doi.org/10.3390/wevj15080343 - 30 Jul 2024
Cited by 1 | Viewed by 1531
Abstract
Hybrid electric vehicles (HEVs) and fuel cell electric vehicles (FCEVs) utilize boost converters to gain a higher voltage than the battery. Interleaved boost converters are suitable for low input voltage, large input current, miniaturization, and high-efficiency applications. This paper proposes a novel linear [...] Read more.
Hybrid electric vehicles (HEVs) and fuel cell electric vehicles (FCEVs) utilize boost converters to gain a higher voltage than the battery. Interleaved boost converters are suitable for low input voltage, large input current, miniaturization, and high-efficiency applications. This paper proposes a novel linear quadratic integral (LQI) control for the interleaved boost converters. First, the small-signal model of the interleaved-boost converter is derived. In the proposed method, an output voltage and a current signal error between two-phase input currents are selected to control not only the output voltage but also a balance between two-phase input currents. Furthermore, steady-state characteristics in terms of the output voltage and the input current are demonstrated by experiments and simulations using an experimental apparatus with a rated power of 700 W. The validity of the proposed method’s tracking performance and load response is demonstrated by comparing it with that of the conventional PI control. The tracking performance of the LQI control for the 40 V step response has a ten times faster response than that of the PI control. Also, the experimental results demonstrate that the proposed method maintains a constant output voltage for a 300 W load step while the PI control varies by 10 V during 70 ms. Additionally, the proposed method has an excellent disturbance rejection. Full article
(This article belongs to the Special Issue Power Electronics for Electric Vehicles)
Show Figures

Figure 1

28 pages, 5486 KB  
Article
Solar–Hydrogen-Storage Integrated Electric Vehicle Charging Stations with Demand-Side Management and Social Welfare Maximization
by Lijia Duan, Gareth Taylor and Chun Sing Lai
World Electr. Veh. J. 2024, 15(8), 337; https://doi.org/10.3390/wevj15080337 - 27 Jul 2024
Cited by 5 | Viewed by 2044
Abstract
The reliable operation of a power system requires a real-time balance between supply and demand. However, it is difficult to achieve this balance solely by relying on supply-side regulation. Therefore, it is necessary to cooperate with effective demand-side management, which is a key [...] Read more.
The reliable operation of a power system requires a real-time balance between supply and demand. However, it is difficult to achieve this balance solely by relying on supply-side regulation. Therefore, it is necessary to cooperate with effective demand-side management, which is a key strategy within smart grid systems, encouraging end-users to actively engage and optimize their electricity usage. This paper proposes a novel bi-level optimization model for integrating solar, hydrogen, and battery storage systems with charging stations (SHS-EVCSs) to maximize social welfare. The first level employs a non-cooperative game theory model for each individual EVCS to minimize capital and operational costs. The second level uses a cooperative game framework with an internal management system to optimize energy transactions among multiple EVCSs while considering EV owners’ economic interests. A Markov decision process models uncertainties in EV charging times, and Monte Carlo simulations predict charging demand. Real-time electricity pricing based on the dual theory enables demand-side management strategies like peak shaving and valley filling. Case studies demonstrate the model’s effectiveness in reducing peak loads, balancing energy utilization, and enhancing overall system efficiency and sustainability through optimized renewable integration, energy storage, EV charging coordination, social welfare maximization, and cost minimization. The proposed approach offers a promising pathway toward sustainable energy infrastructure by harmonizing renewable sources, storage technologies, EV charging demands, and societal benefits. Full article
Show Figures

Figure 1

14 pages, 7593 KB  
Article
Optimal Fast-Charging Strategy for Cylindrical Li-Ion Cells at Different Temperatures
by Joris Jaguemont, Ali Darwiche and Fanny Bardé
World Electr. Veh. J. 2024, 15(8), 330; https://doi.org/10.3390/wevj15080330 - 24 Jul 2024
Cited by 1 | Viewed by 1879
Abstract
Ensuring efficiency and safety is critical when developing charging strategies for lithium-ion batteries. This paper introduces a novel method to optimize fast charging for cylindrical Li-ion NMC 3Ah cells, enhancing both their charging efficiency and thermal safety. Using Model Predictive Control (MPC), this [...] Read more.
Ensuring efficiency and safety is critical when developing charging strategies for lithium-ion batteries. This paper introduces a novel method to optimize fast charging for cylindrical Li-ion NMC 3Ah cells, enhancing both their charging efficiency and thermal safety. Using Model Predictive Control (MPC), this study presents a cost function that estimates the thermal safety boundary of Li-ion batteries, emphasizing the relationship between the temperature gradient and the state of charge (SoC) at different temperatures. The charging control framework combines an equivalent circuit model (ECM) with minimal electro-thermal equations to estimate battery state and temperature. Optimization results indicate that at ambient temperatures, the optimal charging allows the cell’s temperature to self-regulate within a safe operating range, requiring only one additional minute to reach 80% SoC compared to a typical fast-charging protocol (high current profile). Validation through numerical simulations and real experimental data from an NMC 3Ah cylindrical cell demonstrates that the simple approach adheres to the battery’s electrical and thermal limitations during the charging process. Full article
Show Figures

Graphical abstract

16 pages, 1184 KB  
Article
Shifting towards Electric Vehicles: A Case Study of Mercedes-Benz from the Perspective of Cross-Functional Teams and Workforce Transformation
by Charisios Achillas and Parthena Iosifidou
World Electr. Veh. J. 2024, 15(7), 325; https://doi.org/10.3390/wevj15070325 - 22 Jul 2024
Cited by 1 | Viewed by 11592
Abstract
The automotive industry’s shift towards electric vehicles (EVs) is driven by technological advancements and environmental concerns. This paper examines Mercedes-Benz’s strategy in this transition, highlighting the challenges and opportunities involved. Using thematic analysis of semi-structured interviews with key professionals at Mercedes-Benz, the study [...] Read more.
The automotive industry’s shift towards electric vehicles (EVs) is driven by technological advancements and environmental concerns. This paper examines Mercedes-Benz’s strategy in this transition, highlighting the challenges and opportunities involved. Using thematic analysis of semi-structured interviews with key professionals at Mercedes-Benz, the study reveals a dual strategy: integrating new talents with specific EV competencies and upskilling the existing workforce. This approach reflects the company’s recognition of evolving vehicle development requirements and commitment to maintaining a skilled workforce. Emphasis on data-driven functions highlights the industry’s shift towards technological advancements. The transition significantly impacts workforce roles, necessitating role reassignment and collaborative planning, indicating a culture of inclusivity and proactive change management. Challenges include the importance of mindset change and adaptability among employees, as well as managing overlapping traditional and EV projects, leading to increased workloads and compressed timelines. Tailored training and development strategies are essential for a comprehensive transition. Mercedes-Benz’s commitment to an electric-only strategy signals a clear future direction. However, this raises questions about workforce preparedness and ongoing skill development. The study offers insights into managing workforce transformation in the EV transition, contributing to academic discussions and providing practical guidance for industry professionals. Full article
Show Figures

