Surface Modification and Coating to Improve Properties of Various Materials

A special issue of Surfaces (ISSN 2571-9637).

Deadline for manuscript submissions: closed (30 November 2024) | Viewed by 20215

Special Issue Editors


E-Mail Website
Guest Editor
Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan
Interests: surface modification; fluorine; inorganic materials; plating

E-Mail Website
Guest Editor
Headquarters for Innovative Society-Academia Cooperation, University of Fukui, Fukui 910-8507, Japan
Interests: lithium-ion batteries; ceramics; surface modification; plating

Special Issue Information

Dear Colleagues,

We are pleased to announce the Special Issue entitled “Surface Modification and Coating to Improve Properties of Various Materials”. This Special Issue is focused on significant developments in surface and interface engineering to modify and improve the surface properties of materials. Also, we will publish high-quality submissions on any subject relevant to this important field, especially articles concerning surface modification and coatings on polymer, ceramic, and metal using unique skills. The topics of this Special Issue include, but are not limited to, the keywords. In this Special Issue, we wish to cover the most recent advances in all these kinds of surface treatments developed to improve surface properties. We encourage researchers to submit original research articles, reviews, and communications.

Dr. Jaeho Kim
Prof. Dr. Susumu Yonezawa
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Surfaces is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • physical and chemical vapor deposition techniques
  • plasma spraying
  • surface modification by a reactive gas
  • thermo-chemical treatment
  • wet chemical and electrochemical processes
  • plasma electrolytic oxidation
  • corrosion and oxidation resistance
  • hydrophilicity/hydrophobicity
  • adsorbable surface
  • functional coating
  • thin film

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (13 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 2522 KiB  
Article
One-Step Spark Plasma Erosion Processing of Carbon-Coated Sn-Si Nanoparticles for Lithium-Ion Battery Anodes
by Emma Marie Hamilton White, Lisa M. Rueschhoff, Takeshi Kobayashi, Jonathan Z. Bloh, Steve W. Martin and Iver E. Anderson
Surfaces 2024, 7(3), 725-738; https://doi.org/10.3390/surfaces7030047 - 10 Sep 2024
Cited by 1 | Viewed by 697
Abstract
High density portable energy storage is desirable owing to the energy requirements of portable electronics and electric vehicles. The Li-ion battery’s high energy density could be even further improved through the utilization of alternative materials (instead of carbon) for the anode, such as [...] Read more.
High density portable energy storage is desirable owing to the energy requirements of portable electronics and electric vehicles. The Li-ion battery’s high energy density could be even further improved through the utilization of alternative materials (instead of carbon) for the anode, such as Sn or Si. Nonetheless, the large volume expansion upon lithiation, up to ~300% for Li22Si5, causes pulverization and rapid capacity degradation during cycling. Sn also forms a Li22Sn5 compound with the equivalent stoichiometric Li capacity but with enhanced ductility. Nano-sized Si and Sn have demonstrated distinctive nanoscale properties, facilitating the retention of higher capacities, particularly when coated with carbon, which improves mechanical stability. To date, the methods of synthesizing coated Si, Sn, or Si-Sn alloyed nanoparticles are complicated, costly, and not readily scalable to meet the demands of cost-effective manufacturing. Spark plasma erosion in a hydrocarbon dielectric has been explored as a one-step process to produce Sn-Si alloy nanoparticles coated with a thin carbon film, offering a scalable and cost-effective processing route. The resulting Sn-Si particles exhibited a bi-modal size distribution at ~5 nm and ~500 nm and were carbon-coated, as intended, from the hydrocarbon dielectric breakdown. The spark-eroded nanoparticles were thoroughly characterized using TEM/EDS, XPS, AES, SSNMR, and TGA, and their improved electrochemical performance was assessed through half-cell experiments. Full article
Show Figures

