water-logo

Journal Browser

Journal Browser

Climate Change Impact on Hydrological Cycle and Water Resources Management, 2nd Edition

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Water and Climate Change".

Deadline for manuscript submissions: closed (10 August 2024) | Viewed by 7896

Special Issue Editors


E-Mail Website
Guest Editor
School of Climate Change and Adaptation, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
Interests: regional climate modeling; climate downscaling; hydrological modeling and flooding risk analysis; energy systems modeling under climate change; climate change impact assessment and adaptation studies; GIS; spatial modeling and analysis; big data analysis and visualization
Special Issues, Collections and Topics in MDPI journals
Center for Environment and Sustainability, University of Surrey, Guildford, Surrey GU2 7XH, UK
Interests: clean technology; policy development; computable general equilibrium model development and application; inpu–output/supply chain/ecological network/ material flow analysis; system optimization/partial equilibrium models
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Global warming can alter the hydrological cycle in various ways, such as increased cloudiness and latent heat fluxes, leading to more intensive and frequent precipitation extreme events (e.g., droughts, storms, and floods). These extreme events have received increased attention in the past few decades because of the associated economic losses, deaths, and many other severe consequences for human society. Climate change can also cause significant shifts in the spatial and temporal patterns of precipitation, bringing many unprecedented challenges for water resource management at regional and local scales. In addition to these common hydrological challenges, coastal communities are further threatened by rising sea levels and increasing storm surge as well as erosion. Adapting to these challenges requires a thorough understanding of the potential impacts of climate change from a long-term and systematic perspective.

This Special Issue focuses on the latest research advances in hydroclimate, coastal hydrology, hydrological extremes, and sustainable water resource management. Submissions in the form of research articles, reviews, perspectives, and case studies are all welcome. Research topics may include (but are not limited to) the following:

  • Climate change modeling;
  • Climate downscaling;
  • Hydroclimate modeling;
  • Flood modeling;
  • Hydrological cycle;
  • Hydrological extremes (e.g., droughts, storms, and floods);
  • Coastal hydrological challenges (e.g., sea level rise, coastal erosion, and storm surge);
  • Water resources monitoring and management;
  • Sustainable irrigation.

Dr. Xander Wang
Dr. Lirong Liu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • climate change modeling
  • climate downscaling
  • hydroclimate modeling
  • flood modeling
  • hydrological cycle
  • hydrological extremes (e.g., droughts, storms, and floods)
  • coastal hydrological challenges (e.g., sea level rise, coastal erosion, and storm surge)
  • water resource monitoring and management
  • sustainable irrigation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 8137 KiB  
Article
SWAT-Driven Exploration of Runoff Dynamics in Hyper-Arid Region, Saudi Arabia: Implications for Hydrological Understanding
by Sajjad Hussain, Burhan Niyazi, Amro Mohamed Elfeki, Milad Masoud, Xiuquan Wang and Muhammad Awais
Water 2024, 16(14), 2043; https://doi.org/10.3390/w16142043 - 19 Jul 2024
Viewed by 680
Abstract
Hydrological modeling plays a vital role in water-resource management and climate-change studies in hyper-arid regions. In the present investigation, surface runoff was estimated by a Soil and Water Assessment Tool (SWAT) model for Wadi Al-Aqul, Saudi Arabia. The Sequential Uncertainty Fitting version 2 [...] Read more.
Hydrological modeling plays a vital role in water-resource management and climate-change studies in hyper-arid regions. In the present investigation, surface runoff was estimated by a Soil and Water Assessment Tool (SWAT) model for Wadi Al-Aqul, Saudi Arabia. The Sequential Uncertainty Fitting version 2 (SUFI-2) technique in SWAT-CUP was adopted for the sensitivity analysis, calibration, and validation of the SWAT model’s components. The observational runoff data were scarce and only available from 1979 to 1984; such data scarcity is a common problem in hyper-arid regions. The results show good agreement with the observed daily runoff, as indicated by a Pearson Correlation Coefficient (r) of 0.86, a regression (R2) of 0.76, and a Nash–Sutcliffe coefficient (NSE) of 0.61. Error metrics, including the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), were notably low at 0.05 and 0.58, respectively. In the daily validation, the model continued to perform well, with a correlation of 0.76 and regression of 0.58. As a new approach, fitted parameters of daily calibration were incorporated into the monthly simulation, and they demonstrated an even better performance. The correlation coefficient (regression) and Nash–Sutcliffe were found to be extremely high during the calibration period of the monthly simulation, reaching 0.97 (0.95) and 0.73, respectively; meanwhile, they reached 0.99 (0.98) and 0.63 in the validation period, respectively. The sensitivity analysis using the SUFI-2 algorithm highlighted that, in the streamflow estimation, the Curve Number (CN) was found to be the most responsive parameter, followed by Soil Bulk Density (SOL_BD). Notably, the monthly results showed a higher performance than the daily results, indicating the inherent capability of the model in regard to data aggregation and reducing the impact of random fluctuations. These findings highlight the applicability of the SWAT model in predicting runoff and its implication for climate-change studies in hyper-arid regions. Full article
Show Figures