Figure 1

18 pages, 1863 KB  
Article
Dynamic Charging Optimization Algorithm for Electric Vehicles to Mitigate Grid Power Peaks
by Alain Aoun, Mehdi Adda, Adrian Ilinca, Mazen Ghandour and Hussein Ibrahim
World Electr. Veh. J. 2024, 15(7), 324; https://doi.org/10.3390/wevj15070324 - 21 Jul 2024
Cited by 10 | Viewed by 5357
Abstract
The rapid proliferation of electric vehicles (EVs) presents both opportunities and challenges for the electrical grid. While EVs offer a promising avenue for reducing greenhouse gas emissions and dependence on fossil fuels, their uncoordinated charging behavior can strain grid infrastructure, thus creating new [...] Read more.
The rapid proliferation of electric vehicles (EVs) presents both opportunities and challenges for the electrical grid. While EVs offer a promising avenue for reducing greenhouse gas emissions and dependence on fossil fuels, their uncoordinated charging behavior can strain grid infrastructure, thus creating new challenges for grid operators and EV owners equally. The uncoordinated nature of electric vehicle charging may lead to the emergence of new peak loads. Grid operators typically plan for peak demand periods and deploy resources accordingly to ensure grid stability. Uncoordinated EV charging can introduce unpredictability and variability into peak load patterns, making it more challenging for operators to manage peak loads effectively. This paper examines the implications of uncoordinated EV charging on the electric grid to address this challenge and proposes a novel dynamic optimization algorithm tailored to manage EV charging schedules efficiently, mitigating grid power peaks while ensuring user satisfaction and vehicle charging requirements. The proposed “Proof of Need” (PoN) charging algorithm aims to schedule the charging of EVs based on collected data such as the state of charge (SoC) of the EV’s battery, the charger power, the number of connected vehicles per household, the end-user’s preferences, and the local distribution substation’s capacity. The PoN algorithm calculates a priority index for each EV and coordinates the charging of all connected EVs at all times in a way that does not exceed the maximum allocated power capacity. The algorithm was tested under different scenarios, and the results offer a comparison of the charging power demand between an uncoordinated EV charging baseline scenario and the proposed coordinated charging model, proving the efficiency of our proposed algorithm, thus reducing the charging demand by 40.8% with no impact on the overall total charging time. Full article
(This article belongs to the Topic Electric Vehicles Energy Management, 2nd Volume)
Show Figures

Figure 1

15 pages, 2352 KB  
Article
Development of a Low-Expansion and Low-Shrinkage Thermoset Injection Moulding Compound Tailored to Laminated Electrical Sheets
by Florian Braunbeck, Florian Schönl, Timo Preußler, Hans-Christian Reuss, Martin Demleitner, Holger Ruckdäschel and Philipp Berendes
World Electr. Veh. J. 2024, 15(7), 319; https://doi.org/10.3390/wevj15070319 - 18 Jul 2024
Viewed by 1465
Abstract
This study presents a thermoset moulding compound designed for electrical machines with high power densities. The compound reduces residual stresses induced by the difference in thermal expansion during use and by shrinkage in the compound during the manufacturing process. To reduce the internal [...] Read more.
This study presents a thermoset moulding compound designed for electrical machines with high power densities. The compound reduces residual stresses induced by the difference in thermal expansion during use and by shrinkage in the compound during the manufacturing process. To reduce the internal stresses in the compound, in the electrical sheet lamination and at their interface, first the moulding’s coefficient of thermal expansion (CTE) must match that of the lamination because the CTE of the electrical sheets cannot be altered. Second, the shrinkage of the compound needs to be minimized because the moulding compound is injected around a prefabricated electrical sheet lamination. This provides greater freedom in the design of an electric motor or generator, especially if the thermoset needs to be directly bonded to the electrical sheet. The basic suitability of the material for the injection moulding process was iteratively optimised and confirmed by spiral flow tests. Due to the reduction of the residual stresses, the compound enables efficient cooling solutions for electrical machines with high power densities. This innovative compound can have a significant impact on electric propulsion systems across industries that use laminated electrical sheets. Full article
Show Figures

Figure 1

14 pages, 10219 KB  
Article
Teleoperated Driving with Virtual Twin Technology: A Simulator-Based Approach
by Keonil Kim and Seok-Cheol Kee
World Electr. Veh. J. 2024, 15(7), 311; https://doi.org/10.3390/wevj15070311 - 16 Jul 2024
Cited by 1 | Viewed by 2445
Abstract
This study introduces an innovative Teleoperated Driving (ToD) system integrated with virtual twin technology using the MORAI simulator. The system minimizes the need for extensive video data transmission by utilizing text-based vehicle information, significantly reducing the communication load. Key technical advancements include the [...] Read more.
This study introduces an innovative Teleoperated Driving (ToD) system integrated with virtual twin technology using the MORAI simulator. The system minimizes the need for extensive video data transmission by utilizing text-based vehicle information, significantly reducing the communication load. Key technical advancements include the use of high-precision GNSS devices for accurate vehicle location tracking, robust data communication via the MQTT protocol, and the implementation of the Ego Ghost mode in the MORAI simulator for precise vehicle simulation. The integration of these technologies enables efficient data transmission and enhanced system reliability, effectively mitigating issues such as communication blackouts and delays. Our findings demonstrate that this approach ensures stable and efficient operation, optimizing communication resource management and enhancing operational stability, which is crucial for scenarios requiring high video quality and real-time response. This research represents a significant advancement in ToD technology, establishing a precedent for integrating virtual twin systems to create more resource-efficient and reliable autonomous driving backup solutions. The virtual twin-based ToD system provides a robust platform for remote vehicle operation, ensuring safety and reliability in various driving conditions. Full article
Show Figures

Figure 1

26 pages, 19864 KB  
Article
Evaluation of Vehicle Lateral and Longitudinal Dynamic Behavior of the New Package-Saving Multi-Link Torsion Axle (MLTA) for BEVs
by Jens Olschewski and Xiangfan Fang
World Electr. Veh. J. 2024, 15(7), 310; https://doi.org/10.3390/wevj15070310 - 15 Jul 2024
Viewed by 1907
Abstract
To increase the package space for the battery pack in the rear of battery electric vehicles (BEVs), and thus extend their driving range, a novel rear axle concept called the multi-link torsion axle (MLTA) has been developed. In this work, the kinematic design [...] Read more.
To increase the package space for the battery pack in the rear of battery electric vehicles (BEVs), and thus extend their driving range, a novel rear axle concept called the multi-link torsion axle (MLTA) has been developed. In this work, the kinematic design was extended with an elastokinematic concept, and the MLTA was designed in CAD and realized as a prototype. It was then integrated into a B-class series-production vehicle by adding masses in different locations of the vehicle to replicate the mass distribution of a BEV. Both objective and subjective vehicle dynamic evaluations were conducted, which included kinematic and compliance tests, constant-radius cornering, straight-line braking, and a frequency response test, as well as subjective evaluations by both expert and normal drivers. These test results were analyzed and compared to a production vehicle. It can be concluded that the vehicle dynamic performance of the MLTA-equipped vehicle is, overall, 0.67 grades lower than that of the comparable production vehicle on a 10-grade scale. According to OEM experts, this deficit can be eliminated by tuning the different components of the MLTA and meeting the tolerance requirements of series production vehicles. Full article
Show Figures