Graphical abstract

11 pages, 9819 KiB  
Article
Wear and Abrasion Resistance of Nitride Coatings on Ceramic Substrates Processed with Fast Argon Atoms
by Sergey N. Grigoriev, Alexander S. Metel, Marina A. Volosova, Enver S. Mustafaev and Yury A. Melnik
Surfaces 2024, 7(3), 714-724; https://doi.org/10.3390/surfaces7030046 - 4 Sep 2024
Viewed by 602
Abstract
The surfaces of ceramic products are replete with numerous defects, such as those that appear during the diamond grinding of sintered SiAlON ceramics. The defective surface layer is the reason for the low effectiveness of TiZrN coatings under abrasive and fretting wear. An [...] Read more.
The surfaces of ceramic products are replete with numerous defects, such as those that appear during the diamond grinding of sintered SiAlON ceramics. The defective surface layer is the reason for the low effectiveness of TiZrN coatings under abrasive and fretting wear. An obvious solution is the removal of an up to 4-µm-thick surface layer containing the defects. It was proposed in the present study to etch the layer with fast argon atoms. At the atom energy of 5 keV and a 0.5 mA/cm2 current density, the ions were converted into fast atoms and the sputtering rate for the SiAlON samples reached 20 μm/h. No defects were observed in the microstructures of coatings deposited after beam treatment for half an hour. The treatment reduced the volumetric abrasive wear by five times. The fretting wear was reduced by three to four times. Full article
Show Figures

Figure 1

14 pages, 1957 KiB  
Article
Surface Migration of Fatty Acid to Improve Sliding Properties of Hypromellose-Based Coatings
by Maurice Brogly, Sophie Bistac and Armand Fahs
Surfaces 2024, 7(3), 666-679; https://doi.org/10.3390/surfaces7030043 - 2 Sep 2024
Viewed by 880
Abstract
Hypromellose (HM) is a cellulose-derived polymer of pharmaceutical grade that forms easily from thin films and coatings. As few studies concern HM-formulated systems, this study focuses on the formulation of HM films by incorporating a fatty acid additive, making it possible to control [...] Read more.
Hypromellose (HM) is a cellulose-derived polymer of pharmaceutical grade that forms easily from thin films and coatings. As few studies concern HM-formulated systems, this study focuses on the formulation of HM films by incorporating a fatty acid additive, making it possible to control surface properties such as wetting and slip behavior for pharmaceutical or medical applications. The results show that the addition of a very small amount (from 0.1 to 1% w/w) of fatty acid additive reduces HM film affinity for water and water vapor transmission rate, while film appearance and gloss are rather preserved. Surface properties were probed using wettability measurements, Tapping Mode AFM, ATR-FTIR spectrometry, and friction measurements. Tapping Mode AFM images show that the surface roughness reduces by up to 65%. Wettability results show that the surface energy decreases from 43 to 31 mJ.m−2, whereas surface FTIR spectrometry measurements demonstrate that fatty acid molecules migrate on the surface of the formulated films, the driving force being the microphase separation between the polar HM macromolecules and the hydrophobic additive, leading to the formation of a weak boundary layer with poor cohesion. As a consequence, the surface coefficient of friction significantly reduces from 0.38 to 0.08, and fatty acid molecules thus act as a lubricant, improving the sliding properties of HM-based coatings. Full article
Show Figures

Graphical abstract

10 pages, 2300 KiB  
Article
Fish-Mimicking Hydrophilic and Hygroscopic Transparent Films with Long-Lasting Anti-Oil Adhesion and Its Application to PET Bottles
by Jerred Wassgren, Hiroshi Kakiuchida, Tomoya Sato and Atsushi Hozumi
Surfaces 2024, 7(3), 643-652; https://doi.org/10.3390/surfaces7030041 - 20 Aug 2024
Viewed by 859
Abstract
With the recent ban on the production and use of long-chain perfluorinated compounds, the development of alternative approaches to prepare liquid-repellent surfaces that avoids the use of such compounds has become an urgent issue. We have succeeded in the development of fish-mimicking hydrophilic [...] Read more.
With the recent ban on the production and use of long-chain perfluorinated compounds, the development of alternative approaches to prepare liquid-repellent surfaces that avoids the use of such compounds has become an urgent issue. We have succeeded in the development of fish-mimicking hydrophilic transparent hydrogel-based films with long-lasting anti-oil adhesion properties. Such films could be prepared by simply mixing poly(vinylpyrrolidone) (PVP), nanoclay particles (NCPs), and a waterborne aminosilane (AOS) using an integral blend (IB) method. When submerged in water, these films displayed underwater superoleophobicity (advancing and receding contact angles (CAs) of diiodomethane were ~171°/~163°) with low CA hysteresis (less than 8°), because the hydrophilic nature of the films promoted the formation of a thin layer of adsorbed water on the topmost film surfaces, similar to fish scales. Furthermore, when our films were coated onto the inside of poly(ethylene terephthalate) (PET) bottles and pre-wetted using 80 °C hot water vapors, these film surfaces could effectively repel various oils and were able to maintain their oil-repellent properties for more than 5 weeks. These water-driven, non-perfluorinated transparent hydrogel-based films are expected to increase recycling of PET bottles for oils that are generally incinerated or landfilled. Full article
Show Figures

Graphical abstract

10 pages, 7031 KiB  
Article
Applicability of Fluorine Gas Surface Treatment to Control Liquid Sodium Wettability
by Masanari Namie, Jun-ichi Saito, Asuka Ikeda, Ryotaro Oka and Jae-Ho Kim
Surfaces 2024, 7(3), 550-559; https://doi.org/10.3390/surfaces7030037 - 9 Aug 2024
Viewed by 936
Abstract
The iron (Fe) specimens selected as the substrate metal for this study were surface-treated using fluorine gas, and their wettability with liquid sodium (Na) was evaluated using the sliding angle. Additionally, the surface morphology and binding state were analyzed, and the applicability of [...] Read more.
The iron (Fe) specimens selected as the substrate metal for this study were surface-treated using fluorine gas, and their wettability with liquid sodium (Na) was evaluated using the sliding angle. Additionally, the surface morphology and binding state were analyzed, and the applicability of wettability control with liquid sodium by fluorination was discussed using the analysis results. Fluorination formed a fluoride layer comprising FeF2 and FeF3 bonds on the iron surface. The composition of the fluoride layer varied, depending on the treatment conditions. The surface of the specimen that contains a lot of FeF3 bonds had a small sliding angle for the liquid sodium droplet and was harder to wet than the untreated specimen. In contrast, the surface of the specimen that contains a lot of FeF2 bonds had a large sliding angle for the liquid sodium droplet and was easier to wet than the untreated specimen. These results indicate that fluorination is an effective surface modification technique that can be applied to control the wettability of iron with liquid sodium. Full article
Show Figures

Graphical abstract

12 pages, 2539 KiB  
Article
High-Gas-Barrier and Biodegradable PPC-P/PBAT Composite Films Coated by Poly(vinyl alcohol)/borax Complexes
by Jiangtao Deng, Shuangshuang Yue, Min Xiao, Sheng Huang, Shuanjin Wang, Dongmei Han and Yuezhong Meng
Surfaces 2024, 7(3), 517-528; https://doi.org/10.3390/surfaces7030034 - 1 Aug 2024
Viewed by 1190
Abstract
Degradable and high-barrier plastic packaging materials draw more attention with the development of a social economy and the demands of environmental protection. In this study, poly(propylene carbonate phthalate) (PPC-P) and poly(butylene adipate-co-terephthalate) (PBAT) blends with different ratios were designed and prepared, marked as [...] Read more.
Degradable and high-barrier plastic packaging materials draw more attention with the development of a social economy and the demands of environmental protection. In this study, poly(propylene carbonate phthalate) (PPC-P) and poly(butylene adipate-co-terephthalate) (PBAT) blends with different ratios were designed and prepared, marked as PPC-P/PBAT. Chain extenders were introduced into the blends, and the mechanical properties, thermal properties, and barrier properties of the composites were studied. The 75PPC-P/PBAT with 2% extenders represent the best performance. The addition of the chain extender has significantly improved the thermal stability and tensile elongation of PPC-P/PBAT. On this basis, the PPC-P/PBAT composite film was coated with PVA and borax using the dipping and pulling method. The oxygen barrier properties have been further improved for the composite film with a coating layer. Considering the characteristics of biodegradability and a high-barrier property, the 75PPC-P/PBAT/2MDI@Gly blend coated with 2 wt% PVA and 3 wt% borax exhibits potential as a superior food/pharmaceutical plastic packaging material with excellent tensile and barrier properties. Full article
Show Figures