Figure 1

26 pages, 3116 KiB  
Article
Screening Rainwater Harvesting Potentialities in the EU Industrial Sector: A Framework for Site-Specific Assessment
by Daniel F. C. Dias, Morgan Abily, João M. Ribeiro, Hussam Jouhara and Evina Katsou
Water 2024, 16(12), 1758; https://doi.org/10.3390/w16121758 - 20 Jun 2024
Viewed by 701
Abstract
The industrial sector’s water consumption is projected to increase by 400% by 2050, placing significant stress on freshwater reserves. To address this challenge, innovative solutions for water management are crucial. This paper proposes a comprehensive framework for Rainwater Harvesting (RWH) in industrial settings, [...] Read more.
The industrial sector’s water consumption is projected to increase by 400% by 2050, placing significant stress on freshwater reserves. To address this challenge, innovative solutions for water management are crucial. This paper proposes a comprehensive framework for Rainwater Harvesting (RWH) in industrial settings, offering a methodology to assess the potential for RWH implementation across EU industrial sites. The framework integrates internal and publicly available datasets, including EU climate change monthly average rainfall data from the Copernicus Climate Data Store, to create current and prospective scenarios for RWH. The methodology evaluates critical parameters co-created with industrial stakeholders, such as catchment area, water quality, and industrial water requirements. This approach allows for site-specific assessments, enabling industries to reduce freshwater consumption and support sustainability goals within the Horizon 2050 framework. Our findings indicate that implementing RWH systems can significantly contribute to a sustainable and circular economy by reducing annual freshwater consumption, promoting resource reuse, and lowering industrial water costs. This framework provides industries with a tool to assess RWH feasibility, supporting their efforts to prepare for increased water demands and contribute to environmental conservation. Full article
Show Figures

Figure 1

21 pages, 5595 KiB  
Article
Assessment of Future Climate Change Impacts on Groundwater Recharge Using Hydrological Modeling in the Choushui River Alluvial Fan, Taiwan
by Thi-My-Linh Ngo, Shih-Jung Wang and Pei-Yuan Chen
Water 2024, 16(3), 419; https://doi.org/10.3390/w16030419 - 27 Jan 2024
Cited by 3 | Viewed by 2934
Abstract
This research delves into the crucial role of groundwater in underpinning ecosystems and human resilience amidst drastic and unpredictable climate change, particularly as water resources face increasing sustainability concerns due to population surges and climate change. Utilizing a combined approach of SWAT-MODFLOW models, [...] Read more.
This research delves into the crucial role of groundwater in underpinning ecosystems and human resilience amidst drastic and unpredictable climate change, particularly as water resources face increasing sustainability concerns due to population surges and climate change. Utilizing a combined approach of SWAT-MODFLOW models, we estimate the streamflow discharge and groundwater recharge in the Choushui River Alluvial Fan, Taiwan. These models allow evaluation of the distribution and proportion of recharge areas as well as the accuracy and the potential influence of future climate change scenarios on groundwater recharge. The findings show a strong correlation between the simulation and actual observations, evidenced by the Nash–Sutcliffe model efficiency coefficients (NSE) of 0.920 and 0.846 for calibration and validation in the Choushui River, and 0.549 and 0.548 for the Pei-Kang River, respectively. The model demonstrates a reliable representation of the watershed response, supported by robust statistical performance. The analysis reveals the variable impacts of climate change on groundwater recharge, dependent on the chosen scenario and period. Some scenarios indicate that the maximum observed increase in groundwater recharge is 66.36% under the RCP2.6 scenario in the long-term period (2061–2080), while the minimum observed increase is 29.67% under the RCP4.5 scenario in the initial time frame; however, all demonstrate a decrease ranging from 23.05% to 41.92% across different RCPs in the impact of climate change over time, suggesting a potential long-term decrease in the impact of climate change on groundwater recharge. This study provides indispensable insights into the spatial hotspots in the top fan and the potential range of impact rates of climate change on groundwater recharge, underscoring the importance of continuous research and the thorough evaluation of multiple scenarios. Moreover, we establish a primary framework for using a top-ranked MIROC5 projection of general circulation models (GCMs) to delineate an essential premise that facilitates the advanced exploration of alternative scenario augmentations, bolstering the comprehensive investigation of climate change impacts on groundwater recharge. It is proposed that these findings serve as a guidepost for sustainable water resource management and policy-making in the face of climate change and escalating water demand. Full article
Show Figures

Figure 1

16 pages, 9185 KiB  
Article
Optimized Irrigated Water Management Using Numerical Flow Modeling Coupled with Finite Element Model: A Case Study of Rechna Doab, Pakistan
by Muhammad Sanaullah, Xiuquan Wang, Sajid Rashid Ahmad, Kamran Mirza, Muhammad Qasim Mahmood and Muhammad Kamran
Water 2023, 15(23), 4193; https://doi.org/10.3390/w15234193 - 4 Dec 2023
Cited by 1 | Viewed by 1236
Abstract
The fate of agriculture in Pakistan is predominantly concerned with excessive water mining threats to the subsurface water resources. The current study integrates the Visual MODFLOW-2000 application to estimate the water balance of an aquifer bounded by the Chenab River in the West [...] Read more.
The fate of agriculture in Pakistan is predominantly concerned with excessive water mining threats to the subsurface water resources. The current study integrates the Visual MODFLOW-2000 application to estimate the water balance of an aquifer bounded by the Chenab River in the West and the Ravi River in the East, which covers an area of about 2.98 million hectares. An assimilated method of groundwater flow is employed to characterize the flow dynamics of the Rechna Doab aquifer. The Digital Elevation Model (DEM) produced by the Shuttle Radar Topography Mission (SRTM) and a mesh of discretized cell size (2500 m) were incorporated into the model design. The conceptual model of the alluvial aquifer involves trifold vertical boundaries (an initial fold thickness set up to 150 m). The model input parameters are precipitation, seepage through irrigation, return flow, recharge, hydraulic conductivity and evapotranspiration. Empirical relations are established (at the basin scale) for the discharge input of irrigation canals. Model results confirm that groundwater flow follows the topographic configuration of the study area (i.e., northeast to southwest), and the seepage from irrigating canals and rainfall appeared to be the main source of groundwater recharge among various resources. The zone budget study under steady state simulation showed that the total direct recharge to the aquifer is calculated as 522,910 acre foot. The simulated water balance of the studied aquifer reflects more fluctuations in river leakage. The predictive optimized model reflects an adaptation of canal lining and installation of additional tube wells that will minimize canal seepage by 70% and lead to the reclamation of 37,000 acres of water-logged land for normal cropping. Full article
Show Figures

Figure 1

18 pages, 4271 KiB  
Article
Quantifying the Long-Term Performance of Rainwater Harvesting in Cyclades, Greece
by Ioannis Zarikos, Nadia Politi, Nikolaos Gounaris, Stelios Karozis, Diamando Vlachogiannis and Athanasios Sfetsos
Water 2023, 15(17), 3038; https://doi.org/10.3390/w15173038 - 24 Aug 2023
Cited by 3 | Viewed by 1691
Abstract
South European and Mediterranean countries traditionally suffer from water scarcity, especially the regions around the Mediterranean. In Cyclades, the effects of drought have historically been observed and tackled with small-scale applications, with the most efficient method being rainwater harvesting (RWH). RWH is an [...] Read more.
South European and Mediterranean countries traditionally suffer from water scarcity, especially the regions around the Mediterranean. In Cyclades, the effects of drought have historically been observed and tackled with small-scale applications, with the most efficient method being rainwater harvesting (RWH). RWH is an inherent aspect of the local population’s culture and architecture, since most houses have built-in water tanks and flat roofs to harvest as much rainwater as possible. In recent decades, the increase in local population and tourism have added additional stress to the limited water resources of the Cycladic islands. To overcome water shortages, most of the islands are equipped with desalination plants. Despite the use of these plants, RWH is still a vital source of water that is free and has zero carbon footprint. Thus, it is important to compare, assess and quantify the performance of this traditional water conserving method as a key water source for the islands’ water resources management, today and for the coming decades. In this research, we investigate and quantify the future performance of rainwater harvesting applications and their contribution to continuous, sustainable, and climate-resilient water supply. The results show a decrease in rainwater harvesting potential in most of the islands, as well as the negative effect of touristic activity on per capita water availability on the islands. Full article
Show Figures

Figure 1

Back to TopTop