Figure 1

31 pages, 2381 KB  
Review
A Comprehensive Review on Smart Electromobility Charging Infrastructure
by Idowu Adetona Ayoade and Omowunmi Mary Longe
World Electr. Veh. J. 2024, 15(7), 286; https://doi.org/10.3390/wevj15070286 - 26 Jun 2024
Cited by 9 | Viewed by 6136
Abstract
This study thoroughly analyses Smart Electromobility Charging Infrastructure (SECI), exploring its multifaceted dimensions and advancements. Delving into the intricate landscape of SECI, the study critically evaluates existing technologies, integration methodologies, and emerging trends. Through a systematic examination of literature and empirical studies, the [...] Read more.
This study thoroughly analyses Smart Electromobility Charging Infrastructure (SECI), exploring its multifaceted dimensions and advancements. Delving into the intricate landscape of SECI, the study critically evaluates existing technologies, integration methodologies, and emerging trends. Through a systematic examination of literature and empirical studies, the article elucidates the evolving ecosystem of smart charging solutions, considering aspects including advancements in charging protocols. Additionally, the review highlights challenges and prospects in the SECI domain, providing insightful information for scholars, practitioners, and policymakers involved in the dynamic field of electromobility. Technical potentials, including functionalities and integration with the smart grid, have been thoroughly reviewed. An analysis is conducted on the effects of intelligent charging on power distribution systems and strategies to lessen these effects. This study also examines the development of intelligent charging algorithms, optimisation methods, and security analysis. This paper, therefore, contributes to fostering a more thorough comprehension of the current state and future trajectories of Smart Electromobility Charging Infrastructure. Full article
(This article belongs to the Special Issue Smart Charging Strategies for Plug-In Electric Vehicles)
Show Figures

Figure 1

13 pages, 4221 KB  
Article
Design, Analysis, and Comparison of Electric Vehicle Drive Motor Rotors Using Injection-Molded Carbon-Fiber-Reinforced Plastics
by Huai Cong Liu, Jang Soo Park and Il Hwan An
World Electr. Veh. J. 2024, 15(7), 283; https://doi.org/10.3390/wevj15070283 - 25 Jun 2024
Cited by 2 | Viewed by 4658
Abstract
Due to their excellent mechanical strength, corrosion resistance, and ease of processing, carbon fiber and carbon-fiber-reinforced plastics are finding wide application in diverse fields, including aerospace, industry, and automobiles. This research explores the feasibility of integrating carbon fiber solutions into the rotors of [...] Read more.
Due to their excellent mechanical strength, corrosion resistance, and ease of processing, carbon fiber and carbon-fiber-reinforced plastics are finding wide application in diverse fields, including aerospace, industry, and automobiles. This research explores the feasibility of integrating carbon fiber solutions into the rotors of 85-kilowatt electric vehicle interior permanent magnet synchronous motors. Two novel configurations are proposed: a carbon fiber wire-wound rotor and a carbon fiber injection-molded rotor. A finite element analysis compares the performance of these models against a basic designed rotor, considering factors like no-load back electromotive force, no-load voltage harmonics, cogging torque, load torque, torque ripple, efficiency, and manufacturing cost. Additionally, a comprehensive analysis of system efficiency and energy loss based on hypothetical electric vehicle parameters is presented. Finally, mechanical strength simulations assess the feasibility of the proposed carbon fiber composite rotor designs. Full article
Show Figures

Figure 1

23 pages, 9599 KB  
Article
Providing an Intelligent Frequency Control Method in a Microgrid Network in the Presence of Electric Vehicles
by Mousa Alizadeh, Lilia Tightiz and Morteza Azimi Nasab
World Electr. Veh. J. 2024, 15(7), 276; https://doi.org/10.3390/wevj15070276 - 21 Jun 2024
Cited by 8 | Viewed by 2090
Abstract
Due to the reduction in fossil fuel abundance and the harmful environmental effects of burning them, the renewable resource potentials of microgrid (MG) structures have become highly highly. However, the uncertainty and variability of MGs leads to system frequency deviations in islanded or [...] Read more.
Due to the reduction in fossil fuel abundance and the harmful environmental effects of burning them, the renewable resource potentials of microgrid (MG) structures have become highly highly. However, the uncertainty and variability of MGs leads to system frequency deviations in islanded or stand-alone mode. Usually, battery energy storage systems (BESSs) reduce this frequency deviation, despite limitations such as reducing efficiency in the long term and increasing expenses. A suitable solution is to use electric vehicles (EVs) besides BESSs in systems with different energy sources in the microgrid structure. In this field, due to the fast charging and discharging of EVs and the fluctuating character of renewable energy sources, controllers based on the traditional model cannot ensure the stability of MGs. For this purpose, in this research, an ultra-local model (ULM) controller with an extended state observer (ESO) for load frequency control (LFC) of a multi-microgrid (MMG) has been systematically developed. Specifically, a compensating controller based on the single-input interval type fuzzy logic controller (FLC) was used to remove the ESO error and improve the LFC performance. Since the performance of the ULM controller based on SIT2-FLC depends on specific parameters, all of these coefficients were adjusted by an improved harmony search algorithm (IHSA). Simulation and statistical analysis results show that the proposed controller performs well in reducing the frequency fluctuations and power of the system load line and offers a higher level of resistance than conventional controllers in different MG scenarios. Full article
Show Figures

Figure 1

18 pages, 11001 KB  
Article
A Finite-Set Integral Sliding Modes Predictive Control for a Permanent Magnet Synchronous Motor Drive System
by Hector Hidalgo, Rodolfo Orosco, Hector Huerta, Nimrod Vazquez, Leonel Estrada, Sergio Pinto and Angel de Castro
World Electr. Veh. J. 2024, 15(7), 277; https://doi.org/10.3390/wevj15070277 - 21 Jun 2024
Cited by 2 | Viewed by 2143
Abstract
Finite-set model predictive control (FS-MPC) is an easy and intuitive control technique. However, parametric uncertainties reduce the accuracy of the prediction. Classical MPC requires many calculations; therefore, the calculation time generates a considerable time delay in the actuation. This delay deteriorates the performance [...] Read more.
Finite-set model predictive control (FS-MPC) is an easy and intuitive control technique. However, parametric uncertainties reduce the accuracy of the prediction. Classical MPC requires many calculations; therefore, the calculation time generates a considerable time delay in the actuation. This delay deteriorates the performance of the system and generates a significant current ripple. This paper proposes a finite-set integral sliding modes predictive control (FS-ISMPC) for a permanent magnet synchronous motor (PMSM). The conventional decision function is replaced by an integral sliding cost function, which has several advantages, such as robustness to parameter uncertainties, and convergence in finite time. The proposed decision function does not require the inductance and resistance parameters of the motor. In addition, the proposal includes compensation for the calculation delay of the control vector. The proposed control strategy was compared with traditional predictive control with delay compensation using a real-time hardware-in-the-loop (HIL) simulation. The results obtained from the comparison indicated that the proposed controller has a lower THD and computational burden. Full article
Show Figures

Figure 1

30 pages, 3073 KB  
Article
Overview of Sustainable Mobility: The Role of Electric Vehicles in Energy Communities
by Jozsef Menyhart
World Electr. Veh. J. 2024, 15(6), 275; https://doi.org/10.3390/wevj15060275 - 20 Jun 2024
Cited by 14 | Viewed by 5590
Abstract
From 2035 onward, the registration of new conventional internal combustion engine vehicles will be prohibited in the European Union. This shift is driven by steadily rising fuel prices and growing concerns over carbon dioxide emissions. Electric vehicles (EVs) are becoming increasingly popular across [...] Read more.
From 2035 onward, the registration of new conventional internal combustion engine vehicles will be prohibited in the European Union. This shift is driven by steadily rising fuel prices and growing concerns over carbon dioxide emissions. Electric vehicles (EVs) are becoming increasingly popular across Europe, and many manufacturers now offer modified models, making pure internal combustion versions unavailable for certain types. Additionally, the comparatively lower operational costs of EVs for end users further bolster their appeal. In the European Union, new directives have been established to define innovative approaches to energy use in Member States, known as energy communities. This article provides a comprehensive overview of the architecture of energy communities, electric vehicles, and the V2X technologies currently on the market. It highlights the evolution of electric vehicle adoption in the EU, contextualizing it within broader energy trends and presenting future challenges and development opportunities related to energy communities. The paper details the diversification of electricity sources among Member States and the share of generated electricity that is utilized for transport. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-mobility)
Show Figures

