- Article
Low-Frequency Phonon Scattering in Wurtzite Cadmium Sulfide: An Off- and Near-Resonance Raman Spectroscopy Study
- Carlos Israel Medel Ruiz,
- Roger Chiu and
- Jesús Ricardo Sevilla Escoboza
- + 3 authors
Phonons, the quantized lattice vibrations, are fundamental for a wide range of phenomena in condensed matter systems. In particular, low-frequency phonons significantly influence electrical conductivity, thermal transport, and the optical properties of solid-state materials. Although there is considerable literature on cadmium sulfide (CdS) phonons—studied, for example, using resonance Raman spectroscopy—up-to-date information on the low-frequency phonons of this important semiconductor is still lacking. In this study, Raman spectroscopy under off- and near-resonance conditions is employed to investigate the low-frequency phonon in wurtzite CdS single crystals. Under off-resonance conditions, the spectrum exhibits multiple low-intensity peaks, which were analyzed through curve fitting. In contrast, the near-resonance spectrum shows an intense, broad band that was deconvoluted into its constituent components, including an antiresonance feature that was mathematically modeled for the first time in CdS. The results demonstrate that Raman scattering intensity in both regimes provides valuable insights into the low-frequency phonon modes of CdS. These findings enhance our understanding of the material’s vibrational properties and may facilitate the development of more efficient CdS-based optoelectronic devices.
4 November 2025



