Special Issue "Remote Sensing of Atmosphere and Underlying Surface Using OLCI and SLSTR on Board Sentinel-3: Calibration, Algorithms, Geophysical Products and Validation"

A special issue of Remote Sensing (ISSN 2072-4292).

Deadline for manuscript submissions: 31 December 2019.

Special Issue Editors

Guest Editor
Dr. Craig Donlon E-Mail
Copernicus Sentinel-3 and Sentinel-6 Mission Scientist, Principal Scientist for Oceans and Ice, European Space Agency, ESTEC/EOP-SME, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands
Guest Editor
Dr. Alexander Kokhanovsky Website E-Mail
VITROCISET Belgium SPRL, Bratustrasse 7,64289 Darmstadt,Germany
Phone: +49(0)6151 9573421
Fax: +49(0)6151 9573426
Interests: radiative transfer; optical remote sensing; atmosphere; cryosphere; clouds; aerosol; ocean; snow ;ice; atmospheric radiation; light scattering
Guest Editor
Prof. Peter North Website E-Mail
Global Environmental Modelling and Earth Observation (GEMEO), Department of Geography, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK

Special Issue Information

Dear Colleagues,

This Special Issue is aimed at presentation of results derived from two instruments onboard of the ESA Sentinel–3 mission: Ocean and Land Colour Instrument (OLCI) and Sea and Land Surface Temperature Radiometer (SLSTR). Papers related to the following topics are welcome:

-remote sensing of atmosphere,
-remote sensing of underlying surface including ocean, land, snow and ice,
-description of retrieval algorithms,
-calibration of the instruments,
-validation of geophysical products.

Dr. Craig Donlon
Dr. Alexander Kokhanovsky
Prof. Peter North
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Developing a New Machine-Learning Algorithm for Estimating Chlorophyll-a Concentration in Optically Complex Waters: A Case Study for High Northern Latitude Waters by Using Sentinel 3 OLCI
Remote Sens. 2019, 11(18), 2076; https://doi.org/10.3390/rs11182076 - 04 Sep 2019
Abstract
The monitoring of Chlorophyll-a (Chl-a) concentration in high northern latitude waters has been receiving increased focus due to the rapid environmental changes in the sub-Arctic, Arctic. Spaceborne optical instruments allow the continuous monitoring of the occurrence, distribution, and amount of Chl-a. In recent [...] Read more.
The monitoring of Chlorophyll-a (Chl-a) concentration in high northern latitude waters has been receiving increased focus due to the rapid environmental changes in the sub-Arctic, Arctic. Spaceborne optical instruments allow the continuous monitoring of the occurrence, distribution, and amount of Chl-a. In recent years, the Ocean and Land Color Instruments (OLCI) onboard the Sentinel 3 (S3) A and B satellites were launched, which provide data about various aquatic environments on advantageous spatial, spectral, and temporal resolutions with high SNR. Although S3 OLCI could be favorable to monitor high northern latitude waters, there have been several challenges related to Chl-a concentration retrieval in these waters due to their unique optical properties coupled with challenging environments including high sun zenith angle, presence of sea ice, and frequent cloud covers. In this work, we aim to overcome these difficulties by developing a machine-learning (ML) approach designed to estimate Chl-a concentration from S3 OLCI data in high northern latitude optically complex waters. The ML model is optimized and requires only three S3 OLCI bands, reflecting the physical characteristic of Chl-a as input in the regression process to estimate Chl-a concentration with improved accuracy in terms of the bias (five times improvements.) The ML model was optimized on data from Arctic, coastal, and open waters, and showed promising performance. Finally, we present the performance of the optimized ML approach by computing Chl-a maps and corresponding certainty maps in highly complex sub-Arctic and Arctic waters. We show how these certainty maps can be used as a support to understand possible radiometric calibration issues in the retrieval of Level 2 reflectance over these waters. This can be a useful tool in identifying erroneous Level 2 Remote sensing reflectance due to possible failure of the atmospheric correction algorithm. Full article
Show Figures

Figure 1

Open AccessArticle
Atmospheric Correction of OLCI Imagery over Extremely Turbid Waters Based on the Red, NIR and 1016 nm Bands and a New Baseline Residual Technique
Remote Sens. 2019, 11(3), 220; https://doi.org/10.3390/rs11030220 - 22 Jan 2019
Cited by 1
Abstract
A common approach to the pixel-by-pixel atmospheric correction of satellite water colour imagery is to calculate aerosol and water reflectance at two spectral bands, typically in the near infra-red (NIR, 700–1000 nm) or the short-wave-infra-red (SWIR, 1000–3000 nm), and then extrapolate aerosol reflectance [...] Read more.
A common approach to the pixel-by-pixel atmospheric correction of satellite water colour imagery is to calculate aerosol and water reflectance at two spectral bands, typically in the near infra-red (NIR, 700–1000 nm) or the short-wave-infra-red (SWIR, 1000–3000 nm), and then extrapolate aerosol reflectance to shorter wavelengths. For clear waters, this can be achieved simply for NIR bands, where the water reflectance can be assumed negligible i.e., the “black water” assumption. For moderately turbid waters, either the NIR water reflectance, which is non-negligible, must be modelled or longer wavelength SWIR bands, with negligible water reflectance, must be used. For extremely turbid waters, modelling of non-zero NIR water reflectance becomes uncertain because the spectral slopes of water and aerosol reflectance in the NIR become similar, making it difficult to distinguish between them. In such waters the use of SWIR bands is definitely preferred and the use of the MODIS bands at 1240 nm and 2130 nm is clearly established although, on many sensors such as the Ocean and Land Colour Instrument (OLCI), such SWIR bands are not included. Instead, a new, cheaper SWIR band at 1016 nm is available on OLCI with potential for much better atmospheric correction over extremely turbid waters. That potential is tested here. In this work, we demonstrate that for spectrally-close band triplets (such as OLCI bands at 779–865–1016 nm), the Rayleigh-corrected reflectance of the triplet’s “middle” band after baseline subtraction (or baseline residual, BLR) is essentially independent of the atmospheric conditions. We use the three BLRs defined by three consecutive band triplets of the group of bands 620–709–779–865–1016 nm to calculate water reflectance and hence aerosol reflectance at these wavelengths. Comparison with standard atmospheric correction algorithms shows similar performance in moderately turbid and clear waters and a considerable improvement in extremely turbid waters. Full article
Show Figures

Graphical abstract

Open AccessArticle
Persistent Hot Spot Detection and Characterisation Using SLSTR
Remote Sens. 2018, 10(7), 1118; https://doi.org/10.3390/rs10071118 - 13 Jul 2018
Cited by 2
Abstract
Gas flaring is a disposal process widely used in the oil extraction and processing industry. It consists in the burning of unwanted gas at the tip of a stack and due to its thermal characteristic and the thermal emission it is possible to [...] Read more.
Gas flaring is a disposal process widely used in the oil extraction and processing industry. It consists in the burning of unwanted gas at the tip of a stack and due to its thermal characteristic and the thermal emission it is possible to observe and to quantify it from space. Spaceborne observations allows us to collect information across regions and hence to provide a base for estimation of emissions on global scale. We have successfully adapted the Visible Infrared Imaging Radiometer Suite (VIIRS) Nightfire algorithm for the detection and characterisation of persistent hot spots, including gas flares, to the Sea and Land Surface Temperature Radiometer (SLSTR) observations on-board the Sentinel-3 satellites. A hot event at temperatures typical of a gas flare will produce a local maximum in the night-time readings of the shortwave and mid-infrared (SWIR and MIR) channels of SLSTR. The SWIR band centered at 1.61 μm is closest to the expected spectral radiance maximum and serves as the primary detection band. The hot source is characterised in terms of temperature and area by fitting the sum of two Planck curves, one for the hot source and another for the background, to the radiances from all the available SWIR, MIR and thermal infra-red channels of SLSTR. The flaring radiative power is calculated from the gas flare temperature and area. Our algorithm differs from the original VIIRS Nightfire algorithm in three key aspects: (1) It uses a granule-based contextual thresholding to detect hot pixels, being independent of the number of hot sources present and their intensity. (2) It analyses entire clusters of hot source detections instead of individual pixels. This is arguably a more comprehensive use of the available information. (3) The co-registration errors between hot source clusters in the different spectral bands are calculated and corrected. This also contributes to the SLSTR instrument validation. Cross-comparisons of the new gas flare characterisation with temporally close observations by the higher resolution German FireBIRD TET-1 small satellite and with the Nightfire product based on VIIRS on-board the Suomi-NPP satellite show general agreement for an individual flaring site in Siberia and for several flaring regions around the world. Small systematic differences to VIIRS Nightfire are nevertheless apparent. Based on the hot spot characterisation, gas flares can be identified and flared gas volumes and pollutant emissions can be calculated with previously published methods. Full article
Show Figures

Graphical abstract

Back to TopTop