Figure 1

32 pages, 34124 KB  
Article
Quantifying the State of the Art of Electric Powertrains in Battery Electric Vehicles: Comprehensive Analysis of the Tesla Model 3 on the Vehicle Level
by Nico Rosenberger, Philipp Rosner, Philip Bilfinger, Jan Schöberl, Olaf Teichert, Jakob Schneider, Kareem Abo Gamra, Christian Allgäuer, Brian Dietermann, Markus Schreiber, Manuel Ank, Thomas Kröger, Alexander Köhler and Markus Lienkamp
World Electr. Veh. J. 2024, 15(6), 268; https://doi.org/10.3390/wevj15060268 - 18 Jun 2024
Cited by 17 | Viewed by 7122
Abstract
Data on state-of-the-art battery electric vehicles are crucial to academia; however, these data are not published due to non-disclosure policies in the industry. As a result, simulation models and their analyses are based on assumptions or insider information. To fill this information gap, [...] Read more.
Data on state-of-the-art battery electric vehicles are crucial to academia; however, these data are not published due to non-disclosure policies in the industry. As a result, simulation models and their analyses are based on assumptions or insider information. To fill this information gap, we present a comprehensive analysis of the electric powertrain of a Tesla Model 3 Standard Range Plus (SR+) from 2020 with lithium iron phosphate (LFP) cells, focusing on the overall range. On the vehicle level, we observe the resulting range in multiple test scenarios, tracing the energy path from source to sink by conducting different test series on the vehicle dynamometer and through alternating current (AC) and direct current (DC) charging measurements. In addition to absolute electric range tests in different operating scenarios and electric and thermal operation strategies on the vehicle level, we analyze the energy density and the power unit’s efficiency on the component level. These tests are performed through procedures on the chassis dynamometer as well as efficiency analysis and electric characterization tests in charge/discharge scenarios. This study includes over 1 GB of attached measurement data on the battery pack and vehicle level from the lab to the real-world environment available as open-source data. Full article
Show Figures

Figure 1

16 pages, 2122 KB  
Review
Data and Energy Impacts of Intelligent Transportation—A Review
by Kaushik Rajashekara and Sharon Koppera
World Electr. Veh. J. 2024, 15(6), 262; https://doi.org/10.3390/wevj15060262 - 17 Jun 2024
Cited by 2 | Viewed by 4497
Abstract
The deployment of intelligent transportation is still in its early stages and there are many challenges that need to be addressed before it can be widely adopted. Autonomous vehicles are a class of intelligent transportation that is rapidly developing, and they are being [...] Read more.
The deployment of intelligent transportation is still in its early stages and there are many challenges that need to be addressed before it can be widely adopted. Autonomous vehicles are a class of intelligent transportation that is rapidly developing, and they are being deployed in selected cities. A combination of advanced sensors, machine learning algorithms, and artificial intelligence are being used in these vehicles to perceive their environment, navigate, and make the right decisions. These vehicles leverage extensive data sourced from various sensors and computers integrated into the vehicle. Hence, massive computational power is required to process the information from various built-in sensors in milliseconds to make the right decision. The power required by the sensors and the use of additional computational power increases the energy consumption, and, hence, could reduce the range of the autonomous electric vehicle relative to a standard electric car and lead to additional emissions. A number of review papers have highlighted the environmental benefits of autonomous vehicles, focusing on aspects like optimized driving, improved route selection, fewer stops, and platooning. However, these reviews often overlook the significant energy demands of the hardware systems—such as sensors, computers, and cameras—necessary for full autonomy, which can decrease the driving range of electric autonomous vehicles. Additionally, previous studies have not thoroughly examined the data processing requirements in these vehicles. This paper provides a more detailed review of the volume of data and energy usage by various sensors and computers integral to autonomous features in electric vehicles. It also discusses the effects of these factors on vehicle range and emissions. Furthermore, the paper explores advanced technologies currently being developed by various industries to enhance processing speeds and reduce energy consumption in autonomous vehicles. Full article
Show Figures

Figure 1

22 pages, 6301 KB  
Article
Intelligent Vehicle Formation System Based on Information Interaction
by Peng Wang, Tao Ouyang, Shixin Zhao, Xuelin Wang, Zhewen Ni and Yuezhen Fan
World Electr. Veh. J. 2024, 15(6), 252; https://doi.org/10.3390/wevj15060252 - 11 Jun 2024
Cited by 2 | Viewed by 2358
Abstract
Urban traffic congestion has become an increasingly serious problem, and the transportation industry is gradually becoming a high-energy-consuming industry. Intelligent Transportation System (ITSs) that integrate technologies such as electronic sensing, data transmission, and intelligent control have emerged as a new approach to fundamentally [...] Read more.
Urban traffic congestion has become an increasingly serious problem, and the transportation industry is gradually becoming a high-energy-consuming industry. Intelligent Transportation System (ITSs) that integrate technologies such as electronic sensing, data transmission, and intelligent control have emerged as a new approach to fundamentally solving transportation problems. As one of the cores of intelligent transportation systems, multi-vehicle formation technology has the advantage of promoting vehicle information interaction, improving vehicle mobility, and enhancing traffic conditions. Due to the high cost and risk of conducting multi-vehicle formation experiments using real vehicles, experimenting with intelligent vehicles has become a viable option. Based on the leader–follower formation strategy, this study designed an intelligent vehicle formation system using the Arduino platform. It utilizes infrared sensors, ultrasonic sensors, and photoelectric encoders to perceive information about the vehicle fleet and the road. Information is aggregated to the master vehicle through ZigBee communication modules. The controller of the master vehicle applies a PID algorithm, combined with a differential steering model, to solve the speed instructions for each vehicle in the fleet. Motion control instructions are then transmitted to each slave vehicle through ZigBee communication modules, enabling the automatic adjustment of the fleet’s traveling speed and spacing. Additionally, a Bluetooth app has been designed for users to monitor and control the movement status of the fleet dynamically in real time. Experimental verification has shown that this research effectively improves intelligent fleets’ capabilities in environmental perception, intelligent decision-making, collaborative control, and motion execution. It also enhances road traffic efficiency and safety, providing new ideas and methods for the development of autonomous driving technology. Full article
Show Figures

