Previous Issue
Volume 6, September
 
 

Solids, Volume 6, Issue 4 (December 2025) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
15 pages, 4143 KB  
Article
Microstructure and Mechanical Performance of Cu and Gr/Cu Composites: Experimental and Ab Initio Insights
by Galiia Korznikova, Gulnara Khalikova, Igor Kosarev, Wei Wei, Alexander Semenov and Elena Korznikova
Solids 2025, 6(4), 57; https://doi.org/10.3390/solids6040057 - 8 Oct 2025
Viewed by 340
Abstract
This study investigates the microstructure and mechanical properties of copper (Cu) and graphene/Cu (Gr/Cu) composites produced via high-pressure torsion (HPT) under 5 GPa at room temperature. Microstructural analysis revealed significant grain refinement, with average grain sizes of 0.39 μm for pure Cu and [...] Read more.
This study investigates the microstructure and mechanical properties of copper (Cu) and graphene/Cu (Gr/Cu) composites produced via high-pressure torsion (HPT) under 5 GPa at room temperature. Microstructural analysis revealed significant grain refinement, with average grain sizes of 0.39 μm for pure Cu and 0.35 μm for Gr/Cu composite. The Gr/Cu composite exhibited slightly higher microstrains and effective stacking fault energy (SFE). Tensile tests showed ultimate tensile strengths of 689 MPa (pure Cu) and 674 MPa (Gr/Cu), with the latter demonstrating improved ductility (~10% elongation). Ab initio calculations confirmed a 27% increase in SFE for Gr/Cu, aligning with experimental results. These findings highlight the potential of Gr/Cu composites for applications requiring high strength and efficient heat dissipation. Full article
Show Figures

Figure 1

22 pages, 5267 KB  
Article
On Ballooning and Burst Behavior of Nuclear Fuel Clad Considering Heating Rate Effect: Development of a Damage Model, a Burst Correlation and Experimental Validation
by Ather Syed and Mahendra Kumar Samal
Solids 2025, 6(4), 56; https://doi.org/10.3390/solids6040056 - 28 Sep 2025
Viewed by 315
Abstract
Nuclear fuel cladding serves as the primary barrier to the release of radioactive fission products and is subjected to high-temperature and high-pressure environments during both normal reactor operation and accident scenarios such as loss of coolant accidents (LOCAs). Predicting the burst behavior of [...] Read more.
Nuclear fuel cladding serves as the primary barrier to the release of radioactive fission products and is subjected to high-temperature and high-pressure environments during both normal reactor operation and accident scenarios such as loss of coolant accidents (LOCAs). Predicting the burst behavior of cladding is essential for ensuring structural integrity, especially under varying heating rates—an aspect inadequately addressed in existing empirical models. In this study, a finite element-based damage model is developed to simulate the ballooning and burst behavior of Zircaloy-4 cladding. The model incorporates creep deformation, stress triaxiality, and time-dependent damage accumulation. Material behavior is characterized using experimentally determined creep constants and the model is calibrated against burst test data from the literature. A new heating-rate-dependent burst correlation is proposed based on model outputs. The results indicate that increasing the heating rate raises the burst temperature due to reduced exposure time in the temperature regime where creep damage accumulates significantly. The model accurately reproduces burst behavior across a wide range of internal pressures (1–10 MPa) and heating rates (5–100 °C/s). The newly developed correlation improves predictive capability in accident analysis tools and can be directly implemented into safety analysis codes for Indian pressurized heavy water reactors (PHWRs), contributing to enhanced reactor safety evaluations. Full article
(This article belongs to the Topic Multi-scale Modeling and Optimisation of Materials)
Show Figures

Graphical abstract

19 pages, 6620 KB  
Article
DFT Study of Oxygen Ion Migration in Mg-Doped Cubic Zirconia
by Zhussupbek M. Salikhodzha, Guldari B. Bairbayeva, Anatoli I. Popov, Raigul N. Kassymkhanova, Keleshek B. Zhangylyssov, Elena Popova and Marina Konuhova
Solids 2025, 6(4), 55; https://doi.org/10.3390/solids6040055 - 25 Sep 2025
Viewed by 410
Abstract
This work presents a theoretical investigation of ionic conductivity in cubic zirconia (c-ZrO2) doped with magnesium, using density functional theory (DFT) with the hybrid B3LYP functional as implemented in the CRYSTAL23 software package. It was found that the spatial arrangement of [...] Read more.
This work presents a theoretical investigation of ionic conductivity in cubic zirconia (c-ZrO2) doped with magnesium, using density functional theory (DFT) with the hybrid B3LYP functional as implemented in the CRYSTAL23 software package. It was found that the spatial arrangement of magnesium atoms and oxygen vacancies significantly affects the energy barriers for oxygen ion migration. Configurations with magnesium located along and outside the migration path were analyzed. The results show that when Mg2+ is positioned along the migration trajectory and near an oxygen vacancy, stable defect complexes are formed with minimal migration barriers ranging from 0.96 to 1.32 eV. An increased number of Mg atoms can lead to a further reduction in the barrier, although in certain configurations the barriers increase up to 3.0–4.6 eV. When doping occurs outside the migration path, the energy profile remains symmetric and moderate (0.9–1.1 eV), indicating only a weak background influence. These findings highlight the critical role of coordinated distribution of Mg atoms and oxygen vacancies along the migration pathway in forming efficient ion-conducting channels. This insight offers potential for designing high-performance zirconia-based electrolytes for solid oxide fuel cells and sensor applications. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop