sensors-logo

Journal Browser

Journal Browser

Image Processing and Analysis for Object Detection: 3rd Edition

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Sensing and Imaging".

Deadline for manuscript submissions: 20 November 2025 | Viewed by 1017

Special Issue Editor


E-Mail Website
Guest Editor
School of Information and Control, Nanjing University of Information Science and Technology, Nanjing, China
Interests: computer vision; pattern recognition
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent years, there has been a huge rise in interest in the development of deep learning techniques for computer vision. As deep learning comes to encompass almost all fields of science and engineering, computer vision remains one of its primary application areas. Specifically, the use of deep learning to handle computer vision tasks has led to numerous unprecedented applications, such as high-accuracy object detection, visual tracking, image segmentation, image/video super-resolution, satellite image processing, and saliency object detection, which cannot achieve promising performance through the use of conventional methods.

This Special Issue aims to cover the latest advances in the field of computer vision, involving the use of sensors (such as cameras, video cameras, drones, etc.) for image acquisition, the use of deep learning methods, and a special focus on low-level and high-level computer vision tasks. Original research and review articles are welcome to be submitted. Potential topics may include, but are not limited to, the following:

  • Image/video super-resolution with deep learning approaches;
  • Object detection, visual tracking, and image/video segmentation with
  • deep learning approaches;
  • Supervised and unsupervised learning for image/video processing;
  • Satellite image processing with deep learning techniques;
  • Low-light image enhancement using deep learning approaches.

Prof. Dr. Kaihua Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • augmented reality
  • artificial intelligence
  • computer vision
  • classification algorithms
  • defect detection
  • deep learning
  • feature extraction
  • image processing
  • image classification
  • image super-resolution
  • machine vision
  • object detection, tracking, and recognition techniques
  • semantic segmentation
  • sensing technologies
  • sensor fusion and technologies
  • visual tracking
  • vision sensors
  • video classification

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 3489 KB  
Article
GA-YOLOv11: A Lightweight Subway Foreign Object Detection Model Based on Improved YOLOv11
by Ning Guo, Min Huang and Wensheng Wang
Sensors 2025, 25(19), 6137; https://doi.org/10.3390/s25196137 - 4 Oct 2025
Viewed by 603
Abstract
Modern subway platforms are generally equipped with platform screen door systems to enhance safety, but the gap between the platform screen doors and train doors may cause passengers or objects to become trapped, leading to accidents. Addressing the issues of excessive parameter counts [...] Read more.
Modern subway platforms are generally equipped with platform screen door systems to enhance safety, but the gap between the platform screen doors and train doors may cause passengers or objects to become trapped, leading to accidents. Addressing the issues of excessive parameter counts and computational complexity in existing foreign object intrusion detection algorithms, as well as false positives and false negatives for small objects, this article introduces a lightweight deep learning model based on YOLOv11n, named GA-YOLOv11. First, a lightweight GhostConv convolution module is introduced into the backbone network to reduce computational resource waste in irrelevant areas, thereby lowering model complexity and computational load. Additionally, the GAM attention mechanism is incorporated into the head network to enhance the model’s ability to distinguish features, enabling precise identification of object location and category, and significantly reducing the probability of false positives and false negatives. Experimental results demonstrate that in comparison to the original YOLOv11n model, the improved model achieves 3.3%, 3.2%, 1.2%, and 3.5% improvements in precision, recall, mAP@0.5, and mAP@0.5: 0.95, respectively. In contrast to the original YOLOv11n model, the number of parameters and GFLOPs were reduced by 18% and 7.9%, respectfully, while maintaining the same model size. The improved model is more lightweight while ensuring real-time performance and accuracy, designed for detecting foreign objects in subway platform gaps. Full article
(This article belongs to the Special Issue Image Processing and Analysis for Object Detection: 3rd Edition)
Show Figures

Figure 1

Back to TopTop