Figure 1

21 pages, 1881 KB  
Review
Beyond Tailpipe Emissions: Life Cycle Assessment Unravels Battery’s Carbon Footprint in Electric Vehicles
by Sharath K. Ankathi, Jessey Bouchard and Xin He
World Electr. Veh. J. 2024, 15(6), 245; https://doi.org/10.3390/wevj15060245 - 2 Jun 2024
Cited by 7 | Viewed by 7141
Abstract
While electric vehicles (EVs) offer lower life cycle greenhouse gas emissions in some regions, the concern over the greenhouse gas emissions generated during battery production is often debated. This literature review examines the true environmental trade-offs between conventional lithium-ion batteries (LIBs) and emerging [...] Read more.
While electric vehicles (EVs) offer lower life cycle greenhouse gas emissions in some regions, the concern over the greenhouse gas emissions generated during battery production is often debated. This literature review examines the true environmental trade-offs between conventional lithium-ion batteries (LIBs) and emerging technologies such as solid-state batteries (SSBs) and sodium-ion batteries (SIBs). It emphasizes the carbon-intensive nature of LIB manufacturing and explores how alternative technologies can enhance efficiency while reducing the carbon footprint. We have used a keyword search technique to review articles related to batteries and their environmental performances. The study results reveal that the greenhouse gas (GHG) emissions of battery production alone range from 10 to 394 kgCO2 eq./kWh. We identified that lithium manganese cobalt oxide and lithium nickel cobalt aluminum oxide batteries, despite their high energy density, exhibit higher GHGs (20–394 kgCO2 eq./kWh) because of the cobalt and nickel production. Lithium iron phosphate (34–246 kgCO2 eq./kWh) and sodium-ion (40–70 kgCO2 eq./kWh) batteries showed lower environmental impacts because of the abundant feedstock, emerging as a sustainable choice, especially when high energy density is not essential. This review also concludes that the GHGs of battery production are highly dependent on the regional grid carbon intensity. Batteries produced in China, for example, have higher GHGs than those produced in the United States (US) and European Union (EU). Understanding the GHGs of battery production is critical to fairly evaluating the environmental impact of battery electric vehicles. Full article
Show Figures

Figure 1

36 pages, 12775 KB  
Review
Review and Evaluation of Automated Charging Technologies for Heavy-Duty Vehicles
by Emma Piedel, Enrico Lauth, Alexander Grahle and Dietmar Göhlich
World Electr. Veh. J. 2024, 15(6), 235; https://doi.org/10.3390/wevj15060235 - 29 May 2024
Cited by 8 | Viewed by 4689
Abstract
Automated charging technologies are becoming increasingly important in the electrification of heavy road freight transport, especially in combination with autonomous driving. This study provides a comprehensive analysis of automated charging technologies for electric heavy-duty vehicles (HDVs). It encompasses the entire spectrum of feasible [...] Read more.
Automated charging technologies are becoming increasingly important in the electrification of heavy road freight transport, especially in combination with autonomous driving. This study provides a comprehensive analysis of automated charging technologies for electric heavy-duty vehicles (HDVs). It encompasses the entire spectrum of feasible technologies, including static and dynamic approaches, with each charging technology evaluated for its advantages, potentials, challenges and technology readiness level (TRL). Static conductive charging methods such as charging robots, underbody couplers, or pantographs show good potential, with pantographs being the most mature option. These technologies are progressing towards higher TRLs, with a focus on standardization and adaptability. While static wireless charging is operational for some prototype solutions, it encounters challenges related to implementation and efficiency. Dynamic conductive charging through an overhead contact line or contact rails holds promise for high-traffic HDV routes with the overhead contact line being the most developed option. Dynamic wireless charging, although facing efficiency challenges, offers the potential for seamless integration into roads and minimal wear and tear. Battery swapping is emerging as a practical solution to reduce downtime for charging, with varying levels of readiness across different implementations. To facilitate large-scale deployment, further standardization efforts are required. This study emphasizes the necessity for continued research and development to enhance efficiency, decrease costs and ensure seamless integration into existing infrastructures. Technologies that achieve this best will have the highest potential to significantly contribute to the creation of an efficiently automated and environmentally friendly transport sector. Full article
Show Figures

Figure 1

16 pages, 2544 KB  
Article
A Predictive Cabin Conditioning Strategy for Battery Electric Vehicles
by Patrick Schutzeich, Stefan Pischinger, David Hemkemeyer, Kai Franke and Paul Hamelbeck
World Electr. Veh. J. 2024, 15(6), 224; https://doi.org/10.3390/wevj15060224 - 22 May 2024
Cited by 2 | Viewed by 1853
Abstract
This paper is based on the work presented at EVS36 in Sacramento. The core of the work deals with the cabin climate control of battery electric vehicles (BEV) using model predictive control (MPC) approaches. These aim to reduce the energy demand for cabin [...] Read more.
This paper is based on the work presented at EVS36 in Sacramento. The core of the work deals with the cabin climate control of battery electric vehicles (BEV) using model predictive control (MPC) approaches. These aim to reduce the energy demand for cabin air conditioning while maintaining comfort and air quality. The first step briefly overviews model predictive control approaches and the respective fundamentals. Afterward, the modeling for the system dynamics is explained. The challenge for the system model considering humid air is discussed, and the first implementation method is presented. With the added equations for the air quality and humidity, a logic to prevent window fogging was developed to improve safety. Ultimately, model-in-the-loop (MiL) investigations identified an energy-saving potential of up to 15.4% for cold and 39.7% for hot conditions compared to a rule-based strategy. In addition, the investigations carried out showed that it was also possible to improve indoor comfort by specifically influencing the air quality and humidity. Together with the safety criteria introduced to prevent window fogging, it was possible to present a strategy that can significantly improve thermal management for the cabin in modern BEVs. Full article
Show Figures

Figure 1

15 pages, 5048 KB  
Article
Advancements in Battery Cell Finalization: Insights from an Expert Survey and Prospects for Process Optimization
by Tobias Robben, Christian Offermanns, Heiner Heimes and Achim Kampker
World Electr. Veh. J. 2024, 15(5), 219; https://doi.org/10.3390/wevj15050219 - 17 May 2024
Cited by 1 | Viewed by 2323
Abstract
Battery cell finalization is a crucial process chain in battery manufacturing, contributing to a significant share of CAPEX and OPEX. Thus, there is a high cost-saving potential by improving the process chain. This research paper investigates various crucial facets of the cell finalization [...] Read more.
Battery cell finalization is a crucial process chain in battery manufacturing, contributing to a significant share of CAPEX and OPEX. Thus, there is a high cost-saving potential by improving the process chain. This research paper investigates various crucial facets of the cell finalization process in battery cell production through an expert survey. These include investment cost allocation, potential cost savings in sub-processes, reject generation, early detection of faulty cells, quality measurement techniques, and the utilization of inline data for early quality determination and real-time process control during the formation process. A solution approach for the implementation of electrochemical impedance spectroscopy for inline early quality determination is given. The results yield valuable insights for optimizing the formation process and enhancing product quality. Full article
Show Figures

Figure 1

23 pages, 10187 KB  
Article
Hardware Implementation of a Resilient Energy Management System for Networked Microgrids
by Hossam M. Hussein, S M Sajjad Hossain Rafin, Mahmoud S. Abdelrahman and Osama A. Mohammed
World Electr. Veh. J. 2024, 15(5), 209; https://doi.org/10.3390/wevj15050209 - 10 May 2024
Cited by 5 | Viewed by 1821
Abstract
A networked microgrid is composed of multiple nearby microgrids linked together to gain additional flexibility for resilient operations. Networked microgrids collaborate to prevent power shortages in microgrid clusters by sharing critical renewable and energy storage resources. However, controlling the local resources of each [...] Read more.
A networked microgrid is composed of multiple nearby microgrids linked together to gain additional flexibility for resilient operations. Networked microgrids collaborate to prevent power shortages in microgrid clusters by sharing critical renewable and energy storage resources. However, controlling the local resources of each microgrid, including the energy storage systems’ charging and discharging, maintaining the DC bus voltage, and even overseeing the power shared by multiple microgrids, is challenging. Therefore, a microgrid control technique and distributed energy management are used cooperatively in this study to handle the shared power between a system of networked microgrids incorporating photovoltaics and battery energy storage systems. Numerical simulation results from a networked microgrid system verify the accuracy and soundness of the suggested distributed energy management under several operating conditions, including renewable uncertainties and sequential load variations in different zones. The applicability of the suggested technique is confirmed by hardware implementation, and several operational scenarios further evaluate the proposed system on a practical two-microgrid system located in the Florida International University (FIU) testbed. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-mobility)
Show Figures

