Special Issue "Effect of Aquatic Environment on Fish Ecology"

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Water, Agriculture and Aquaculture".

Deadline for manuscript submissions: 10 January 2023 | Viewed by 4863

Special Issue Editor

Prof. Dr. Dapeng Li
E-Mail Website
Guest Editor
College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
Interests: fish physiology; freshwater culture technology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Fish living in water exhibits magnificent life legends on the blue planet. Aquatic environments in oceans, rivers, lakes, and ponds provide the conditions for fish survival, growth, and reproduction. Natural events and anthropogenic activities, such as climate change, water construction projects, and water pollution, are changing the aquatic environment. Fish must attempt to adapt to this changing environment. Alterations in fish early life history, growth and reproduction strategies, population size, community structure and function, and other fish-related ecological issues, have occurred in recent decades.

Scientists are trying to elucidate the mechanism of the ecological adaption of fish to the aquatic environment. Modern techniques and methods have been developed to study how fish interact with their environment in a wide range of aquatic habitats and artificial water bodies. Fish can modify their organs’ structure and function in response to the water physicochemical environment, change their reproduction strategy for population sustainability, and adjust their behavior and growth patterns in response to environmental change. If the environment changes beyond the physiological tolerance of the fish, however, they cannot re-establish homeostasis, which eventually causes fish death, altering the aquatic community structure or affecting fish farming.

With this Special Issue of Water, we offer a platform for the publication of innovative original articles and reviews regarding the effect of the aquatic environment on fish ecology. The scope of this Special Issue includes, but is not limited to: the effect of different environmental factors on fish development, growth, and reproduction; studies modeling environmental impacts on fish population and culture; the responses of fish to water pollution; mechanisms of fish adaption to environmental stress; and ecological changes in fish cultured in freshwater and seawater. To quantify and describe the functional relationships between fish and the aquatic environment will lead to better management of fish farming and better conservation strategies for fish species, populations, and communities, leading to a more sustainable aquatic food supply.

Prof. Dr. Dapeng Li
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fish ecology
  • fish growth
  • physiological ecology
  • fish behavior
  • water pollution
  • ocean acidification
  • eutrophication
  • environmental stress
  • population dynamics

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Effects of Temperature on the Growth Performance, Biochemical Indexes and Growth and Development-Related Genes Expression of Juvenile Hybrid Sturgeon (Acipenser baerii♀ × Acipenser schrenckii♂)
Water 2022, 14(15), 2368; https://doi.org/10.3390/w14152368 - 31 Jul 2022
Viewed by 286
Abstract
In order to investigate the effects of temperature on the growth performance, biochemical indexes and genes expression in juvenile hybrid sturgeon (Acipenser baerii♀ × Acipenser schrenckii♂), five temperature treatment groups (18 °C, 21 °C, 24 °C, 27 °C, 30 °C) [...] Read more.
In order to investigate the effects of temperature on the growth performance, biochemical indexes and genes expression in juvenile hybrid sturgeon (Acipenser baerii♀ × Acipenser schrenckii♂), five temperature treatment groups (18 °C, 21 °C, 24 °C, 27 °C, 30 °C) were set in this study. After 25 days of domestication, the specific growth rate (SGR) and relative weight gain rate of juvenile sturgeon increased at first and then decreased with the increase in temperature in the range of 18–30 °C and reached the highest value at 21 °C. A quadratic equation was used to fit the regression equation of SGR and temperature (T). The result showed that the temperature of the maximum SGR is 23.45 °C. Moreover, the expression level of the growth hormone (gh) and the content of blood glucose (GLU) increased significantly at 21 °C, while the expression level of the growth hormone receptor (ghr) in the liver decreased significantly. When the temperature exceeded 27 °C, the thyroid hormone levels were significantly affected, and the levels of total antioxidants (T-AOC) and reduced glutathione (GSH) were significantly higher than those in the control group. In addition, with the increase in temperature, the expression levels of hsp70 and hsp90 in the liver increased significantly, while the expression level of the luteinizing hormone (lh) in the brain decreased significantly. To summarize, the effect of temperature on the growth and development of juvenile sturgeon mainly occurs through the effects of glucose metabolism, thyroid hormone level, total antioxidant capacity and growth-related genes. Therefore, in a temperature range between 21 and 24 °C, juvenile sturgeon can obtain the maximum growth rate and survival rate. Full article
(This article belongs to the Special Issue Effect of Aquatic Environment on Fish Ecology)
Show Figures