Figure 1

11 pages, 1890 KiB  
Article
Application of High-Surface Tension and Hygroscopic Ionic Liquid-Infused Nanostructured SiO2 Surfaces for Reversible/Repeatable Anti-Fogging Treatment
by Satoshi Nakamura, Jerred Wassgren, Sayaka Sugie and Atsushi Hozumi
Surfaces 2024, 7(3), 482-492; https://doi.org/10.3390/surfaces7030031 - 2 Jul 2024
Viewed by 950
Abstract
Anti-fogging coatings/surfaces have attracted much attention lately because of their practical applications in a wide variety of engineering fields. In this study, we successfully developed transparent anti-fogging surfaces using a non-volatile and hygroscopic ionic liquid (IL), bis(hydroxyethyl)dimethylammonium methanesulfonate ([BHEDMA][MeSO3]), with a [...] Read more.
Anti-fogging coatings/surfaces have attracted much attention lately because of their practical applications in a wide variety of engineering fields. In this study, we successfully developed transparent anti-fogging surfaces using a non-volatile and hygroscopic ionic liquid (IL), bis(hydroxyethyl)dimethylammonium methanesulfonate ([BHEDMA][MeSO3]), with a high surface tension (HST, 66.4 mN/m). To prepare these surfaces, a layer of highly transparent, superhydrophilic silica (SiO2) nano-frameworks (SNFs) was first prepared on a glass slide using candle soot particles and the subsequent chemisorption of tetraethoxysilane (TEOS). This particulate layer of SNFs was then used as the support for the preparation of the [BHEDMA][MeSO3] layer. The resulting IL-infused SNF-covered glass slide was highly transparent, superhydrophilic, hygroscopic, and had self-healing and reasonable reversible/repeatable anti-fogging/frosting properties. This IL-infused sample surface kept its excellent anti-fogging performance in air for more than 8 weeks due to the IL’s non-volatile, HST, and hygroscopic nature. In addition, even if the water absorption limit of [BHEDMA][MeSO3] was reached, the anti-fogging properties could be fully restored reversibly/repeatably by simply leaving the samples in air for several tens of minutes or heating them at 100 °C for a few minutes to remove the absorbed water. Our IL-based anti-fogging surfaces showed substantial improvement in their abilities to prevent fogging when compared to other dry/wet (super)hydrophobic/(super)hydrophilic surfaces having different surface geometries and chemistries. Full article
Show Figures

Graphical abstract

14 pages, 1724 KiB  
Article
Interactions between Cetyltrimethylammonium Bromide Modified Cellulose Nanocrystals and Surfaces: An Ellipsometric Study
by Xiaoyu Gong, Md Farhad Ismail and Yaman Boluk
Surfaces 2024, 7(2), 428-441; https://doi.org/10.3390/surfaces7020027 - 19 Jun 2024
Cited by 1 | Viewed by 841
Abstract
The tailoring of the surface properties of cellulose nanocrystals (CNCs) to meet various requirements in environmental, food, and material areas has always been of great interest. In this study, the surface chemistry of CNCs was noncovalently modified by cetyltrimethylammonium bromide (CTAB), followed by [...] Read more.
The tailoring of the surface properties of cellulose nanocrystals (CNCs) to meet various requirements in environmental, food, and material areas has always been of great interest. In this study, the surface chemistry of CNCs was noncovalently modified by cetyltrimethylammonium bromide (CTAB), followed by characterizations and an investigation into its application as a coating material for interfacial interaction over various substrates. Due to the CTAB modification, the surface charge of the CNCs was neutralized, resulting in an increased size of each nanocrystal at the aqueous status and the aggregated microfibers when dried up. The CTAB modification not only decreased the crystallinity of the samples from 48.57% to 9.12%, but also reasonably hydrophobized the CNCs and decreased their total surface energy. Finally, the adsorption behavior of the CNCs and CTAB-CNCs over nonionic, anionic, and cationic polymers was investigated by ellipsometry. Based on the thickness of the CNC and CTAB-CNC layers over 2-Hydroxyethyl cellulose (HEC), carboxymethyl cellulose (CMC), and polyethyleneimine (PEI), we proposed that the adsorption behavior was overall influenced by electrostatic interaction, hydrogen bonding, and van der Waals forces, and the thickness of the adsorbed layers could be impacted by both the surface charge and the size of the crystals. Full article
Show Figures

