water-logo

Journal Browser

Journal Browser

Advanced Technologies in Agricultural Water-Saving Irrigation

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Water, Agriculture and Aquaculture".

Deadline for manuscript submissions: 20 October 2025 | Viewed by 390

Special Issue Editor


E-Mail Website
Guest Editor
College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China
Interests: water-saving irrigation technologies and optimization theories; remote sensing and informatization in agricultural water management
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

With global water scarcity intensifying and agricultural water consumption accounting for over 70% of freshwater use, advancing water-saving irrigation technologies has become critical for sustainable food security and environmental resilience. This Special Issue, Advanced Technologies in Agricultural Water-Saving Irrigation, aims to consolidate cutting-edge research and innovative practices that enhance water-use efficiency, optimize crop yields, and reduce environmental impacts in agriculture.

We invite submissions addressing theoretical breakthroughs, technological innovations, and practical applications. Topics of interest include, but are not limited to, the following:

  1. Smart irrigation systems (e.g., IoT-based automation, AI-driven decision support);
  2. Precision agriculture (soil moisture sensors, remote sensing, and variable-rate irrigation);
  3. Drought-resistant crop breeding and water-efficient agronomy;
  4. Water–energy–food nexus optimization;
  5. Recycled and non-conventional water resources (e.g., treated wastewater, brackish water);
  6. Policy frameworks and socio-economic assessments for technology adoption.

Prof. Dr. Wene Wang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • agricultural water-saving irrigation
  • smart irrigation
  • precision agriculture
  • IoT applications
  • water–energy–food nexus
  • non-conventional water resources
  • climate change adaptation
  • sustainable water management

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 12080 KiB  
Article
Synergistic Regulation of Soil Salinity and Ion Transport in Arid Agroecosystems: A Field Study on Drip Irrigation and Subsurface Drainage in Xinjiang, China
by Qianqian Zhu, Hui Wang, Honghong Ma, Feng Ding, Wanli Xu, Xiaopeng Ma and Yanbo Fu
Water 2025, 17(9), 1388; https://doi.org/10.3390/w17091388 - 5 May 2025
Viewed by 275
Abstract
The salinization of cultivated soil in arid zones is a core obstacle restricting the sustainable development of agriculture, particularly in regions like Xinjiang, China, where extreme aridity and intensive irrigation practices exacerbate salt accumulation through evaporation–crystallization cycles. Conventional drip irrigation, while temporarily mitigating [...] Read more.
The salinization of cultivated soil in arid zones is a core obstacle restricting the sustainable development of agriculture, particularly in regions like Xinjiang, China, where extreme aridity and intensive irrigation practices exacerbate salt accumulation through evaporation–crystallization cycles. Conventional drip irrigation, while temporarily mitigating surface salinity, often leads to secondary salinization due to elevated water tables and inefficient leaching. Recent studies highlight the potential of integrating drip irrigation with subsurface drainage systems to address these challenges, yet the synergistic mechanisms governing ion transport dynamics, hydrochemical thresholds, and their interaction with crop physiology remain poorly understood. In this study, we analyzed the effects of spring irrigation during the non-fertile period, soil hydrochemistry variations, and salt ion dynamics across three arid agroecosystems in Xinjiang. By coupling drip irrigation with optimized subsurface drainage configurations (burial depths: 1.4–1.6 m; lateral spacing: 20–40 m), we reveal a layer-domain differentiation in salt migration, Cl and Na+ were leached to 40–60 cm depths, while SO42− formed a “stagnant salt layer” at 20–40 cm due to soil colloid adsorption. Post-irrigation hydrochemical shifts included a 40% decline in conductivity, emphasizing the risk of adsorbed ion retention. Subsurface drainage systems suppressed capillary-driven salinity resurgence, maintaining salinity at 8–12 g·kg−1 in root zones during critical growth stages. This study establishes a “surface suppression–middle blocking–deep leaching” three-dimensional salinity control model, providing actionable insights for mitigating secondary salinization in arid agroecosystems. Full article
(This article belongs to the Special Issue Advanced Technologies in Agricultural Water-Saving Irrigation)
Show Figures

Figure 1

Back to TopTop