Figure 1

18 pages, 36541 KB  
Article
Driving Profiles of Light Commercial Vehicles of Craftsmen and the Potential of Battery Electric Vehicles When Charging on Company Premises
by Oliver Heilmann, Britta Bocho, Alexander Frieß, Sven Cortès, Ulrich Schrade, André Casal Kulzer and Michael Schlick
World Electr. Veh. J. 2024, 15(5), 211; https://doi.org/10.3390/wevj15050211 - 10 May 2024
Cited by 2 | Viewed by 1633
Abstract
This paper examines the extent to which it is possible to replace conventional light commercial vehicles in the heating, ventilation and air conditioning and plumbing trade with battery electric vehicles with an unchanged usage profile. GPS trackers are used to record the position [...] Read more.
This paper examines the extent to which it is possible to replace conventional light commercial vehicles in the heating, ventilation and air conditioning and plumbing trade with battery electric vehicles with an unchanged usage profile. GPS trackers are used to record the position data of 22 craft vehicles with combustion engines from eleven companies over the duration of one working week. Within this paper, various assumptions (battery capacity and average consumption) are made for battery electric vehicles and the charging power on the company premises. The potential of battery electric vehicles is evaluated based on the assumption that they are charged only on company premises. Using the collected data and the assumptions made, theoretical state of charge curves are calculated for the vehicles. The driving profiles of the individual vehicles differ greatly, and the suitability of battery electric vehicles should be considered individually. Battery capacity, vehicle energy consumption and charging power at the company have a substantial influence on the suitability of battery electric vehicles. Furthermore, there are differences between vehicles that can charge on the company premises at night and those that cannot or can only do so on some days. Full article
Show Figures

Figure 1

14 pages, 5738 KB  
Article
An Effective Charging Torque Elimination Method for Dual-Channel Electric-Drive-Reconstructed Onboard Chargers
by Xunhui Cheng, Feng Yu and Linhao Qiu
World Electr. Veh. J. 2024, 15(5), 205; https://doi.org/10.3390/wevj15050205 - 8 May 2024
Cited by 4 | Viewed by 1675
Abstract
The idea of electric-drive-reconstructed onboard charger (EDROC) systems, along with the concept of dual-channel charging, offers a novel design, thought to enhance the integration and fault tolerance of the charging system of electric vehicles (EVs). This article investigates a dual-channel EDROC incorporating an [...] Read more.
The idea of electric-drive-reconstructed onboard charger (EDROC) systems, along with the concept of dual-channel charging, offers a novel design, thought to enhance the integration and fault tolerance of the charging system of electric vehicles (EVs). This article investigates a dual-channel EDROC incorporating an asymmetrical six-phase permanent magnet synchronous machine (ASPMSM). A unique operation mode, called the unbalanced charging voltage operation mode, exists in this topology, in case the voltages of the two batteries are unequal. This unbalance results in different winding currents following through two channels, leading to an undesired charging torque in the machine. To ensure the safety of the system, an effective charging torque elimination method, based on dual-channel winding current balance, is proposed, which achieves a dot-shaped current path of torque generation-associated subspace (i.e., αβ subspace) by balancing the dual-channel charging power. Eventually, a controller is designed for the system and a prototype is created, to validate the effectiveness of the proposed method. Full article
Show Figures

Figure 1

19 pages, 3892 KB  
Article
Flexible Charging to Energy Saving—Strategies Assessment with Big Data Analysis for PHEVs Private Cars
by Natascia Andrenacci, Giancarlo Giuli, Antonino Genovese and Giovanni Pede
World Electr. Veh. J. 2024, 15(5), 197; https://doi.org/10.3390/wevj15050197 - 3 May 2024
Cited by 2 | Viewed by 2309
Abstract
In road transport, most vehicles today still rely on internal combustion engines. However, these engines have lower efficiency and generate higher pollution levels compared to electric motors. Consequently, there is a growing interest in the transition from conventional vehicles to electric ones. However, [...] Read more.
In road transport, most vehicles today still rely on internal combustion engines. However, these engines have lower efficiency and generate higher pollution levels compared to electric motors. Consequently, there is a growing interest in the transition from conventional vehicles to electric ones. However, the transition to an electrified road transport system is not without challenges. Among these, the impact that electric vehicle charging will have on the electricity grid is of particular concern. This paper analyzes different charging scenarios for plug-in hybrid electric vehicles (PHEVs) and proposes charging strategies to minimize their impact on the electricity grid. The analysis is based on a large dataset of trips in urban areas in Italy. The study shows that smart charging of PHEVs can be implemented to minimize the impact on the electricity grid. The implementation of optimized charging strategies can contribute to making PHEVs a valid, eco-sustainable alternative to conventional vehicles while also promoting the stability and efficiency of the electricity grid. The study aims to verify the effectiveness and efficiency of the flexible charging strategy by comparing the common charging operation (first in–first out) with other, less impactful charging schemes. Full article
(This article belongs to the Special Issue Smart Charging Strategies for Plug-In Electric Vehicles)
Show Figures

Figure 1

17 pages, 7488 KB  
Article
Protection Coordination Strategy for the Distributed Electric Aircraft Propulsion Systems
by Anil Kumar Reddy Siddavatam, Kaushik Rajashekara, Hao Huang and Fred Wang
World Electr. Veh. J. 2024, 15(5), 187; https://doi.org/10.3390/wevj15050187 - 28 Apr 2024
Cited by 1 | Viewed by 1599
Abstract
The current trend in distributed electric aircraft propulsion systems is to utilize the DC bus system at higher voltage levels than conventional aircraft systems. With Boeing and Airbus utilizing the +/−270 V bipolar DC bus system, the research on high-voltage systems is increasing [...] Read more.
The current trend in distributed electric aircraft propulsion systems is to utilize the DC bus system at higher voltage levels than conventional aircraft systems. With Boeing and Airbus utilizing the +/−270 V bipolar DC bus system, the research on high-voltage systems is increasing gradually, with voltage levels ranging from 1 to 10 kV systems or +/−0.5 to +/−5 kV DC bus systems. These voltage levels present considerable challenges to the distributed electric aircraft propulsion systems. In addition to partial discharge effects, there are other challenges, particularly the challenge associated with effectively limiting short-circuit fault currents due to the low cable impedance of the distribution system. The cable impedance is a significant factor that determines the fault current during fault conditions. Due to the low impedance, there is a sharp increase in fault current, necessitating an enhanced protection strategy, which ensures that the system is adequately protected. This paper introduces a coordinated protection strategy specifically designed for distributed electric aircraft propulsion systems to mitigate or prevent short-circuit faults. The proposed algorithm utilizes an I2t-based strategy and the current-limiting-based strategy to protect the system from short-circuit faults and overload conditions. Redundant backup protection is also included in the algorithm in case the circuit breaker fails to operate. Full article
(This article belongs to the Special Issue Electric and Hybrid Electric Aircraft Propulsion Systems)
Show Figures

