Composites in which finely dispersed particles of the metallic phase are uniformly distributed over the surface of expanded graphite can be used as magnetic sorbents for crude oil and petroleum products, as well as a basis for creating screens that protect against electromagnetic
[...] Read more.
Composites in which finely dispersed particles of the metallic phase are uniformly distributed over the surface of expanded graphite can be used as magnetic sorbents for crude oil and petroleum products, as well as a basis for creating screens that protect against electromagnetic radiation. The literature describes various approaches to obtaining such materials, but from a technological point of view, the most promising is the method in which the formation of a metal-containing phase on the surface of expanded graphite is directly combined with its expansion. For this purpose, graphite intercalation compounds with chlorides of metals of the iron triad (GIC-MCl
x) were obtained: GIC-FeCl
3 of I-VII stages, GIC-CoCl
2 of I/II stage and GIC-NiCl
2 of II/III stage, which were treated with liquid NH
3 or CH
3NH
2 in order to obtain an occlusive complex, which, due to the presence of a large amount of bound RNH
2, would be capable of effective thermal expansion during heating in an inert atmosphere with the formation of low-density expanded graphite, and the presence of reducing properties in ammonia and methylamine would lead to the reduction of the metal from chloride. The structure of GIC-MCl
x and GIC-MCl
x treated by NH
3 and CH
3NH
2 was investigated by XRD analysis and Mossbauer spectroscopy. The composition of the metal-containing phase in expanded graphite/metal composite was determined by XRD analysis and its quantity by the gravimetric method. The distribution of metals particles is investigated by SEM, TEM and EDX methods. Expanded graphite/metal composites are characterized by the high saturation magnetization (up to ≈ 50 emu/g) at a bulk density of 4–6 g/L.
Full article