Figure 1

14 pages, 1264 KiB  
Article
General Method for Predicting Interface Bonding at Various Oxide–Metal Interfaces
by Michiko Yoshitake
Surfaces 2024, 7(2), 414-427; https://doi.org/10.3390/surfaces7020026 - 3 Jun 2024
Viewed by 982
Abstract
Interface termination bonding between metal oxide and metals is discussed from the viewpoint of thermodynamics. The method of interface termination prediction proposed by the authors for Al2O3–metal and ZnO–metal interfaces is extended to a general interface between metal-oxide and [...] Read more.
Interface termination bonding between metal oxide and metals is discussed from the viewpoint of thermodynamics. The method of interface termination prediction proposed by the authors for Al2O3–metal and ZnO–metal interfaces is extended to a general interface between metal-oxide and metals. The extension of the prediction method to the interface between metal oxides and elemental semiconductors is also discussed. Information on interface bonding was extracted by carefully examining the experimental results and first-principles calculations in the references. The extracted information on interface bonding from references is compared with the results obtained via the proposed prediction method. It is demonstrated that interface termination bonding can be predicted by extending the method to oxide–metal interfaces in general, when there is no interface reaction such as the reduction of oxide, oxidation of metal, or mixed oxide formation. The method uses only basic quantities of pure elements and the formation enthalpy of oxides. Therefore, it can be applied to most of the metals (including elemental semiconductors) in the periodic table and metal oxides with one stable valence. The method is implemented as a software, “InterChemBond”, and can be used free of charge. Full article
Show Figures

Figure 1

13 pages, 4350 KiB  
Article
Study on the Sound Absorption Properties of Recycled Polyester Nonwovens through Alkaline Treatment and Dimple Processing
by Gyeong Cheol Yu, Jeong Jin Park, Eun Hye Kang, Sun Young Lee, Youl Huh and Seung Goo Lee
Surfaces 2024, 7(2), 238-250; https://doi.org/10.3390/surfaces7020016 - 2 Apr 2024
Cited by 2 | Viewed by 1448
Abstract
This study focused on manufacturing efficient automobile sound-absorbing materials through alkaline treatment and dimple processing of recycled polyethylene terephthalate (rPET) nonwoven fabric. The rPET nonwoven fabric was produced with a sound-absorbing material through compression molding. It was improved through the development of porous [...] Read more.
This study focused on manufacturing efficient automobile sound-absorbing materials through alkaline treatment and dimple processing of recycled polyethylene terephthalate (rPET) nonwoven fabric. The rPET nonwoven fabric was produced with a sound-absorbing material through compression molding. It was improved through the development of porous sound-absorbing materials through alkaline treatment and resonant sound-absorbing materials through dimple processing. As a result of morphological analysis, alkaline treatment showed that pore size and air permeability increased according to temperature and concentration increase conditions. On the other hand, dimple processing caused a decrease in air permeability and a decrease in pores due to yarn fusion, and as the dimple diameter increased, the sound-absorbing coefficient increased in the 5000 Hz band. Finally, it was judged that effective sound absorption performance would be improved through a simple process through alkaline treatment and dimple processing, and thus there would be applicability in various industrial fields. Full article
Show Figures

Figure 1

12 pages, 6263 KiB  
Article
Microstructure and Properties of Thin-Film Submicrostructures Obtained by Rapid Thermal Treatment of Nickel Films on Silicon
by Vasilina Lapitskaya, Ruslan Trukhan, Tatyana Kuznetsova, Jaroslav Solovjov, Sergei Chizhik, Vladimir Pilipenko, Karyna Liutsko, Anastasiya Nasevich and Maksim Douhal
Surfaces 2024, 7(2), 196-207; https://doi.org/10.3390/surfaces7020013 - 27 Mar 2024
Viewed by 1508
Abstract
Nickel films of 40 nm thickness were obtained by means of magnetron sputtering on a single-crystalline silicon substrate. The films were subjected to rapid thermal treatment (RTT) for 7 s until the temperature increased from 200 to 550 °C. By means of the [...] Read more.
Nickel films of 40 nm thickness were obtained by means of magnetron sputtering on a single-crystalline silicon substrate. The films were subjected to rapid thermal treatment (RTT) for 7 s until the temperature increased from 200 to 550 °C. By means of the X-ray diffraction method, the structural-phase composition of nickel films before and after RTT was explored. The atomic force microscopy method due to direct contact with the surface under study, made it possible to accurately define the microstructure, roughness, specific surface energy and grain size of the nickel films before and after RTT, as well as to establish the relationship of these parameters with the phase composition and electrical properties of the films. Surface specific resistance was measured using the four-probe method. Based on XRD results, formation of Ni2Si and NiSi phases in the film was ascertained after RTT at 300 °C. At RTT 350–550 °C, only the NiSi phase was formed in the film. The microstructure and grain size significantly depend on the phase composition of the films. A correlation has been established between specific surface energy and resistivity with the average grain size after RTT at 350–550 °C, which is associated with the formation and constant restructuring of the crystal structure of the NiSi phase. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