Figure 1

15 pages, 4310 KB  
Article
Study of Resistance Extraction Methods for Proton Exchange Membrane Fuel Cells Based on Static Resistance Correction
by Yuzheng Mao, Yongping Hou, Rongxin Gu, Dong Hao and Qirui Yang
World Electr. Veh. J. 2024, 15(5), 179; https://doi.org/10.3390/wevj15050179 - 24 Apr 2024
Viewed by 1981
Abstract
Accurate extraction of polarization resistance is crucial in the application of proton exchange membrane fuel cells. It is generally assumed that the steady-state resistance obtained from the polarization curve model is equivalent to the AC impedance obtained from the electrochemical impedance spectroscopy (EIS) [...] Read more.
Accurate extraction of polarization resistance is crucial in the application of proton exchange membrane fuel cells. It is generally assumed that the steady-state resistance obtained from the polarization curve model is equivalent to the AC impedance obtained from the electrochemical impedance spectroscopy (EIS) when the frequency approaches zero. However, due to the low-frequency stability and nonlinearity issues of the EIS method, this dynamic process leads to an additional rise in polarization resistance compared to the steady-state method. In this paper, a semi-empirical model and equivalent circuit models are developed to extract the steady-state and dynamic polarization resistances, respectively, while a static internal resistance correction method is proposed to represent the systematic error between the two. With the correction, the root mean square error of the steady-state resistance relative to the dynamic polarization resistance decreases from 26.12% to 7.42%, indicating that the weighted sum of the static internal resistance and the steady-state resistance can better correspond to the dynamic polarization resistance. The correction method can also simplify the EIS procedure by directly generating an estimate of the dynamic polarization resistance in the full current interval. Full article
Show Figures

Figure 1

40 pages, 31460 KB  
Article
Bill It Right: Evaluating Public Charging Station Usage Behavior under the Presence of Different Pricing Policies
by Markus Fischer, Wibke Michalk, Cornelius Hardt and Klaus Bogenberger
World Electr. Veh. J. 2024, 15(4), 175; https://doi.org/10.3390/wevj15040175 - 22 Apr 2024
Cited by 2 | Viewed by 2241
Abstract
This study investigates for the first time how public charging infrastructure usage differs under the presence of diverse pricing models. About 3 million charging events from different European countries were classified according to five different pricing models (cost-free, flat-rate, time-based, energy-based, and mixed) [...] Read more.
This study investigates for the first time how public charging infrastructure usage differs under the presence of diverse pricing models. About 3 million charging events from different European countries were classified according to five different pricing models (cost-free, flat-rate, time-based, energy-based, and mixed) and evaluated using various performance indicators such as connection duration; transferred energy volumes; average power; achievable revenue; and the share of charging and idle time for AC, DC, and HPC charging infrastructure. The study results show that the performance indicators differed for the classified pricing models. In addition to the quantitative comparison of the performance indicators, a Kruskal–Wallis one-way analysis of variance and a pairwise comparison using the Mann–Whitney-U test were used to show that the data distributions of the defined pricing models were statistically significantly different. The results are discussed from various perspectives on the efficient design of public charging infrastructure. The results show that time-based pricing models can improve the availability of public charging infrastructure, as the connection duration per charging event can be roughly halved compared to other pricing models. Flat-rate pricing models and AC charging infrastructure can support the temporal shift of charging events, such as shifting demand peaks, as charging events usually have several hours of idle time per charging process. By quantifying various performance indicators for different charging technologies and pricing models, the study is relevant for stakeholders involved in the development and operation of public charging infrastructure. Full article
(This article belongs to the Special Issue Smart Charging Strategies for Plug-In Electric Vehicles)
Show Figures

Figure 1

19 pages, 10426 KB  
Article
Leveraging 5G Technology to Investigate Energy Consumption and CPU Load at the Edge in Vehicular Networks
by Salah Eddine Merzougui, Xhulio Limani, Andreas Gavrielides, Claudio Enrico Palazzi and Johann Marquez-Barja
World Electr. Veh. J. 2024, 15(4), 171; https://doi.org/10.3390/wevj15040171 - 19 Apr 2024
Cited by 3 | Viewed by 2017
Abstract
The convergence of vehicular communications, 5th generation mobile network (5G) technology, and edge computing marks a paradigm shift in intelligent transportation. Vehicular communication systems, including Vehicle-to-Vehicle and Vehicle-to-Infrastructure, are integral to Intelligent Transportation Systems. The advent of 5G enhances connectivity, while edge computing [...] Read more.
The convergence of vehicular communications, 5th generation mobile network (5G) technology, and edge computing marks a paradigm shift in intelligent transportation. Vehicular communication systems, including Vehicle-to-Vehicle and Vehicle-to-Infrastructure, are integral to Intelligent Transportation Systems. The advent of 5G enhances connectivity, while edge computing brings computational processes closer to data sources. This synergy holds the potential to revolutionize transportation efficiency and safety. This research investigates vehicular communication and edge computing dynamics within a 5G network, considering varying distances between On Board Units and Roadside Units. Energy consumption patterns and CPU load at the RSU are analyzed through meticulous real-world experiments and simulations. Our results show stable energy consumption at shorter distances, with fluctuations increasing at greater ranges. CPU load correlates with communication distance, highlighting the need for adaptive algorithms. While experiments exhibit higher variability, our simulations validate these findings, emphasizing the importance of considering transmission range in vehicular communication network design. Full article
Show Figures

Figure 1

17 pages, 4772 KB  
Article
Research on the Stability Control Strategy of High-Speed Steering Intelligent Vehicle Platooning
by Guangbing Xiao, Zhicheng Li, Ning Sun and Yong Zhang
World Electr. Veh. J. 2024, 15(4), 169; https://doi.org/10.3390/wevj15040169 - 18 Apr 2024
Cited by 2 | Viewed by 1633
Abstract
Based on an investigation of how vehicle structural characteristics and system parameters influence the motion stability of high-speed steering intelligent vehicle platooning, a control strategy for ensuring motion stability is proposed. This strategy is based on a virtual articulated concept and is validated [...] Read more.
Based on an investigation of how vehicle structural characteristics and system parameters influence the motion stability of high-speed steering intelligent vehicle platooning, a control strategy for ensuring motion stability is proposed. This strategy is based on a virtual articulated concept and is validated using both characteristic equation analysis and time domain analysis methods. To create a system, any two adjacent front and rear vehicles in the intelligent vehicle platooning are connected using a virtual articulated model constructed through the virtual structure method. A ten-degrees-of-freedom model of the intelligent vehicle platooning system is established, taking into account the nonlinearities of the tire and steering systems, utilizing the principles of the second Lagrange equation theory. The system damping ratio is determined through characteristic equation analysis, and the system’s dynamic critical speed is assessed by examining the relationship between the damping ratio and the motion stability of the intelligent vehicle platooning, serving as an indicator of system stability. By applying sensitivity analysis, control variable analysis, and time domain analysis methods, the influence of vehicle structural characteristics and system parameters on the system’s dynamic critical speed and motion stability under lateral disturbances within the intelligent vehicle platooning is thoroughly investigated, thereby validating the soundness of the proposed control strategy. Full article
(This article belongs to the Special Issue Design Theory, Method and Control of Intelligent and Safe Vehicles)
Show Figures

