sensors-logo

Journal Browser

Journal Browser

Integrated Sensing and Communication in IoT Applications

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Communications".

Deadline for manuscript submissions: closed (30 September 2025) | Viewed by 1816

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Applied Engineering, IDLab, IMEC, University of Antwerp, 2020 Antwerp, Belgium
Interests: integrated communication and sensing; passive sensing; signals of opportunity; sustainability
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Informatics and Telecommunications, University of Ioannina, Campus of Arta, 47100 Arta, Greece
Interests: wireless sensor networks; wireless telecommunication systems; designs and implementations
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Engineering, University of Campania “L. Vanvitelli”, 81031 Aversa, CE, Italy
Interests: signal processing; wireless communications; wireless sensor networks; 5G; MIMO; OFDM; software defined radio
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Integrated Sensing and Communication (ISAC) is an innovative approach that unifies sensing and communication functions within a shared framework, paving the way for efficient, high-performing Internet of Things (IoT) applications. As demands for connected environments grow in fields like smart cities, autonomous vehicles, and healthcare, ISAC offers the unique potential to streamline resource usage, improve spectrum efficiency, and lower hardware requirements. This Special Issue invites research that explores ISAC advancements, especially as they relate to the enhanced connectivity and intelligence expected in the upcoming 5G and 6G eras. Critical to the deployment of ISAC systems are challenges such as interference management, real-time signal processing, and advanced algorithms that can adapt to dynamic environments. Furthermore, the interplay between humans and IoT signals provides valuable insights, allowing us to interpret activities and detect environmental changes through pattern analysis. We welcome contributions addressing these technical hurdles, alongside discussions on security and privacy, to advance ISAC applications in real-world IoT contexts.

Dr. Rafael Berkvens
Prof. Dr. Constantinos Angelis
Dr. Gianmarco Romano
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • integrated sensing and communication (ISAC)
  • IoT applications
  • spectrum efficiency
  • 5G and 6G networks
  • signal processing
  • human-influenced signals
  • privacy and security in IoT
  • environmental sensing
  • autonomous systems

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 2132 KB  
Article
DL-AoD Estimation-Based 5G Positioning Using Directionally Transmitted Synchronization Signals
by Ivo Müürsepp and Muhammad Mahtab Alam
Sensors 2025, 25(20), 6372; https://doi.org/10.3390/s25206372 - 15 Oct 2025
Viewed by 446
Abstract
This paper introduces a method for estimating the Downlink Angle of Departure (DL-AoD) of 5G User Equipment (UE) from measured signal strengths of directionally transmitted synchronization signals. Based on estimated DL-AoD values, from two or more anchor nodes, the position of the UE [...] Read more.
This paper introduces a method for estimating the Downlink Angle of Departure (DL-AoD) of 5G User Equipment (UE) from measured signal strengths of directionally transmitted synchronization signals. Based on estimated DL-AoD values, from two or more anchor nodes, the position of the UE was estimated. Unlike most prior work, which is simulation-based or relies on custom testbeds, this study uses real measurements from an operational 5G network in an industrial factory environment. A deterministic estimator was derived, but multipath and unknown beam characteristics limit its accuracy. To address this, machine learning was applied to automatically adapt to the environment. Previous simulation studies reported 90th-percentile DL-AoD estimation errors below 2°, while experimental works achieved best-case accuracies of 5–6°. In this study, the experimental DL-AoD estimation error remained below 4° for 90% of the measurements, indicating improved real-world performance. Reported positioning errors in the literature range from 3.8 m to 140 m, whereas the 13.2 m error obtained here lies near the midpoint of this range, confirming the practicality of the proposed method in industrial environments. Compared to existing approaches, this work demonstrates high angular accuracy using only sub-6 GHz beams in a realistic industrial scenario without detailed knowledge of antenna beam patterns and channel state. The findings demonstrate that standard 5G signals can provide accurate indoor localization without additional infrastructure, offering a practical path toward cost-effective positioning in industrial IoT and automation. Full article
(This article belongs to the Special Issue Integrated Sensing and Communication in IoT Applications)
Show Figures

Figure 1

20 pages, 3754 KB  
Article
Secrecy Outage Performance Analysis of Wirelessly Powered IoT System with Randomly Moving Receiving Nodes
by Vesna Blagojević, Nadica Kozić, Aleksandra Cvetković and Predrag Ivaniš
Sensors 2025, 25(5), 1386; https://doi.org/10.3390/s25051386 - 24 Feb 2025
Cited by 1 | Viewed by 748
Abstract
Due to the need for the implementation of various IoT services, novel generation networks are often characterized by a constant requirement for their expansion and a rising number of nodes. The IoT network nodes are usually low power, so security becomes a challenging [...] Read more.
Due to the need for the implementation of various IoT services, novel generation networks are often characterized by a constant requirement for their expansion and a rising number of nodes. The IoT network nodes are usually low power, so security becomes a challenging issue as conventional cryptographic techniques are hard to implement due to power and computational limitations. Besides, wireless power transfer is an appealing approach for powering IoT systems in scenarios where many nodes are placed in hardly accessible areas. Finally, due to a variety of applications, network nodes are often mobile. Motivated by these facts, in this paper, we investigate physical layer security in IoT systems powered by means of a power beacon, where a legitimate user or eavesdropper can be mobile. The closed-form approximate secrecy outage probability expressions are derived for the Nakagami-m fading environment and three scenarios of receiving node mobility, described by using a random waypoint model with mobility patterns in one, two or three dimensions. The accuracy of the obtained analytical expressions is corroborated by an independently developed simulation model. Full article
(This article belongs to the Special Issue Integrated Sensing and Communication in IoT Applications)
Show Figures

Figure 1

Back to TopTop