54 pages, 2274 KiB  
Review
Analysis, Assessment, and Mitigation of Stress Corrosion Cracking in Austenitic Stainless Steels in the Oil and Gas Sector: A Review
by Mohammadtaghi Vakili, Petr Koutník, Jan Kohout and Zahra Gholami
Surfaces 2024, 7(3), 589-642; https://doi.org/10.3390/surfaces7030040 - 16 Aug 2024
Viewed by 3784
Abstract
This comprehensive review examines the phenomena of stress corrosion cracking (SCC) and chloride-induced stress corrosion cracking (Cl-SCC) in materials commonly used in the oil and gas industry, with a focus on austenitic stainless steels. The study reveals that SCC initiation can occur at [...] Read more.
This comprehensive review examines the phenomena of stress corrosion cracking (SCC) and chloride-induced stress corrosion cracking (Cl-SCC) in materials commonly used in the oil and gas industry, with a focus on austenitic stainless steels. The study reveals that SCC initiation can occur at temperatures as low as 20 °C, while Cl-SCC propagation rates significantly increase above 60 °C, reaching up to 0.1 mm/day in environments with high chloride concentrations. Experimental methods such as Slow Strain Rate Tests (SSRTs), Small Punch Tests (SPTs), and Constant-Load Tests (CLTs) were employed to quantify the impacts of temperature, chloride concentration, and pH on SCC susceptibility. The results highlight the critical role of these factors in determining the susceptibility of materials to SCC. The review emphasizes the importance of implementing various mitigation strategies to prevent SCC, including the use of corrosion-resistant alloys, protective coatings, cathodic protection, and corrosion inhibitors. Additionally, regular monitoring using advanced sensor technologies capable of detecting early signs of SCC is crucial for preventing the onset of SCC. The study concludes with practical recommendations for enhancing infrastructure resilience through meticulous material selection, comprehensive environmental monitoring, and proactive maintenance strategies, aimed at safeguarding operational integrity and ensuring environmental compliance. The review underscores the significance of considering the interplay between mechanical stresses and corrosive environments in the selection and application of materials in the oil and gas industry. Low pH levels and high temperatures facilitate the rapid progression of SCC, with experimental results indicating that stainless steel forms passive films with more defects under these conditions, reducing corrosion resistance. This interplay highlights the need for a comprehensive understanding of the complex interactions between materials, environments, and mechanical stresses to ensure the long-term integrity of critical infrastructure. Full article
Show Figures

Figure 1

24 pages, 4711 KiB  
Review
The Use of Plant Extracts as Green Corrosion Inhibitors: A Review
by Milad Sheydaei
Surfaces 2024, 7(2), 380-403; https://doi.org/10.3390/surfaces7020024 - 1 Jun 2024
Cited by 4 | Viewed by 3619
Abstract
The corrosion of metals is very important, both economically and environmentally, and is a serious concern. Since the past decades, traditional (chemical) corrosion inhibitors to prevent corrosion have been and are still being used. Although these inhibitors can be said to be a [...] Read more.
The corrosion of metals is very important, both economically and environmentally, and is a serious concern. Since the past decades, traditional (chemical) corrosion inhibitors to prevent corrosion have been and are still being used. Although these inhibitors can be said to be a good choice among other protection techniques because of their good efficiency, the toxicity of many of them causes environmental problems, and, due to the change in the laws on the use of chemicals, many of them are no longer allowed. Hence, during the past years, research on green corrosion inhibitors (GCIs) increased and very favorable results were obtained, and now they are very popular. It can be said that biodegradability and easy preparation are their most important factors. Meanwhile, the use of plants, especially their extracts, has been studied a lot. Plant extracts contain compounds that have anti-corrosion properties. In this review, the use of plants as GCIs is investigated, focusing on recent advances in their use. Also, the phenomenon of corrosion, corrosion protection (including coatings, nanoparticles, and chemical inhibitors), and other GCIs are briefly reviewed. Full article
Show Figures

Graphical abstract

Back to TopTop