Figure 1

27 pages, 3179 KB  
Review
An Overview of Diagnosis Methods of Stator Winding Inter-Turn Short Faults in Permanent-Magnet Synchronous Motors for Electric Vehicles
by Yutao Jiang, Baojian Ji, Jin Zhang, Jianhu Yan and Wenlong Li
World Electr. Veh. J. 2024, 15(4), 165; https://doi.org/10.3390/wevj15040165 - 15 Apr 2024
Cited by 12 | Viewed by 4102
Abstract
This article provides a comprehensive overview of state-of-the-art techniques for detecting and diagnosing stator winding inter-turn short faults (ITSFs) in permanent-magnet synchronous motors (PMSMs) for electric vehicles (EVs). The review focuses on the following three main categories of diagnostic approaches: motor model-based, signal [...] Read more.
This article provides a comprehensive overview of state-of-the-art techniques for detecting and diagnosing stator winding inter-turn short faults (ITSFs) in permanent-magnet synchronous motors (PMSMs) for electric vehicles (EVs). The review focuses on the following three main categories of diagnostic approaches: motor model-based, signal processing-based, and artificial intelligence (AI)-based fault detection and diagnosis methods. Motor model-based methods utilize motor state estimation and motor parameter estimation as the primary strategies for ITSF diagnosis. Signal processing-based techniques extract fault signatures from motor measured data across time, frequency, or time-frequency domains. In contrast, AI-based methods automatically extract higher-order fault signatures from large volumes of preprocessed data, thereby enhancing the effectiveness of fault diagnosis. The strengths and limitations of each approach are thoroughly examined, providing valuable insights into the advancements in ITSF detection and diagnosis techniques for PMSMs in EV applications. The emphasis is placed on the application of signal processing methods and deep learning techniques in the diagnosis of ITSF in PMSMs in EV applications. Full article
(This article belongs to the Special Issue Vehicle Control and Drive Systems for Electric Vehicles)
Show Figures

Figure 1

17 pages, 4357 KB  
Article
Design and Analysis Models with PID and PID Fuzzy Controllers for Six-Phase Drive
by Roma Rinkeviciene and Brone Mitkiene
World Electr. Veh. J. 2024, 15(4), 164; https://doi.org/10.3390/wevj15040164 - 12 Apr 2024
Cited by 7 | Viewed by 1873
Abstract
Due to their reliability, design and analysis models with PID and PID fuzzy controllers for six-phase drive are being applied in new areas in various industries, including transportation. First, the development of any system with multiphase motors requires an elaborate model to define [...] Read more.
Due to their reliability, design and analysis models with PID and PID fuzzy controllers for six-phase drive are being applied in new areas in various industries, including transportation. First, the development of any system with multiphase motors requires an elaborate model to define the control mode and controllers. The modeling of a control system for six-phase drive is based on its conventional d-q mathematical model and indirect field-oriented control. In this study, a Simulink six-phase drive model is designed with indirect field-oriented control and simulated with two types of fuzzy controller, PID and PID fuzzy. The simulation results are presented and analyzed; these results reflect the step response and performance at the provided speed reference law while keeping the load application at a constant speed. A fuzzy controller with 49 rules is considered and applied. With field-oriented control and a well-tuned PID controller, the six-phase electric drive has good step response specifications: a short settling time when starting without a load, no overshoot in the step response, small size, and a slight decrease in speed when loaded. The system employing a PID fuzzy controller shows slightly better results in response to the application of torque: the decrease in speed is eliminated more quickly. The simulation results were tabulated with the PID and with the results of previous research that rearranged some models to only operate in the classical controller mode. The simulation results indicate the robustness to disturbance of both the systems with six-phase drive and provide high-quality transient specifications at the provided reference speed. Full article
(This article belongs to the Special Issue New Trends in Electrical Drives for EV Applications)
Show Figures

Figure 1

24 pages, 6162 KB  
Article
Power Signal Analysis for Early Fault Detection in Brushless DC Motor Drivers Based on the Hilbert–Huang Transform
by David Marcos-Andrade, Francisco Beltran-Carbajal, Eduardo Esquivel-Cruz, Ivan Rivas-Cambero, Hossam A. Gabbar and Alexis Castelan-Perez
World Electr. Veh. J. 2024, 15(4), 159; https://doi.org/10.3390/wevj15040159 - 10 Apr 2024
Cited by 4 | Viewed by 2433
Abstract
Brushless DC machines have demonstrated significant advantages in electrical engineering by eliminating commutators and brushes. Every year, these machines increase their presence in transportation applications. In this sense, early fault identification in these systems, specifically in the electronic speed controllers, is relevant for [...] Read more.
Brushless DC machines have demonstrated significant advantages in electrical engineering by eliminating commutators and brushes. Every year, these machines increase their presence in transportation applications. In this sense, early fault identification in these systems, specifically in the electronic speed controllers, is relevant for correct device operation. In this context, the techniques reported in the literature for fault identification based on the Hilbert–Huang transform have shown efficiency in electrical systems. This manuscript proposes a novel technique for early fault identification in electronic speed controllers based on the Hilbert–Huang transform algorithm. Initially, currents from the device are captured with non-invasive sensors in a time window during motor operation. Subsequently, the signals are processed to obtain pertinent information about amplitudes and frequencies using the Hilbert–Huang transform, focusing on fundamental components. Then, estimated parameters are evaluated by computing the error between signals. The existing electrical norms of a balanced system are used to identify a healthy or damaged driver. Through amplitude and frequency error analysis between three-phase signals, early faults caused by system imbalances such as current increasing, torque reduction, and speed reduction are detected. The proposed technique is implemented through data acquisition devices at different voltage conditions and then physical signals are evaluated offline through several simulations in the Matlab environment. The method’s robustness against signal variations is highlighted, as each intrinsic mode function serves as a component representation of the signal and instantaneous frequency computation provides resilience against these variations. Two study cases are conducted in different conditions to validate this technique. The experimental results demonstrate the effectiveness of the proposed method in identifying early faults in brushless DC motor drivers. This study provides data from each power line within the electronic speed controller to detect early faults and extend different approaches, contributing to addressing early failures in speed controllers while expanding beyond the conventional focus on motor failure analysis. Full article
(This article belongs to the Special Issue Dynamic Control of Traction Motors for EVs)
Show Figures

Figure 1

28 pages, 549 KB  
Article
A Scalable Approach to Minimize Charging Costs for Electric Bus Fleets
by Daniel Mortensen and Jacob Gunther
World Electr. Veh. J. 2024, 15(4), 161; https://doi.org/10.3390/wevj15040161 - 10 Apr 2024
Cited by 1 | Viewed by 2277
Abstract
Incorporating battery electric buses into bus fleets faces three primary challenges: a BEB’s extended refuel time, the cost of charging, both by the consumer and the power provider, and large compute demands for planning methods. When BEBs charge, the additional demands on the [...] Read more.
Incorporating battery electric buses into bus fleets faces three primary challenges: a BEB’s extended refuel time, the cost of charging, both by the consumer and the power provider, and large compute demands for planning methods. When BEBs charge, the additional demands on the grid may exceed hardware limitations, so power providers divide a consumer’s energy needs into separate meters even though doing so is expensive for both power providers and consumers. Prior work has developed a number of strategies for computing charge schedules for bus fleets; however, prior work has not worked to reduce costs by aggregating meters. Additionally, because many works use mixed integer linear programs, their compute needs make planning for commercial-sized bus fleets intractable. This work presents a multi-program approach to computing charge plans for electric bus fleets. The proposed method solves a series of subproblems where the solution to the charge problem becomes more refined with each problem, moving closer to the optimal schedule. The results demonstrate how runtimes are reduced by using intermediate subproblems to refine the bus charge solution so that the proposed method can be applied to large bus fleets of 100+ buses. Not only will we demonstrate that runtimes scale linearly with the number of buses but we will also show how the proposed method scales to large bus fleets of over 100 buses while managing the monthly cost of energy. Full article
Show Figures

Figure 1

Back to TopTop