Figure 1

Article
Nitrogen Removal of Water and Sediment in Grass Carp Aquaculture Ponds by Mixed Nitrifying and Denitrifying Bacteria and Its Effects on Bacterial Community
Water 2022, 14(12), 1855; https://doi.org/10.3390/w14121855 - 09 Jun 2022
Viewed by 594
Abstract
Nitrification and denitrification are important for nitrogen (N) cycling in fish ponds culture, but the effects of nitrifying and denitrifying bacteria concentrations on pond water and sediments remain largely unknown. Here, we used 0, 0.15, 0.30, 0.60 mg/L different concentrations of mixed nitrifying [...] Read more.
Nitrification and denitrification are important for nitrogen (N) cycling in fish ponds culture, but the effects of nitrifying and denitrifying bacteria concentrations on pond water and sediments remain largely unknown. Here, we used 0, 0.15, 0.30, 0.60 mg/L different concentrations of mixed nitrifying and denitrifying bacteria to repair the pond substrate through an enclosure experiment lasting 15 days. The results showed that the purification effect of nitrifying and denitrifying bacteria was most obvious on pond nitrogen from day 4 to day 7. The optimal relative concentration was 0.60 mg/L for nitrifying and denitrifying bacteria; NH4+-N (ammonia nitrogen) decreased by 75.83%, NO2-N (nitrite) by 93.09%, NO3-N (nitrate) by 38.02%, and TN (total nitrogen) by 45.16% in this concentration group on pond water. In one cycle, C/N (carbon/nitrogen) ratio of both water body and bottom sediment significantly increased, but C/N ratio of water body increased more significantly than that of sediment. Water C/N ratio increased by 76.00%, and sediment C/N ratio increased by 51.96% in the 0.60 mg/L concentration group. Amplicon sequencing of pond sediment showed that the change in nitrifying and denitrifying bacterium diversity was consistent with that in water quality index. Dominant nitrifying bacteria had a relatively high percentage, with significant differences in dominant bacterium percentage across different bacterial addition groups, while dominant denitrifying bacterium percentage was not high without significant differences among different groups. The dominant species of nitrifying bacteria were, respectively, Nitrosomonas, Nitrosovibrio, Nitrosospira, and Aeromonas, and the dominant species of denitrifying bacteria were Thauera, Azoarcus, Magnetospirillum, Azospira, and Idiomarina. The correlation analyses showed an aerobic nitrification and facultative anaerobic denitrification in pond sediments. Research shows that the addition of exogenous nitrifying and denitrifying bacteria can effectively reduce the nitrogen load of pond water and sediment. At the concentration of 0.6 mg/L, the nitrogen load of pond water and sediment decreased most obviously, which had the best effect on pond purification. Full article
(This article belongs to the Special Issue Effect of Aquatic Environment on Fish Ecology)
Show Figures

Figure 1

Article
Fish Habitat Reclamation Based on Geographical Morphology Heterogeneity in the Yangtze River and the Short-Term Effects on Fish Community Structure
Water 2022, 14(10), 1554; https://doi.org/10.3390/w14101554 - 12 May 2022
Viewed by 515
Abstract
Human alterations, such as hydropower development, are intensive and have negative impacts on fish and ecological environment. However, fish habitat restoration projects based on geographical morphology have not yet been reported in the Yangtze River. To explore engineering measures used to restore fish [...] Read more.
Human alterations, such as hydropower development, are intensive and have negative impacts on fish and ecological environment. However, fish habitat restoration projects based on geographical morphology have not yet been reported in the Yangtze River. To explore engineering measures used to restore fish habitat structure and function, a mesoscale fish habitat restoration project was designed and constructed, which included restructuring of habitat topography in the fluctuating area. Three-dimensional computational fluid dynamics (CFD) models were used to simulate and predict the project’s effect on the hydromorphology prior to construction, and an Acoustic Doppler current profiler (ADCP) was deployed to test and verify actual flow field improvement. Short-term effects on fish species sorting and their main ecological traits were examined. The results showed that vorticity and flow heterogeneity in the river reach increased, suggesting that the restoration projects created flow conditions favourable to indigenous fishes. Thus, pre-optimization using computer simulation is an essential and scientific procedure that could be used to increase the probability of river restoration success. The promotion of habitat diversity had strong effects on fish aggregation, especially for the rare and endemic fish species targeted. Fish abundance, catch biomass and species richness increased by 98.1%, 62.7% and 22.5%, respectively. There were significant differences (p < 0.05) in species number and catch abundance before and after the project. The number of rare and endemic fish species increased from four to nine species. Overall, this research provides evidence that the promotion of habitat hydraulic morphology heterogeneity accelerates the recovery of fish diversity and biomass. Full article
(This article belongs to the Special Issue Effect of Aquatic Environment on Fish Ecology)
Show Figures

Figure 1

Article
Comparison of Muscle Quality of the Yellow Catfish Cultured in In-Pond Raceway Systems and Traditional Ponds
Water 2022, 14(8), 1223; https://doi.org/10.3390/w14081223 - 11 Apr 2022
Viewed by 394
Abstract
In order to understand the difference in muscle nutritional quality between yellow catfish (Pelteobagrus fulvidraco) cultured in in-pond raceway systems (IPR) and traditional ponds (TRP), two modes were used to culture the yellow catfish with the same initial body weight [average [...] Read more.
In order to understand the difference in muscle nutritional quality between yellow catfish (Pelteobagrus fulvidraco) cultured in in-pond raceway systems (IPR) and traditional ponds (TRP), two modes were used to culture the yellow catfish with the same initial body weight [average body weight (15.69 1 ± 2.28) g] for 60 days. The growth index, muscle texture characteristics, muscle nutritional components, amino acids and fatty acids of the fish were measured after the culture experiment. The results showed that the weight gain rate, specific growth rate and survival rate of IPR were significantly higher than TRP (p < 0.05). The hardness, elasticity, chewiness and resilience of the yellow catfish cultured in IPR were significantly higher than those cultured in TRP (p < 0.05). The crude protein content in the muscle of the yellow catfish cultured in IPR was significantly higher than that cultured in TRP (p < 0.01), while the content of crude fat and water was significantly lower (p < 0.01). The total amount of amino acids, essential amino acids and flavor amino acids of IPR were significantly higher than TRP (p < 0.01). The percentages of saturated fatty acids in muscle of the yellow catfish cultured in IPR and TRP were 3.59% and 3.83%, respectively, and the percentages of unsaturated fatty acids were 96.41% and 96.17%, respectively. It was concluded that the nutritional quality of yellow catfish cultured in IPR was better than that of fish cultured in TRP. Full article
(This article belongs to the Special Issue Effect of Aquatic Environment on Fish Ecology)
Article
Lotic Environment Affects Morphological Characteristics and Energy Metabolism of Juvenile Grass Carp Ctenopharyngodon idella
Water 2022, 14(7), 1019; https://doi.org/10.3390/w14071019 - 23 Mar 2022
Viewed by 620
Abstract
This study investigated the effect of a lotic environment on morphological characteristics and energy metabolism in juvenile grass carp Ctenopharyngodon idella. The fish were stocked in the lotic environment and forced to swim for 12 h per day for 4 weeks at [...] Read more.
This study investigated the effect of a lotic environment on morphological characteristics and energy metabolism in juvenile grass carp Ctenopharyngodon idella. The fish were stocked in the lotic environment and forced to swim for 12 h per day for 4 weeks at three water current velocities of 0.5, 2, and 4 body length s−1 (Bl s−1). The control fish were stocked in the lentic environment with water current velocities of 0 Bl s−1. The results showed that lotic environment significantly increased body weight, body length, and condition factor of grass carp. The first principal component (PC1) characterized by measured overall body size suggested that fish in a lotic environment had body stoutness and wider tail stalk. Standard metabolic rate (SMR), maximum metabolic rate (MMR), and aerobic swimming performance (Ucrit) were elevated with the increased water flow and positively correlated with PC1. The 4 Bl s−1 group showed significantly decreased contents of serum glucose and muscular glycogen, and a significantly increased level of serum lactic acid. The mRNA expression levels of AMP-activated protein kinase-phosphorylate PPAR γ coactivator 1 α-nuclear respiratory factor 1 (AMPK-PGC1α-NRF1) pathway-related genes were significantly upregulated in red muscle of grass carp in the lotic environment. Water flow environment at 4 Bl s−1 significantly increased ratios of metabolic enzymes (lactate dehydrogenase/citrate synthase) and cytochrome c oxidase/citrate synthase) in the muscle. The relationship between morphological characteristics and metabolic capacity suggested that the body size of grass carp in a lotic environment was shaped to promote energy metabolism. The study identified the evidence of the mechanism and relationship of the trade-off between energy and morphology in grass carp. Full article
(This article belongs to the Special Issue Effect of Aquatic Environment on Fish Ecology)
Show Figures

Figure 1

Article
Nitrite Stress Induces Oxidative Stress and Leads to Muscle Quality Decreased in Wuchang Bream (Megalobrama amblycephala Yih) Juveniles
Water 2022, 14(2), 160; https://doi.org/10.3390/w14020160 - 08 Jan 2022
Cited by 2 | Viewed by 398
Abstract
To determine the effects of nitrite exposure on muscle quality and physiological functions in Wuchang bream (Megalobrama amblycephala), we exposed M. amblycephala juveniles to acute nitrite (0, 1, 5, 10, 20 mg/L), and the muscle and blood samples were measured at [...] Read more.
To determine the effects of nitrite exposure on muscle quality and physiological functions in Wuchang bream (Megalobrama amblycephala), we exposed M. amblycephala juveniles to acute nitrite (0, 1, 5, 10, 20 mg/L), and the muscle and blood samples were measured at 12, 24, 48, and 96 h. The results showed that when exposed to nitrite for 12 h, the concentrations of blood glucose, cortisol, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in the 20 mg/L experimental group had the maximum value. The activity of lactate dehydrogenase (LDH) increased significantly in a dose-dependently manner and peaked at 96 h in the 20 mg/L group. During 96 h of exposure to nitrite, the total antioxidant capacity (T-AOC) and catalase (CAT) activity in the liver of the 20 mg/L experimental group were significantly higher than those of the control group, while the concentration of muscle glycogen showed a downtrend. At 12 h and 96 h, the hardness of the four experimental groups were significantly higher than that of the control group. Our research shows that acute sodium nitrite exposure will not only cause oxidative stress and decreased muscle quality in M. amblycephala juveniles but also will be accompanied by changes in serum biochemical index, liver antioxidant capacity, muscle physiological characteristics, and muscle physical characteristics. Preliminary speculation may be that acute nitrite exposure may cause M. amblycephala juveniles to choose to reduce muscle quality and activate antioxidant systems. Full article
(This article belongs to the Special Issue Effect of Aquatic Environment on Fish Ecology)
Show Figures

Figure 1

Article
The Sustainable Treatment Effect of Constructed Wetland for the Aquaculture Effluents from Blunt Snout Bream (Megalobrama amblycephala) Farm
Water 2021, 13(23), 3418; https://doi.org/10.3390/w13233418 - 03 Dec 2021
Viewed by 649
Abstract
In aquaculture, constructed wetland (CW) has recently attracted attention for use in effluent purification due to its low running costs, high efficiency and convenient operation,. However, less data are available regarding the long-term efficiency of farm-scale CW for cleaning effluents from inland freshwater [...] Read more.
In aquaculture, constructed wetland (CW) has recently attracted attention for use in effluent purification due to its low running costs, high efficiency and convenient operation,. However, less data are available regarding the long-term efficiency of farm-scale CW for cleaning effluents from inland freshwater fish farms. This study investigated the effectiveness of CW for the removal of nutrients, organic matter, phytoplankton, heavy metals and microbial contaminants in effluents from a blunt snout bream (Megalobrama amblycephala) farm during 2013–2018. In the study, we built a farm-scale vertical subsurface flow CW which connected with a fish pond, and its performance was evaluated during the later stage of fish farming. The results show that CW improved the water quality of the fish culture substantially. This system was effective in the removal of nutrients, with a removal rate of 21.43–47.19% for total phosphorus (TP), 17.66–53.54% for total nitrogen (TN), 32.85–53.36% for NH4+-N, 33.01–53.28% NH3-N, 30.32–56.01% for NO3-N and 42.75–63.85% for NO2-N. Meanwhile, the chlorophyll a (Chla) concentration was significantly reduced when the farming water flowed through the CW, with a 49.69–62.01% reduction during 2013–2018. However, the CW system only had a modest effect on the chemical oxygen demand (COD) in the aquaculture effluents. Furthermore, concentrations of copper (Cu) and lead (Pb) were reduced by 39.85% and 55.91%, respectively. A microbial contaminants test showed that the counts of total coliform (TC) and fecal coliform (FC) were reduced by 55.93% and 48.35%, respectively. In addition, the fish in the CW-connected pond showed better growth performance than those in the control pond. These results indicate that CW can effectively reduce the loads of nutrients, phytoplankton, metals, and microbial contaminants in effluents, and improve the water quality of fish ponds. Therefore, the application of CW in intensive fish culture systems may provide an advantageous alternative for achieving environmental sustainability. Full article
(This article belongs to the Special Issue Effect of Aquatic Environment on Fish Ecology)
Show Figures

Figure 1

Back to TopTop